用户名: 密码: 验证码:
新型碳化硅微波功率MESFET结构设计及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)材料具有宽禁带、高电子饱和漂移速率、高临界击穿场强、高热导率等优良特性,在高频、高温、大功率、抗辐射等领域拥有极为广阔的应用前景。随着无线通信技术的飞速发展,对硬件系统高功率密度、快响应速度的需求日益迫切,基于SiC材料的肖特基栅场效应晶体管(MESFET)在微波射频领域具有Si、GaAs器件无法比拟的优势,适合航天、微波通信、电子对抗、大容量信息处理等应用。鉴于国内外SiC MESFET研究现状,本文从器件结构、数值仿真、可靠性、制备工艺等方面对SiC MESFET开展了系统的研究分析。主要的研究工作和成果如下:
     (1)从工作机理的角度分析了SiC微波功率MESFET的器件特性,整合了准确表征4H-SiC材料特性和MESFET器件工作机理的物理模型,并基于ISE-TCAD软件建立了合适的4H-SiC MESFET器件模型,对器件的直流、交流、击穿特性进行了模拟分析,并讨论了器件特性与关键结构参数的依赖关系,优化了器件结构,为器件设计提供了参考。
     (2)SiC与钝化材料之间高密度的界面态导致器件工作在较高频率时出现栅延迟现象,影响器件的性能指标。为抑制界面态的陷阱效应,提出了一种新型隔离层结构的SiC MESFET并设计了针对该结构器件制备的工艺流程。基于改进的陷阱模型对栅长为0.6μm的器件进行了特性模拟研究。结果表明,P型隔离层能有效地抑制表面陷阱的影响并且能减小器件在大电压微波应用条件下的栅漏电容;P型隔离层结合场板结构改善了栅极边缘的电场分布,同时能减小单一使用场板结构时引入的寄生栅漏电容。新结构4H-SiC MESFET的最大饱和漏电流密度为460mA/mm,在漏电压20V的栅延迟抑制比接近90%。交流特性的分析结果表明,新结构比埋栅-场板结构器件的特征频率(ft)和最高振荡频率(fmax)分别提高了5%和17.8%。
     (3)基于电场调制的思想,在分析场板结构器件所存在问题的基础上,建立了带栅漏间表面p型外延层的新型MESFET器件模型,模型综合考虑了高场载流子饱和、雪崩碰撞离化等效应。利用所建模型分析了表面外延层对器件沟道表面电场分布的改善作用,并采用突变结近似法对外延层参数与器件输出电流(Ids)和击穿电压(VB)的关系进行了研究。经过优化的结果表明,选择P型外延层厚度为0.12μm,掺杂浓度为5×1015cm-3,可使器件的VB提高33%而保持Ids基本不变,在一定程度上改善了导通电阻和击穿电压之间的矛盾。
     (4)为进一步提升器件的频率特性,将栅下缓冲层结构应用于SiC MESFET中,并结合P型隔离层使器件的特性得以整体性提升。在钝化层和沟道之间引入的p型隔离层抑制了表面陷阱的影响,并改善了栅极边缘的电场分布。另一方面,在栅极下面引入的轻掺杂N型缓冲层降低了扩展在导电沟道中的耗尽层,从而提高了输出电流Ids并减小了栅电容Cg。论文还对器件特性与结构参数的依赖关系进行了研究,获得了优化的设计方案。在击穿电压VB有所提高的情况下,栅下缓冲层结构MESFET的最大饱和电流密度为325mA/mm,与传统结构MESFET的182mA/mm相比有将近79%的提升。此外,应用新结构的MESFET的特征频率和最大振荡频率较传统结构MESFET分别提高了27%和28%。
     (5)在分析短沟道器件所存在问题的基础上,针对深亚微米SiC MESFET提出了改进型的异质栅结构,并结合肖特基栅势垒降低、势垒隧穿等物理模型,分析了改进型异质栅结构对SiC MESFET沟道电势、夹断电压以及栅下电场分布的影响。通过与传统栅器件特性的对比表明,异质栅结构在SiC MESFET的沟道电势中引入了多阶梯分布,加强了近源端电场;另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端,更好抑制了短沟道效应。此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案,减小了器件的亚阈值倾斜因子。为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构,提高了小栅长器件的耐压。
     综上所述,本论文在传统SiC MSEFET基础上,提出了几种新型器件结构,通过器件建模和特性仿真对新结构器件进行了系统的研究,并进行了较为深入的分析和讨论,得到了一些有意义的结果,为SiC MSEFET的设计与研制提供了指导。
Silicon carbide (SiC) has found wide application in the fields of high-frequency, high-temperature, high-power and radio-resistant due to its excellent properties such wide gap, high electron saturation drift velocity, high critical electric field and high thermal conductivity. With the rapid development of wireless communication, there has been increasing demand for hardware with high power-density and fast frequency-response. SiC based metal-semiconductor field-effect transistors (MESFETs) have superior advantages over Si and GaAs based devices, being a suitable candidate for a wide range of commercial and military applications, including aerospace, microwave communication, electronic countermeasure, large capacity information processing, etc. In view of the domestic and overseas research status of MESFETs, this dissertation reveals a systemic investigation of the structure design, numerical simulation, reliability and practical application of the SiC MESFETs. The major studies and conclusive results are as follows.
     (1) The characteristics of4H-SiC MESFETs are analyzed through working mechanism. Suitable device models are built and simulations have been performed using ISE-TCAD. Also, the characteristics dependences on the key structure parameters are discussed.
