用户名: 密码: 验证码:
基于肌浆网钙转运研究黄芪、丹参对肥大心肌细胞舒缩功能干预机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心力衰竭是高血压、缺血性心脏病、心脏瓣膜病等各种心血管系统疾病发展的终末阶段。心衰一旦发生,预后极差,其死亡率占心血管疾病总死亡率的40%。心衰发生发展的基本机制是心肌重构,其病理生理核心在于心肌细胞钙稳态平衡紊乱,进而导致心肌舒缩功能受损。其早期主要表现为舒张功能障碍,心肌顺应性降低,进而影响收缩功能,最终导致心功能不全。兴奋-收缩偶联障碍则是导致其舒缩功能不全的重要环节。心肌胞浆的Ca2+浓度周期性变化主要来源于肌浆网,肌浆网通过兰尼丁受体2(Ryanodine receptor, RyR2)快速释放Ca2+,引起胞浆Ca2+浓度迅速升高,引发心肌收缩,随后又由肌浆网钙泵(sarcoendoplastic reticulum Ca2+-ATPase, SERCA2a)在受磷蛋白(phospholamban, PLB)的调节下主动将Ca2+转运回肌浆网中,使胞浆Ca2+浓度回落而引起心肌细胞舒张,由肌浆网释放-摄取Ca2+引起的钙瞬变,将心肌中的电活动与机械活动偶联,与心肌收缩-舒张功能直接相关。以上钙转运关键因子都受到钙调素依赖性蛋白激酶Ⅱ(Calmodulin kinase, CaMKⅡ)的调控。肌浆网钙转运是心衰早期潜在的干预靶点。运用抑制剂或基因敲除方法抑制CaMKⅡ的过度激活,解除PLB对SERCA2a的抑制可以延缓心衰的进展,但如何推广到临床应用,尚需要大量试验研究。因此目前尚缺乏能被临床试验证实有效的药物可供使用。
     中医辨证论治在心衰早期干预方面具有一定的优势,临床研究认为气虚、血瘀是引起心衰发生、发展的基本病机。益气药黄芪、活血药丹参是治疗心衰的常用药,具有确切的临床疗效,在改善气虚血瘀证同时,可以改善心肌肥厚、延缓心衰的进展。
     本课题在大量文献整理、分析及既往研究工作的基础上,从心肌细胞肌浆网钙转运机制着手,阐释黄芪、丹参治疗心肌肥厚、预防心衰发生发展的药理学基础。
     方法
     1.心肌细胞特性观察实验:体外原代培养乳鼠心肌细胞,分为对照组(Control)与模型组(Model)。于给药后24、48、72h后运用倒置相差显微镜观察心肌细胞一般特性。HE染色及图像分析法记录细胞核/细胞质面积与直径等检测肥大心肌细胞模型的建立;相差显微镜下记录细胞搏动频率;活细胞工作站记录细胞搏动幅度。
     2.肥大心肌细胞钙转运的变化及黄芪、丹参对其调节作用:体外原代培养乳鼠心肌细胞,分为对照组(Control、模型组(Model).黄芪组(HQ)、丹参组(DS)、芪丹组(QD)、氯沙坦组(Losartan)。用钙荧光探针Fluo-4/AM进行负载,然后在波宽0.5ms,强度为20V的电刺激起搏下,于给药后24、48、72h,用单细胞收缩与离子测量系统动态记录单个心肌细胞的钙瞬变,提取特征参数:荧光强度变化率(△F)、基线荧光强度(Fo)、钙瞬变幅度(Ft)、峰回落时间(RTso)、衰减时间常数(τ)、-dp/dt max.观察不同时点AngⅡ对心肌细胞内钙瞬变的影响。同时观察丹参注射液和黄芪注射液的干预作用。
     3.肥大心肌细胞钙转运相关蛋白变化及黄芪、丹参对其干预作用:采用免疫荧光法及Western blot去在24、48、72h,观察不同时点AngⅡ对钙转运调控蛋白CaMKⅡ、SERCA2a、PLB荧光强度与蛋白含量及SERCA2a/PLB的影响。同时观察丹参注射液和黄芪注射液的干预作用。