     (2) The high density of interface states at SiC/oxide interfaces causes gate-lag phenomena in high-frequency operations, leading to the deteriorated performance. A novel structure of4H-SiC MESFETs is proposed focusing on surface trap suppression, and a device with a0.6μm gate length is investigated based on improved trap models. A P-type spacer layer is shown to suppress surface trap effect and reduce gate-drain capacitance under large drain voltage in microwave operation. The P-type spacer layer incorporated with a field-plate improves the electric field distribution on the gate edge while inducing less gate-drain capacitance than the field-plated structure. The maximum saturation current density of460mA/mm is yielded. Also, the gate-lag ratio under drain voltage of20V is close to90%. In addition, a5%and a17.8%improvement in ft and fmax are obtained compare with buried-gate and field-plated MESFET in AC simulation.
     (3) Based on the theory of electric field modulation and the analysis of the disadvantages of the field-plated devices, the model of4H-SiC MESFET with a p-type surface epi-layer between the gate and the drain is established considering carrier velocity saturation and impact ionization. The improvement in distribution of the electric field is discussed and the output current (Ids) and breakdown voltage (VB) dependences on the dimensions of the p-type epi-layer are studied using abrupt junction approximation. The optimized design is obtained and the results show that VB is greatly increased by33%with Ids unchanged (less than3%) when the thickness and the doping concentration of the surface epi-layer are chosen as0.12μm and5×1015cm-3, respectively. This approach presents a solution to the constraint condition between Ids and VB.
     (4) In order to improve the frequency characteristics, the gate-buffer approach is applied in SiC MESFETs. With the incorporated approach, the performance of the device is totally enhanced. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress surface trap effect and improve the distribution of electric field at the gate edge. Meanwhile, a light-doped n-type buffer layer under the gate reduces the depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structure parameter dependences of the device performance are discussed and the optimized design is obtained. The results show the maximum saturation current density of325mA/mm is yielded compared with182mA/mm for conventional MESFET on condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of79%in output power density. Also, improvements of27%cut-off frequency and28%maximum oscillation frequency are achieved compared with the conventional MESFET, respectively.
     (5) Based on the analyses of the issue in short-channel devices, an improved hetero-material-gate (HMG) structure is proposed for deep sub-micron SiC MESFETs. Considering the physical models of Schottky barrier lowering and barrier tunneling, the effects of the HMG approach on the channel potential, pinch-off voltage and electric field distribution under the gate are analyzed. It is shown that the HMG approach induces a multi-stepped distribution of the channel potential, leading to an enhanced electric field at the source. Meanwhile, the position of the maximum of the channel potential is changed to the drain side compared with the dual-material-gate (DMG) device, resulting in a better restraint on short-channel effect. Also, different technological parameters and asymmetric gate structures are designed to study the dependences of the device performance, achieving a decreased sub-threshold swing an enhanced VB of the small scale device.
     In summary, several novel structures of SiC MESFETs are proposed and the characterizations are performed in this dissertation. In-depth theoretical analyses are taken through device modeling and numerical simulation. A number of meaningful and instructive results have been obtained for the design and fabrication of SiC MESFETs.
引文
[1.1]王占国.半导体信息功能材料与器件的研究新进展.中国材料进展.2009,28(1):26-30
    [1.2]Casady B, Johnson R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review. Solid-State Electronics,1996,39(10):1409-1422.
    [1.3]Brylinski C. Silicon carbide for microwave power applications. Diamond and Related Materials,1997,6(1):1405-1413.
    [1.4]Ozpineci B, Tolbert L M. Comparison of Wide-bandgap Semiconductors for Power Electronics Applications. Tennessee, U.S. Oak Ridge National Laboratory.2003:6-22.
    [1.5]ROSKER M. Wide bandgap and MMICs. III-Vs Review,2005,18(4):24-25.
    [1.6]张波,邓小川,张有润,等.宽禁带半导体SiC功率器件发展现状及展望.中国电子科学研究室学报.2009,4(2):111-118.
    [1.7]张玉明,张义门,罗晋升.SiC、GaAs和Si的高温特性比较.固体电子学研究与进展.1997,17(3):305-309.
    [1.8]Lebedev A A. High Power SiC Devices-new Result and Prospects. High Temperature Electronic Materials. Devices and Sensors conference.1998: 29-39.
    [1.9]Clarke R C, Palmour J W. SiC Microwave Power Technologies. Proceedings of the IEEE.2002,90(6).
    [1.10]Rupp R, Zverev I. SiC power devices:How to be competitive towards Si-based Solutions. Materials Science Forum.2003,433:805-812.
    [1.11]Raul P R. Planar Edge Terminations and Related Manufacturing Process Technology for High Power 4H-SiC Diodes. Bellaterra:Universitat Antonoma de Barcelona.2005,10.
    [1.12]Ishikawa K, Ogawa K, Onose H, et al. Traction inverter that applies hybrid module using 3-kV SiC-SBDs.2010 International Power Electronics Conference (IPEC).2010:3266-3270.