     4.KN-93阻断CaMKⅡ后黄芪、丹参对钙瞬变的影响:采用KN-93阻断CaMKⅡ后应用激光共聚焦显微镜,观察48h黄芪注射液和丹参注射液对钙瞬变的干预作用。
     结果
     1.对心肌细胞特性的影响10-7mol/L AngⅡ刺激乳鼠心肌细胞24、48、72h后,乳鼠心肌细胞核/细胞质面积与直径显著增加;48h、72h后心肌细胞总蛋白含量与对照组比较显著增加。给予AngⅡ后24h模型组搏动频率较对照组下降,48h后显著减慢,随着AngⅡ作用时间延长,心肌细胞搏动频率不断减慢,至72h搏动频率达到最低。
     2.黄芪、丹参对肥大心肌细胞钙瞬变及其收缩功能的影响(1)给予Ang11后24h模型组与对照组比较,心肌细胞RTso与T值显著增加,-dp/dt max显著降低(P<0.05);各中药组可使RTso与τ值降低至正常水平(P<0.05)(2)48h, AngⅡ对心肌细胞RTso、τ值与-dp/dt max的作用持续(P<0.05),并显著降低Fo、△F、Ft(P<0.05),各中药组可改善AngⅡ引起的上述变化使RT50、T值、-dp/dt max、F0、△F、Ft恢复至正常水平,氯沙坦组可降低F0、RT50与τ值(P<0.05)。(3)72h,模型组心肌细胞RT50、T值与.-dp/dt max的持续增加(P<0.05),F0、△F、Ft持续降低(P<0.05),各中药组可改善AngⅡ引起的上述变化,芪丹组可显著降低τ值且优于丹参组,氯沙坦组可显著增加△F、Ft与-dp/dt max (P<0.05).
     3.黄芪、丹参对肥大心肌细胞蛋白含量的影响免疫荧光检测:(1)24h模型组CaMK Ⅱ荧光强度较对照组显著增加(P<0.05),SERCA2a与PLB荧光强度虽略有下降,但无统计学意义。(2)48h模型组CaMK Ⅱ荧光强度增加的同时SERCA2a与PLB荧光强度显著下降(P<0.05);各给药组可显著降低CaMK Ⅱ荧光强度,并使SERCA2a与PLB荧光强度显著增加。(3)模型组对CaMK Ⅱ. SERCA2a与PLB荧光强度的影响仍然持续;各给药组虽仍可抑制AngⅡ的上述作用,但仅对SERCA2a荧光强度的增加有统计学意义(P<0.05),对于PLB荧光强度的影响,只有芪丹组与氯沙坦组有显著差异(P<0.05)。Western blot检测:(1)24h,模型组和对照组相比CaMK Ⅱ蛋白含量显著升高(P<0.05),SERCA2a蛋白含量下降(P<0.05);PLB蛋白含量与SERCA2a/PLB比率下降,但无统计学意义;黄芪组可降低CaMKⅡ蛋白含量,增加SERCA2a蛋白含量,至正常水平,同时可大幅度升高SERCA2a/PLB比例;丹参组与模型组相比可降低CaMKⅡ蛋白含量,略升高SERCA2a与SERCA2a/PLB比例,但没有统计学意义;芪丹组显著降低CaMKⅡ蛋白含量,增加SERCA2a与PLB蛋白含量,且优于单药使用。(2)48h与对照组相比模型组CaMKⅡ蛋白含量持续增加,SERCA2a、PLB蛋白含量有仍呈下降趋势,SERCA2a/PLB比率大幅度下降(P<0.05);黄芪组与丹参组可显著降低CaMKⅡ蛋白含量,增加SERCA2a、PLB蛋白含量和SERCA2a/PLB比率;联合用药组可使CaMKⅡ蛋白含量显著下降,使SERCA2a、PLB蛋白含量和SERCA2a/PLB比率上升,且均优于单药组。