    [1.13]Wiliamovski B M. Schottky diodes with high breakdown voltage. Solid-State Electronics.1983,26:491-493
    [1.14]Brosselard P, Banu V, Camara N, et al. Recent progress in 3.3 kV SiC diodes. Materials Science and Engineering:B.2009,165(1-2)25:15-17
    [1.15]Wang J, Du Y, Bhattacharya S, et al. Characterization, modeling of 10-kV SiC JBS diodes and their application prospect in X-ray generators. IEEE Energy Conversion Congress and Exposition,2009(ECCE 2009).2009:1488-1493
    [1.16]Sugawara Y. SiC devices for high voltage high power applications. Materials Science Forum.2004,457:963-998
    [1.17]Das M K, Sumakeris J J, Paisley M J, et al. High power 4H-SiC PiN diodes with minimal forward voltage drift. Materials Sicence Forum.2004,457: 1105-1109
    [1.18]Takao K, Shinohe T, Harada S, et al. Evaluation of a SiC power module using low-on-resistance IEMOSFET and JBS for high power density power converters.2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).2010:2030-2035
    [1.19]Friedrichs P, Mitlehner H, Schorner R, et al. Applications-orieented Unipolar Swithching SiC Devices. Mater. Sci. Forum.2002,389:1185-1190
    [1.20]Khan A, Cooper J A, Capano M A, et al. High-Voltage UMOSFETs in 4H-SiC. ISPSD 2002,2002,4:157
    [1.21]Wood R A, Urciuoli D P, Salem T E, et al. Reverse conduction of a 100 A SiC DMOSFET module in high-power applications. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010). 2010:1568-1571
    [1.22]Sheng K, Radhakrishnan R, Zhang Y, et al. A vertical SiC JFET with a monolithically integrated JBS diode.21st International Symposium on Power Semiconductor Devices & IC's,2009 (ISPSD 2009).2009:255-258
    [1.23]Radhakrishnan R, Zhao J H. Monolithic Integration of a 4H-Silicon Carbide Vertical JFET and a JBS Diode. IEEE Electron Device Letters.2011,32(6): 785-787
    [1.24]Clarke R C, Palmour J W. SiC Microwave Power Technologies. Proceedings of the IEEE.2002,90(6)
    [1.25]Zhao J H, Tone K, Alexandrov P, et al.1710V 2.77mΩ·cm2 4H-SiC trenched and implanted vertical junction field-effect transistors. IEEE Electron Device Letters.2003,24(2):81
    [1.26]曹全军.4H-SiC MESFET非线性模型研究.博士学位论文.西安:西安电子科技大学.2008:5
    [1.27]Watanabe Y, Nishizawa J. Japanese Patent 205060:published No.28-6077, Applic.1950
    [1.28]Bulucea C, Rusu A. A First Order Theory of the SIT. Solid-St. Elect.1987, 30(12):1227-1242
    [1.29]Nishizawa J, Motoya K, Itoh A. The 2.45 GHz 36 W CW Si Recessed Gate Type SIT with High Gain and High Voltage Operation. IEEE Trans. On Elect. Dev.2000,47:482-487
    [1.30]Siergiej R R, Clark R C, Agarwal A K, et al. High Power 4H-SiC Static Induction Transistors. Int'l Electron Devices Meeting Tech. Dig.1995: 353-356
    [1.31]Clarke R C, Morse A W, Esker P, et al. A 16W,40% efficient, Continuous Wave,4H-SiC, L-band SIT.2000 IEEE Cornell Conference on High Performance Devices.2000:141-143
    [1.32]Merrett J N, Sankin I, Bonderenko V, et al. RF and DC Characterization of Self-aligned L-band 4H-SiC Static Induction Transistors.2005 International Conference on Silicon Carbide and Related Materials (ICSCRM) Poster.2005, 1:29
    [1.33]Ono S, Arai M, Kimura C. Demonstration of high-power X-band oscillation in p+n-n+ 4H-SiC IMPATT diodes with guard ring termination. Mater. Sci. Forum.2005,483-485:981-984
    [1.34]Meng C C, Liao G R. Analysis of SiC IMPATT device in millimeter-wave frequencies. Microwave and Optical Technology Letters.1998,18(3):167-168.
    [1.35]Joshi R P, Pathak S, Mcadoo J A. Hot-electron and thermal effects on the dynamic characteristics of single-transit SiC impact-ionization avalanche transit-time diodes. Journal of Applied Physics.1995,78 (5):3492-3497
    [1.36]Matocha K, Chow T P, Gutmann R J. High-voltage normally off GaN MOSFETs on sapphire substrates. IEEE Transactions on Electron Devices. 2005,52(1):6-10
    [1.37]Noborio M, Suda J, Kimoto T.4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose.20th International Symposium on Power Semiconductor Devices and IC's.2008,18:263-266
    [1.38]Singh R, Pecht M. Commercial impact of silicon carbide. Industrial Electronics Magazine.2008,2(3):19-31
    [1.39]Ozpineci B, Tolbert L M. Comparison of Wide-bandgap Semiconductors for Power Electronics Applications. Tennessee, U.S. Oak Ridge National Laboratory.2003:6-22
    [1.40]http://www.cree.com/products/sic_sub_prop.asp
    [1.41]Pengelly R. High power RF transistors. Wireless and Microwave Technology. 2001:An Industry/Government/Education Forμm:2000.
    [1.42]Nilsson P A, Saroukhan A M, Svedberg J O, et al. Characterization of SiC MESFETs on conducting substrates. Materials Science Forum.2000,338-342: 1255-1258.
    [1.43]Cha H Y, Thomas C I, Koley Q, et al. Reduced trapping effects and improved electrical performance in buried-gate 4H-SiC MESFETs. IEEE Transactions on Electron Device,2004,50(7):1569-1574.
    [1.44]Zhu C L, Rusli C C, Tin G H. Improved performance of SiC MESFETs using double-recessed structure. Microelectron.Eng.2006,83(1):92-95.
    [1.45]Andersson K, Sudow M, Nilsson P, et al. Fabrication and characterization of field-plated buried-gate SiC MESFETs. IEEE Electron Device Lett.2006, 27(7):573-575.
    [1.46]Zhu C L, Rusli C C, Zhao P. Dual-channel 4H-SiC metal semiconductor field effect transistors. Solid-State Electronics.2007,51(3):343-346.
    [1.47]Sriram S, Hagleitner H, Namishia D. High-Gain SiC MESFETs Using Source-Connected Field Plates. IEEE Electron Device Letters,2009,30(9): 952-953.
    [1.48]Elahipanah H. Record gain at 3.1 GHz of 4H-SiC high power RF MESFET. Microelectronics Journal,2011,42(2):299-304.
    [1.49]Sriram S, Alexander V, Jason H, et al. High-Performance Implanted-Channel SiC MESFETs. IEEE Electron Device Letters.2011,32(3):243-245.
    [1.50]Jia H J, Yang Y T, Chai C C, et al. Influences of surface pretreatment on SiC films grown by atmospheric pressure chemical vapor deposition process on SiO2/Si structures. J Synthetic Crystals.2006,35(3):510-513.
    [1.51]贾护军,杨银堂,李跃进.多晶SiC/多孔硅结构材料的APCVD生长及表征.西安电子科技大学学报.2009,36(2):298-301
    [1.52]张波,邓小川,张有润等.宽禁带半导体SiC功率器件发展现状及展望.中国电子科学研究院学报.2009,4(2):111-118
    [1.53]贾护军.4H-SiC微波功率MESFET关键技术研究.西安电子科技大学博士论文.2008.03
    [1.54]Chen Z L, Deng X C, Luo X R, et al. Improved characteristics of 4H-SiC MESFET with multi-recessed drift region. Proceedings of International Workshop of Electron Devices and Semiconductor.2007:82-85.
    [1.55]柏松,陈刚,吴鹏等.微波大功率SiC MESFET及MMIC.中国电子科学研究院学报.2009,4(2):137-139
    [1.56]陈昊,潘宏菽,杨霏等.S波段连续波SiC功率MESFET".微纳电子技术.2011,48(3):155-158
    [1.57]Villard F, Prigent J P, Morvan E, et al. Trap-Free Process and Thermal Limitations on Large Periphery SiC MESFET for RF and Microwave Power. IEEE Microwave Theory And Techniques.2003,51(4):1129-1134
    [1.58]Weitzel C E, Palmour J W, Carter C, et al.4H-SiCMESFET with 2.8 W/mm power density at 1.8 GHz. IEEE Electron Device Lett.1994,15(7):406-408
    [1.59]Stoven C, Binari, Klein P B, et al. Trapping effects in GaN and SiC microwave FETs. Proceedings of the IEEE.2002,90(6):1048-1058.
    [1.60]Horio K, Fuseya Y, Kusuki H, et al. Numerical Simulation of GaAs MESFET's with a p-Buffer Layer on the Semi-Insulating Substrate Compensated by Deep Traps. IEEE Transactions on Microwave Theory and Techniques.1989,37(9)
    [1.61]Sghaier N, Bluet J M, Souifi A, et al. Influence of Semi-Insulating Substrate Purity on the Output Characteristics of 4H-SiC MESFETs. Mat. Sci. Forum. 2002,389:1363-1366
    [2.1]刘恩科,朱秉升,罗普生.半导体物理学.北京:国防工业出版社,1994.
    [2.2]Nakamura T, Satoh M. NiSii2 ohmic contact to n-type 4H-SiC. Material Science Forum,2002,389-393:889-892.
    [2.3]Cho N I, Jung K H, Choi Y. Improved ohmic contact to the n-type 4H-SiC semiconductor using cobalt silicides. Semiconductor Science Technology, 2004,19:306-310
    [2.4]Goesmann F, Schmid-Fetzer. Temperature-dependent interface reactions and electrical contact properties of titanium on 6H-SiC. Semiconductor Science Technology,1995,10:1652-1658.
    [2.5]Crofton J, McMullin P G, Williams J R, et al. High-temperature ohmic contact to n-type 6H-SiC using nickel. Applied Physics Letter,1995,77:1317-1319
    [2.6]Kassamakova L, Kakanakov R, Nordell N, et al. Thermostable ohmic contacts to p-type SiC. Material Science Forum,1998,164-268:787-790.
    [2.7]Deeb C, Heuer A H. A low-temperature route to thermodynamically stable ohmic contacts to n-type 6H-SiC. Applied Physics Letter,2004,84:1117-1119
    [2.8]Donale A, Neamen.半导体物理与器件第三版.电子工业出版社.2007,407-410
    [2.9]刘永,张福海.晶体管原理.国防工业出版社,2002
    [2.10]Huang M W, Goldman N, Chang C H, et al. Determining 4H silicon carbide electronic properties through combined use of device simulation and metal-semiconductor field-effect-transistor terminal characteristics. Journal of Applied Physics.1998,84(4):2065-2070
    [2.11]Henry H G, Augustine G, DeSalvo G C, et al. S-band operation of SiC power MESFET with 20 W (4.4 W/mm) output power and 60% PAE. IEEE Trans Electron Devices,2004,51:839
    [2.12]Smith B L, Carpentier M H. The Microwave Engineering Hand Book, Volume 1, Microwave components. London, Chapman&Hall,1993:303-318
    [2.13]邵科.基于陷阱的4H-SiC MESFET频散效应研究.西安电子科技大学硕士论文.2008年1月.
    [2.14]Andersson K, Sudow M, Nilsson P-A, et al. Fabrication and Characterization of Field-Plated Buried-Gate SiC MESFETs. IEEE Electron Dev Lett,2006,27: 573
    [2.15]Sriram S, Hagleitner H, Namishia D, et al. High-gain SiC MESFETs using source-connected field plates. IEEE Electron Dev Lett,2009,30:952
    [2.16]Chen G, Qin Y F, Bai S, et al. Microwave power and simulation of S-band SiC MESFETs. Sol St Electr,2010,54:353
    [3.1]姜守振,徐现刚,李娟等,SiC单晶生长及其晶片加工技术的进展,半导体学报,2007,28(5):810-814.
    [3.2]陈之战,施尔畏,肖宾等,SiC单晶生长研究进展,材料导报,2002,16(6):32-38.