     4.黄芪、丹参对Ca2+/CaMKⅡ通路的影响48h,模型组和对照组相比Fo及RT50上升,△F下降(P<0.05);黄芪组、丹参组与模型组相比可降低F0及RT5o,回升△F(P<0.05);芪丹组与模型组比较使RT5o及Fo显著降低,并大幅度回升△F,且与单药组相比有显著差异(P<0.05);氯沙坦组可降低RT50并增加△F(P<0.05)。给予模型组及各治疗组KN-93后检测心肌细胞钙瞬变。模型组心肌细胞△F、F0、Ft无显著性差异,提示肥大心肌细胞收缩功能得以改善,但RT50与对照组相比显著增加(P<0.05),表明心肌细胞舒张功能仍存在异常。黄芪注射液、丹参注射液、两药联合使用及氯沙坦在此基础上可以进一步RT50(P<0.05)。
     结论
     AngⅡ导致心肌细胞肥大-衰竭的过程中可引起心肌细胞核/细胞质面积与心肌细胞核/细胞质直径显著增加,搏动频率下降。给予AngⅡ后24h钙瞬变峰回落时间增加-舒张功能异常,至48h发生钙瞬变荧光强度变化率降低-收缩功能异常。提示在心肌细胞肥大-衰竭过程中,舒张功能障碍发生先于收缩功能。在早期即可引起心肌细胞钙转运相关蛋白CaMKⅡ、PLB、SERCA2a蛋白表达水平的变化,影响心肌细胞内钙离子浓度。
     黄芪、丹参对钙离子的调节作用是通过干预钙转运调控蛋白CaMKⅡ、PLB、 SERCA2a而实现,从而改善了心肌细胞的舒缩功能。黄芪在心肌细胞肥大早期既可改善钙调控蛋白含量与钙瞬变峰回落时间异常,衰竭初期黄芪,丹参可以调整心肌细胞钙瞬变与钙调控蛋白含量异常,从而改善心肌细胞兴奋-收缩偶联,两药联合应用在早期并未优于黄芪单独应用,但在衰竭期选择联合用药可以更好的改善肌浆网对钙离子的调节作用。两药联合的长程干预不但可以保护心肌细胞的舒缩特性,也可以拮抗心衰时心肌细胞钙瞬变及其调控蛋白的异常变化。氯沙坦在心肌细胞肥大早期并未体现组对与钙瞬变的调节作用,在衰竭初期可通过调节心肌细胞峰回落时间与T值改善舒张功能,在衰竭期则可显著改善钙瞬变幅度及其荧光变化率,影响心肌细胞收缩功能。此种变化显示了其对心肌细胞舒缩功能改善的不均一性,常常是舍弃其中一方而保全另一方,中药则不仅可以改善心肌细胞收缩功能,并且对舒张功能的作用也非常显著,体现了中药调节的整体性。
     黄芪、丹参改善肥大心肌细胞收缩功能的机制可能部分是通过抑制钙调蛋白激酶途径中CaMKⅡδ的表达而实现的,但对心肌细胞舒张功能的改善可能是另有其他途径,需要进一步研究。
Heart failure is the terminal stage of a variety of cardiovascular diseases, such as hypertension, coronary heart disease, valvular heart disease. Once heart failure occurs, the prognosis is extremely poor, and accounted for40%of the total mortality of cardiovascular disease mortality. The basic mechanism of heart failure is myocardial remodeling, and the pathphysiology is myocardial calcium homeostasis balance disorders, leading to impaired myocardial function.