    [3.3]任学民.SiC单晶生长技术及器件研究进展,半导体情报,1998,35(4):7-12.
    [3.4]刘喆,徐现刚.SiC单晶生长,材料科学与工程学报,2003,21(2):274-278.
    [3.5]Tairov Y M, Tsvetkov V F. Investigation of growth processes of ingots of silicon carbide single crystals. Journal of Crystal Growth,1978,43(2):209-212.
    [3.6]王辉,琚伟伟,刘香茹等,半导体SiC材料研究进展及其应用,科技创新导报,2008,1:8-91.
    [3.7]梅芳,弓满锋,李玲.溅射技术在SiC薄膜沉积中的应用和工艺研究进展,表面技术,2008,37(2):75-78.
    [3.8]葛金余,杜丕一,韩高荣.SiC薄膜制备工艺进展,材料科学与工程,1998,16(1):36-40.
    [3.9]王引书,李晋闽,林兰英.SiC单晶生长及其器件研制进展,材料研究学报,1998,12(3):233-238.
    [3.10]李晋闽.SiC材料及器件研制的进展,物理,2000,29(8):481-487.
    [3.11]宋登元.SiC器件基本制备工艺的原理与发展现状,半导体技术,1994,4(2):5-9.
    [3.12]王姝睿,刘忠立,SiC器件工艺的发展状况,微电子学,2000,30(6):422-425.
    [3.13]商庆杰,潘宏菽,陈昊等.SiC MESFET工艺技术研究与器件研制,半导体技术,2009,34(6):549-552.
    [3.14]Matsui S, Misuki S, Yamato T. Reactive ion-beam etching of silicon carbide. Journal of Japanese Applied Physics,1981,20(1):38-40.
    [3.15]Palmour J W, Davis R F. Dry etching of β-SiC in CF4 and CF4+O2 mixture. Journal of Vaccum Science Technology,1986,4(3):590-593.
    [3.16]Leerungnarat P, Lee K P, Pearton S J, et al. Comprison of F2 plasma chemistries for deep etching of SiC. Journal of Electron Material,2001,30(3): 202-206
    [3.17]贾护军,杨银堂,柴常春等.4H-SiC在Cl2+Ar混合气体中的ICP刻蚀工艺研究.真空科学与技术学报,2006,26(6):500-503
    [3.18]柴常春.微波低噪声放大器毁伤机理研究和SiC薄膜的外延生长与刻蚀技术研究.西安电子科技大学博士学位论文,2005年10月.
    [3.19]韩茹.碳化硅器件的温度特性及其关键工艺研究.西安电子科技大学博士学位论文,2008年4月.
    [3.20]刘芳,张玉明,张义门等,离子注入制备n型SiC欧姆接触的工艺研究,半导体技术,2004,30(4):24-28.
    [3.21]Kimoto T, Miyamoto N, Schoner A, et al. High-energy (MeV) A1 and B Ion Implantations into 4H-SiC and Fabrication of PiN Diodes. J. Appl. Phys.2002, 91:4242-4248
    [3.22]Janson M S, Linnarsson M K, Hallen A, et al. Range Distribution of Implanted Ions in Silicon Carbide. Materials Science Forum.2002,389-393:779-782
    [3.23]Ghandh S K. VLSI Fabrication Principles. John Wiley&sons, New York.1994.
    [3.24]Petrik P, Shaaban E R, Lohner T, et al. Ion Implantation-caused Damage in SiC Measured by Spectroscopic Ellipsometry. Thin Solid Films.2004,455-456: 239-243
    [3.25]Hallen A, Henry A, Pellegrino P, et al. Ion Implantation Induced Defects in Epitaxial 4H-SiC. Materials Science and Engineering.1999,61-62:378-381
    [3.26]Ghezzo M, Brown D M, Downey E, et al. Nitrogen-Implanted SiC Diodes Using High-temperature Implantation. IEEE Electron Dev. Letts.1992,13: 636-641
    [3.27]Zhang Y, Weber W J, Jiang W, et al. Effects of Implantation Temperature on Damage Accumulation in Al-implantated 4H-SiC. J. Appl. Phys.2004,95: 4012-4018
    [3.28]Saks N S, Suvorov A V, Capell D C. High Temperature High-dose Implantation of Aluminum in 4H-SiC. Appl. Phys. Letters.2004,84:5195-5197
    [3.29]Seshadri S, Eldridge G W, Agarwal A K. Comparison of the Annealing Behavior of High-dose Nitrogen-, Aluminum-, and Boron-implanted 4H-SiC. Appl. Phys. Letters.1998,72:2026-2028
    [3.30]Handy E M, Rao M V, Jones K A, et al. Effectiveness of AlN Encapsulant in Annealing Ion-implanted SiC. J. Appl. Phys.1999,86:746-751
    [3.31]Zhu L, Shanbhag M, Chow T P, et al. 1kV 4H-SiC JBS Rectifiers Fabricated Using an A1N capped Anneal, Marterials Science Forum.2003,433-436: 843-846
    [3.32]Troffer T, Schadt M, Frank T, et al. Doping of SiC by Implantation of Boron and Alumimum. Physica Status Solidi A.1997,162:277-298
    [3.33]Jenny J R, Skowronski M, Mitchel W C, et al. Optical and Electrical Characterization of Voron Impurities in Silicon Carbide Grown by Physical Vapor Transport. J. Appl. Phys.1996,79:2326-2331
    [3.34]Jones K A, Shah P B, Zheleva T S, et al. Effect of High-temperature Anneals on 4H-SiC Implanted with Al or Al and Si. J. Appl. Phys.2004,96:5613-5618
    [3.35]Itoh H, Troffer T, Pensl G. Coimplantation Effects on the Electrical Properties of Boron and Aluminum Acceptors in 4H-SiC. Materials Science Forum.1998, 264-268:685-688
    [3.36]Ramungul N, Khemka V, Tyagi R, et al. Comparison of Aluminum-and Boron-implanted Verical 6H-SiC p+n Junction Diodes. Solid-state Electronics. 1998,42:17-22
    [3.37]Quintanilla L, Duenas S, Castan E, et al. Dopant Level Freeze-out and Nonideal Effects in 6-H-SiC Epilayer Junctions. J. Appl. Phys.1996,79:310-315
    [3.38]Neudech P G, Fazi C. High-field Fast-risetime Pulse Failures in 4H- and 6H-SIC PN Junction Rectifiers. J. Appl. Phys.1996,80:1219-1225