     The early manifestation of heart failure is diastolic dysfunction and reduced myocardial compliance, thereby affecting systolic function, eventually leading to heart dysfunction. Excitation-contraction coupling (ECC) barriers are an important part of the heart systolic and diastolic dysfunction. In normal excitation-contraction coupling (ECC), firstly, small amounts of calcium ions enter the cell through L-type calcium channel during depolarization, secondly, a large of calcium release from sarcoendoplasmic reticulium (SR) by ryanodine receptors. This is called the calcium-induced calcium release. The result is a rapid rise of cytosolic calcium concentration that causes myocardium contraction. Then during repolarization, most of the cytosolic calcium is uptaken into sarcoendoplasmic reticulum by its Ca+-ATPase (SERCA2) under the regulation of phospholamban. So the concentration of calcium in cytosol decreases and the myocardium relaxes. This change of intracellular calcium ions during excitation-contraction coupling is called calcium transient, and it is the molecular basis of myocardial contraction. The above of calcium transport protein is regulated by calmodulin-dependent protein kinase Ⅱ (CaMK Ⅱ). Calcium transport has become to be considered is one of the most mechanisms during the development of heart failure, and may be the target for intervention in the future. Use of inhibitors or gene knockout method to inhibit excessive activation of CaMK Ⅱ can delay heart failure progress, but how to promote clinical applications, still need a lot of tests. Therefore no corresponding drugs can be used for clinical application.
     Traditional Chinese medicine has certain advantages in early intervention in heart failure. During the clinical studies, the researcher suggests that deficiency qi and blood stasis is the cause of heart failure occurred, and a key factor for heart failure. Previous experiments also suggested that traditional Chinese medicine has different regulation for sarcoplasmic reticulum calcium transport. Salvia and Astragali is effective to heart failure which is commonly used drugs, with the exact clinical efficacy. There can improve cardiac hypertrophy, but also can delay the progress of heart failure.
     Our research is based on sorting out and analyzing a large of reference data and previous research. Use cardiac sarcoplasmic reticulum calcium transport mechanism to explain Astragalus, Sal via treatment of cardiac hypertrophy and pharmacological basis for the prevention of heart development.
     Methods
     1. Cardiomyocytes characteristics observed experiment:The cultured of neonatal rat cardiomyocytes were divided into control group, Model group, Salvia group (DS), Astragali Group (HQ), Salvia and Astragali group (DQ), Losartan group. At24th hour,48th hour,72nd hour, use inverted phase contrast microscope to observe the characteristics of cardiomyocytes. HE staining and image analysis record the model of the nucleus/cytoplasm area and diameter of cardiomyocytes; Use phase contrast microscope to record beating frequency of cardiomyocytes; The cell area before and after cell contraction was measured by the living cells workstation.
     2. Effects of Salvia and Astragali on the Calcium Transients:The cardiomyocytes were loaded with Fluo-4/AM. The Salvia and Astragali on the contractility, diastolic [Ca2+] and calcium transients were assessed by the Fluorescence Measurement and Cell Dimensioning Systems. Observe the changes of Salvia and Astragali effect on calcium transients at24th hour,48th hour,72nd hour.
     3. Effects of Salvia and Astragali on the expression of calcium handing proteins:Using immunofluorescence and Western bolt method observed Salvia and Astragali on the fluorescence intensity and protein content of calcium handing protein:CaMK Ⅱ, SERCA2a and PLB at different time points (24h,48h,72h).
     4. Effects of Salvia and Astragali on the Calcium transients after KN-93blocked CaMK Ⅱ:The Salvia and Astragali on calcium transients were assessed by the Fluorescence Measurement and Cell Dimensioning Systems and Laser Scanning Confocal Microscopy (LSCM). Using KN-93to block CaMK Ⅱ, observe the change of Salvia and Astragali effect on calcium transients in24th hour,48th hour, and72nd hour.
     Results
     1. The nuclear/cytoplasm area and diameter of myocardial are significantly increased at24th hour,48th hour, and72nd hour by10-7mol/L angiotensin Ⅱ. The total protein content of cardiomyocytes increased significantly; the beating rate decreased significantly with time.
     2.24th hour, compare to the control group, the relaxation time to50%baseline (RT50) and τ of model group significantly increased (P<0.05). In herbs group, RT50and τ decreased.48th hour, the F0, τ and RT50of model group increased, the△F and F decreased (P<0.05). The herbs group not only reduced RT50, τ and Fo, but also recovered the△F and F to normal levels. The Losartan group reduce RT50, τ and Fo.72nd hour, the F0,△and RT50of model group still increased, the△E and F were significantly lower (P<0.01). HQ and DS can improve the change by Ang Ⅱ, and the two drugs used in combination are better than their individual use to change τThe Losartan group increased△F, F and-dp/dt max.
     3. Effects of Salvia and Astragali on the mean IOD of calcium handing proteins.(1)24th hour, the CaMK11IOD of model group compared with control group increased significantly(P<0.05), SERCA2a mean IOD and PLB mean IOD decreased slightly, but not statistically significant. Each dose group can be varying degrees of improvement.(2)48th hour, model group CaMK Ⅱ mean IOD increased, while SERCA2a mean IOD and PLB mean IOD was significantly decreased(P<0.05). Each dose group can significantly reduce the CaMK Ⅱ mean IOD, and SERCA2a mean IOD and PLB mean IOD increased.(3)72nd hour, the model group mean IOD of CaMK Ⅱ, SERCA2a and PLB is still continuing to change(F <0.05). Each dose group increased SERCA2a mean IOD. Only the combined group and Losartan group increased PLB mean IOD. Effects of Salvia and Astragali on the expression of calcium handing proteins.(1)24th hour, compared to the model group and the control group CaMK Ⅱ expression level was higher(P <0.05) and the SERCA2a expression level decreased(P<0.05). The HQ group reduced the expression level of CaMK Ⅱ, and increased SERCA2a protein content to normal levels, while significantly elevated SERCA2a/PLB ratio. The DS group compared with the model group can be reduced CaMK Ⅱ protein expression.(2)48th hour, the model group continued to increase CaMK Ⅱ expression level and the expression of SERCA2a, PLB contimued to drop; SERCA2a/PLB ratio dropped significantly. HQ group and DS group can significantly reduce the CaMK Ⅱ protein expression, recovered SERCA2a and PLB protein expression, and SERCA2a/PLB ratio. The therapeutic effect of the QD group was better than.single-agent group.
     4.48th hour, the F0and RT50of model group increased, the△F decreased (P<0.05). HQ/DS can reduce RT50and FO, and recovery the△F to normal levels. The Losartan group can reduce RT50and recovery the△F. We study the calcium transients of KN-93blocked CaMK Ⅱ at48h. Compared of the model group and the control group F0and△F were no significant difference, but RT50increased significantly(P<0.05). The result indicated that the systolic function of cardiomyocytes was improved and the diastolic function exist abnomal. Each dose group can be further reduced on RT50.
     Conclusion
     Ang Ⅱ causes the myocardial cell dynamic changes of survival ratio during the process of hypertrophy to heart failure, and causing myocardial nuclear/cytoplasmic area and diameter increased significantly. The diastolic function changed at24th hour, and the systolic dysfunction at48th hour by using Ang Ⅱ. Ang Ⅱ cause CaMKⅡ, PLB and SERCA2a dynamic changes of protein expression levels. Those affect the intracellular calcium ion concentration, thus affecting the changer of normal calcium transient.
     Astragalus, Salvia regulated calcium ions through the intervention of calcium transports regulatory proteins CaMK Ⅱ, PLB, SERCA2a, which resulting in improved myocardial systolic and diastolic function of the cell. Astragali can improve abnormal calcium transient, and regulate protein expression in early cardiomyocyte hypertrophy. Note to Ang Ⅱ could induce the changes of transcription and expression of calcium handing protein resulting in sarcoplasmic reticulum calcium transport barriers. This progress can be inhibitited by Salvia and Astragali in failure of myocardial cell. They improve cardiacmyocyte excitation-contraction coupling and slow the progress of heart failure. The combination of two drugs used in the early was not superior to Astragli, but in the failure stage the combination therapy was better. The two drugs combination not only protect the heart's overall function, but also has a protective effect in a single cardiac cell contraction, during the long course of treatment in heart failure. They also can antagonize the abnormal changes of calcium transient and calcium handing protein in heart failure. Losartan improve either systolic function or diastolic function, but the Chinese medicine is different from western medicine. The herbs improve not only the systolic function but also the diastolic function of myocardial cells, which reflects the integrity of regulation.