    [3.39]Zhu L, Li Z, Chow T P. N-type Doping of 4H-SiC with Phosphorus coimplanted with C or Si. J. Electronic Materials.2001,30:891-894
    [3.40]Capano M A, Cooper J A, Melloch M R, et al. Ionization Energies and Electron Mobilities in Phosphorus-and Nitrogen-implanted 4H-Silicon Carbide. Materials Science Forum.2000,338-342:703-706
    [3.41]Tanimoto S, Inada M, Kiritani N, et al. Single contact-material MESFETs on 4H-SiC. Materials Science Forum.2004,457-460:1221-1224
    [3.42]Na H, Kim H, Adachi K, et al. High-quality Schottky and ohmic contacts in planar 4H-SiC semiconductor field-effect transistors and device performance. J. Electron. Mater.2004,33:89-93
    [3.43]Han S Y, Kim K H, Kim J K, et al. Ohmic contact formation mechanism of Ni on n-type 4H-SiC. Appl. Phys. Lett.2001,79:1816-1818
    [3.44]Tanimoto S, Kiritani N, Hoshi M, et al. Ohmic contact structure and fabrication process applicable to practical SiC devices.2002,389-393:879-884
    [3.45]Luckowski E D, Delucca J M, Williams J R, et al. Improved ohmic contact to n-type 4H and 6H-SiC using nichrome. J. Electron. Mater.1998,27:330-334
    [3.46]Nakamura T, Satoh M. NiSi2 ohmic contact to n-type 4H-SiC. Materials Science Forum.2004,389-393:889-892
    [3.47]Marinova Ts, Kakanakova-Gerogieva A, Krastev V, et al. Materials Science and Engineering.1997,46:223-226
    [3.48]Okojie R S, Lucko D, Chen Y L, et al. Reliability assessment of Ti/TaSi2/Pt ohmic contact on SiC after 1000 g at 600℃. J. Appl. Phys.2002,91:6553-6559
    [3.49]Lee S K, Zetterling C M, Ostling M, et al. Low resistivity ohmic titanium carbide contacts to n-and p-type 4H-silicon carbide. Solid-state Electronics. 2000,44:1179-1186
    [3.50]Jang T, Odekirk B, Madsen L D, et al. Thermal stability and contact degradation mechanisms of TaC ohmic contacts with W/WC overlayers on n-type 6H-SiC. J. Appl. Phys.2001,90:4555-4559
    [3.51]Yang Y T, Jia H J, Li Y J, et al. Ohmic contact property of Ti/Ni/Au on n-type 4H-SiC. The proceedings of the China association for science and technology. 2007,4(2):503-505
    [3.52]Jiang Z Y, Han J T, Liu X H. Comparison of Ohmic Contact Characteristics of Different Metal on N Type 4H-SiC. Advanced Materials Research.2010, 152-153:1529-1532
    [3.53]Crofton J, Beyer L, Williams J R, et al. Titanium and Aluminum-Titanium ohmic contacts to p-type SiC. Solid-state Electronics.1997,41:1725-1729
    [3.54]Konishi R, Yasukochi R, Nakatsuka O, et al. Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC. Materials Science and Engineering B.2003,98:286-293
    [3.55]Kassamakova L, Kakanakov R, Nordell N, et al. Thermostable ohmic contacts to p-type SiC. Materials Science Forum.1998,264-268:787-790
    [3.56]Lee S K, Zetterling C M, Danielsson E, et al. Electrical characterization of TiC contacts to aluminum inplanted 4H-silicon carbide. Appl. Phys. Lett.2000,77: 1478-1480
    [3.57]Downey B P, Mohney S E, Clark T E., et al. Reliability of Aluminum-bearing Ohmic Contacts to SiC under High Current Density. Microelectronic Reliability. 201050(12):1967-1972
    [3.58]Kakanakov R, Kasamakova-Kolaklieva L, Hristeva N, et al. High Temperature and High Power Stability Investigation of Al-based Ohmic Contacts to P-type 4H-SiC.27th International Spring Seminar on Electronics Technology.2004,3: 543-546
    [3.59]Jennings M R, Perez-Tomas A, Davies M, et al. Analysis of Al/Ti, Al/Ni Multiple and Triple Layer Contacts to P-type 4H-SiC. Solid-State Electronics. 2007,51:797-801
    [3.60]Olowolafe J O, Liu J, Gregory R B, et al. Effects of Si and Al interface layers on the properties of Ta and Mo contacts to p-type SiC. J. Electron. Mater.2000, 29:391-397
    [3.61]ISE-TCAD release 10.0 manual. Vol.4a. ISE Integrated Systems Engineering AG,2005.
    [3.62]Huang M W, Goldman N, Chang C H, et al. Determining 4H silicon carbide electronic properties through combined use of device simulation and metal-semiconductor field-effect-transistor terminal characteristics. Journal of Applied Physics.1998,84(4):2065-2070
    [3.63]DESSIS-ISE, version 10.0. Integrated Systems Engineering AG,2005
    [3.64]Williams J R, Chung G Y, Tin C C, et al. Passivation of the 4H-SiC/SiO2 interface with nitric oxide. Materials Science Forum,2002,389-393(2): 967-972.
    [3.65]Muller S G, Glass R C, Hobgood H M, et al. Progress in the industrial production of SiC substrates for semiconductor devices. Materials Science & Engineering B,2001, B80(1-3):1-3.
    [3.66]Davis R F, Roskowski A M, Preble E A, et al. Gallium nitride materials-Progress, status, and potential roadblocks. Proceedings of the IEEE,2002,90(6): 993-1004.
    [3.67]Rosehke M, Schwierz E. Electron mobility models for 4H,6H, and 3C SiC. IEEE Electron Devices,2001,48(7):1442
    [3.68]Baliga B J. Power Semiconductor Devices,1996.
    [4.1]Mitra S, Rao M V, Jones A K. Transconductance frequency dispersion measurements on fully implanted 4H-SiC MESFETs. Solid-State Electronics, 2004,48(1):143.
    [4.2]Binari S C, Klein P B, Kazior T E. Trapping effects in GaN and SiC microwave FETs, Proceedings of the IEEE,2002,90(6):1048.
    [4.3]Hilton K P, Uren M J, Hayes D G. Surface control of 4H SiC MESFETs. Materials Science Forum, Switzerland:Trans. Tech. Pub.,2002,389-393(2): 1387.
    [4.4]Miyake H, Kimoto T, Suda J.4H-SiC BJTs with record current gains of 257 on (0001) and 335 on (0001). IEEE Electron Device Letters,2011,32(7):841-843.
    [4.5]Menon K G, Nakajima A, Ngwendson L, et al. Performance evaluation of 10-kV SiC trench clustered igbt. IEEE Electron Device Letters,2011,32(9): 1272-1274.
    [4.6]Das M K, Zhang Q C, Callanan R, et al. A 13 kV 4H-SiC n-channel IGBT with Low Rdiff, on and fast switching. Materials Science Forum,2009,600-603: 1183-1186.
    [4.7]Kono H, Suzuki T, Takao K, et al.1.4kV double-implanted MOSFETs fabricated on 4H-SiC(000-1). Materials Science Forum,2010,679-680: 607-612.
    [4.8]Guedon F, Singh S K, McMahon R A, et al. Gate driver for SiC JFETs with protection against normally-on behaviour induced fault. Electronics Letters, 2011,47(6):375-377.
    [4.9]Ise K, Tanaka H, Takaki K, et al. Development of a megahertz high-voltage switching pulse modulator using a SiC-JFET for an induction synchrotron. IEEE Transactions on Plasma Science,2011,39(2):730-736.
    [4.10]Elahipanah H. Record gain at 3.1 GHz of 4H-SiC high power RF MESFET. Microelectronics Journal,2011,42(2):299-304.
    [4.11]Chen W H, Li X, Wang L, et al. A novel broadband VHF SiC MESFET class-E high power amplifier. Microwave and Optical Technology Letters,2010,52(2): 272-276.
    [4.12]Deng X C, Li L, Zhang B. et al. High-power density SiC MESFETs with multi-recess gate. Electronics Letters,2011,47(8):517-518.
    [4.13]Horio K, and Yamada T. Two-dimensional analysis of surface-state effects on turn-on characteristics in GaAs MESFET's. IEEE Trans Electron Devices,1999, 46(4):648-655
    [4.14]Cha H Y, Thomas C I, Koley G, et al. Reduced trapping effects and improved electrical performance in buried-gate 4H-SiC MESFETs. IEEE Trans Electron Devices,2003,50:1569
    [4.15]Cha H Y, Thomas C I, Koley G, et al. Passivation effect on channel-recessed 4H-SiC MESFETs. Mater Sci Forum,2002,433:749
    [4.16]Henry H G, Augustine G, DeSalvo G C, et al. S-band operation of SiC power MESFET with 20 W (4.4 W/mm) output power and 60% PAE. IEEE Trans Electron Devices,2004,51:839.
    [4.17]Cha H Y, Choi Y C, Eastman L F, et al. Simulation study on breakdown behavior of field-plate SiC MESFETs. International Journal of High Speed Electronics and Systems,2004,14:884.
    [4.18]Sriram S, Hagleitner H, Namishia D, et al. High-gain SiC MESFETs using source-connected field plates. IEEE Electron Dev Lett,2009,30:952.
    [4.19]Chen G, Qin Y F, Bai S, et al. Microwave power and simulation of S-band SiC MESFETs. Sol St Electr,2010,54:353.
    [4.20]Schwierz F, Liou JJ. Modern microwave transistors:theory, design and performance. Hoboken. New Jersey:John Wiley & Sons,2003
    [4.21]Andersson K, Sudow M, Nilsson P-A, et al. Fabrication and Characterization of Field-Plated Buried-Gate SiC MESFETs. IEEE Electron Dev Lett,2006,27: 573
    [4.22]郑少金.埋栅-埋沟4H-SiC MESFET结构优化研究.西安电子科技大学硕士学位论文,2009年3月
    [4.23]Hjelmgren H, Allerstam F, Andersson K, et al. Transient Simulation of Microwave SiC MESFETs With Improved Trap Models. IEEE Trans Electron Devices,2010,50:1569
    [4.24]Thornber K K. Applications of scaling to problems in high-field electronic transport. Journal of Applied Physics.1981,52(1):279-290
    [4.25]Konstantinov A O, Ivanov P A, Nordell N, et al. High-voltage operation of field-effect transistors in silicon carbide. IEEE Electron Dev Lett,2006,18(11): 521-522
    [4.26]Huang M W, Goldman N, Chang C H, et al. Determining 4H silicon carbide electronic properties through combined use of device simulation and metal-semiconductor field-effect-transistor terminal characteristics. Journal of Applied Physics.1998,84(4):2065-2070
    [4.27]Baliga B J. Power Semiconductor Devices,1996.
    [4.28]刘恩科,朱秉升,罗普生.半导体物理学.北京:国防工业出版社,1994.
    [5.1]Villard F, Prigent J P, Morvan E, et al. Trap-Free Process and Thermal Limitations on Large Periphery SiC MESFET for RF and Microwave Power, IEEE Microwave Theory And Techniques,2003,51(4):1129-1134.
    [5.2]张波,邓小川,陈万军等.宽禁带功率半导体器件技术.电子科技大学学报,2009,38(5):618-623.
    [5.3]Binari S C, Klein P B, Kazior T E. Trapping effects in GaN and SiC microwave FETs. Proceedings of the IEEE,2002,90(6):1048.
    [5.4]Cha H Y, Thomas C I, Koley G, et al.Reduced trapping effects and improved electrical performance in buried-gate 4H-SiC MESFETs. IEEE Trans Electron Devices.2003,50:1569
    [5.5]Horio K, Yamada T. Two-dimensional analysis of surface-state effects on turn-on characteristics in GaAs MESFET's. IEEE Trans Electron Devices,1999, 46(4):648-655
    [5.6]Cha H Y, Choi Y C, Eastman L F, et al. Simulation study on breakdown behavior of field-plate SiC MESFETs. International Journal of High Speed Electronics and Systems,2004,14:884
    [5.7]Chen G, Qin Y F, Bai S, et al. Microwave power and simulation of S-band SiC MESFETs. Sol St Electr,2010,54:353
    [5.8]Song K, Chai C C, and Yang Y T, et al. Characteristics and optimization of 4H-SiC MESFET with a novel p-type spacer layer incorporated with a field-plate structure based on improved trap models. Journal of Semiconductors,2011,32(7): 074003-1-6
    [5.9]刘恩科,朱秉升,罗普生.半导体物理学.北京:国防工业出版社,1994.
    [5.10]Vetury R, Zhang N Q, Keller S, et al.The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs. IEEE Transactions on Electron Devices.2001,48(3):560-566.
    [5.11]Baliga B J. Power Semiconductor Devices,1996.
    [5.12]Sze S M, Ng K K. Physics of Semiconductor Devices. New Jersey:John Wiley & Sons, Inc.2006:396.
    [5.13]Zhu C L, Rusli, Zhao P. Dual-channel 4H-SiC metal semiconductor field effect transistors. Solid-State Electronics.2007,51(3):343-346.
    [5.14]Chen G, Qin Y F, Bai S, et al. Microwave power and simulation of S-band SiC MESFETs. Sol St Electr,2010,54:353.
    [5.15]Henry H G, Augustine G, DeSalvo G C, et al. S-band operation of SiC power MESFET with 20 W (4.4 W/mm) output power and 60% PAE. IEEE Trans Electron Devices,2004,51:839.
    [5.16]Hjelmgren H, Allerstam F, Andersson K, et al. Transient Simulation of Microwave SiC MESFETs With Improved Trap Models. IEEE Trans Electron Devices,2010,50:1569
    [5.17]Cao Q J, Zhang Y M, Jia L X. Model and analysis of drain induced barrier lowering effect for 4H- SiC metal semiconductor field effetc transistor. Chin. Phys. B 2009,18(10):4456-4459.
    [5.18]Ogura S, Tsang P J, Walker W W, et al. Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Trans Electron Devices.27(8):1359-1367
    [5.19]Mitra S, Rao M V, Jones A K. Transconductance frequency dispersion measurements on fully implanted 4H-SiC MESFETs. Solid-State Electronics, 2004,48(1):143
    [5.20]Long W, Qu H, Kuo J-M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices.1999,46(5):865-870
    [5.21]Hashemi P, Behnam A, Fathi E, et al.2-D modeling of potential distribution and threshold voltage of short channel fully depleted dual material gate SOI MESFET. Sol. St. Electr.2005,49:1341-1346
    [5.22]Wakabayashi H, Saito Y, Takeuchi K, et al. A dual-metal gate CMOS technology using nitrogen-concentration-controlled TiNx film. IEEE Trans Electron Devices.2001,48(10):2363-2369
    [5.23]DESSIS-ISE, version 10.0. Integrated Systems Engineering AG,2005
    [5.24]Grivickas P, Galeckas A, Linnros J, et al. Carrier lifetime investigation in 4H-SiC grown by CVD and sublimation epitaxy. Mater. Sci. in Semiconductor Processing.2001,4(1-3):191-194
    [5.25]Manabu A, Hirotake H, Shuichi O, et al. Development of high-frequency SiC-MESFETs. Elecronics and Communications in Japan Part 2:Electronics. 2003,86(11):1-10
    [5.26]Itoh A, Matsunami H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices.1997 Physica Status Solidi A-Applied Research.1997,162(1):389-408
    [5.27]Hatayama T, Kawahito H, Kijima H, et al. Electrical properties and interface reaction of annealed Cu/4H-SiC Schottky rectifiers. Material. Science. Forum. 2002,389-393(2):925-928
    [5.28]Roccaforte F, Via L, Raineri F, et al. Highly reproducible ideal SiC Schottky rectifiers:effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height.Applied. Physics. A:.2003,77(6):827-833
    [5.29]Lee S K, Zetterling C M, Ostling M, et al. Schottky diode formation and characterization of titanium tungsten to n- and p-type 4H silicon carbide. Journal of Applied Physics.2000,87(11):8039-8044

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700