     The effect of Salvia and Astragali on regulating systolic dysfunction, partly by regulating the changes of CaMK Ⅱ δ pathway, but the improvement of diastolic dysfunction may be by another pathway. Further research is needed.
引文
[1].1980年全国冠心病辨证论治研究座谈会.冠心病中医辨证试行标准[S].中医杂志,1980,(8):46.
    [2].陈贵延,薛塞琴.最新国内外疾病诊疗标准[S].北京:学苑出版社,1992,209-212,678.
    [3].中西医结合心血管学会.冠心病的中医辨证标准[S].中西医结合杂志,1991,11(5):257.
    [4].卫生部.中药新药治疗胸痹心痛的临床研究指导原则[S].1993.41.
    [5].郑筱萸.中药新药临床研究指导原则[S].北京:中国医药科技出版社,2002.
    [6].王永炎.中医内科学[M].上海:上海科学技术出版社,1997.
    [7].管昌益.冠心病心绞痛病因病机研究进展[J].辽宁中医杂志,1990,14(3):46-48.
    [8].王晓才,农一兵,林谦,等.冠心病中医症候与冠心病发病的相关性研究[J].北京中医药大学学报(中医临床版),2007,14(2):4-6.
    [9].陈颖,崔英子,邓悦.冠状动脉粥样硬化性心脏病中医症候特征的文献回归分析[J].环球中医药,2012,5(12):889-892.
    [10]. 明·张景岳.景岳全书[M].第一版.太原:陕西科学技术出版社,2006:206.
    [11]. 元.朱震亨.丹溪心法[M].北京:人民卫生出版社,2005:9.
    [12]. 清·周学海.读医随笔[M].第一版.江苏:江苏科技出版社,1983:181.
    [13]. 南宋.杨士瀛.仁斋直指方论[M].福州:福建科学技术出版社,1989:345.
    [14]. 清·潘楫.医灯续焰[M].北京:中国中医药出版社,1999:43.
    [15]. 顾允.益心活血降压汤对气虚血瘀型Ⅱ期高血压病LVDF影响[J].山东中医药大学学报.2003,30(6):455-456.
    [16]. 欧亚龙.高血压病与血瘀关系的实验观察[J].四川中医,1991,9(6):3.
    [17]. 郭惠君.高血压病与血瘀证[J].北京中医,1995(2):60.
    [18]. 雷学剑.自拟益气活血方治疗气虚血瘀型老年单纯收缩期高血压病研究.博士硕士论文,2012
    [19]. 中华医学会心血管病分会,中华心血管病杂志编辑委员会.中国部分地区1980,1990,2000年慢性心力衰竭住院病例回顾性调查[J].中华心血管病杂志,2000,3:450-454.
    [20]. 铸烨,徐浩,陈可冀,史大卓,李立志,周雪忠.用随即行走模型评价生脉注射液治疗冠心病的临床疗效[J].中西医结合学报,2008,6(9):902-906.
    [21]. Cleland J GF. Improving patient outcomes in heart failure:Evidence and barriers [J]. Heart,2000,84(Suppl I):8-10.
    [22]. 顾东风.中国心力衰竭流行病学调查及其患病率[J].中华心血管病杂志,2003,31(1):3-6.
    [23]. 孟昭阳.林慧娟治疗心力衰.竭临床经验[J]. 山东中医杂志,2004,23(3):178.
    [24]. 薛长玲.董燕平治疗慢性心力衰竭经验[J].中医药学刊,2004,17(4):2250.
    [25]. 范爱平.李介鸣治疗心力衰竭经验拾萃[J].北京中医,1995,(1):6.
    [26]. 谭璐芸.郭维琴治疗心力衰竭经验介绍[J].云南中医学院学报,2000,23(2):43.
    [27]. 曹雪滨.充血性心力衰竭的中医辨证分型特点[J].甘肃中医学院学报,1999,16(3).
    [28]. 程丑夫.心衰的中医病证归属浅析[J].山东中医药大学学报,1998,22(2):107.
    [29]. 周仲瑛.益阴助阳活血通脉法治疗充血性心力衰竭的临床研究[J].南京中医药大学学报,1998,12(3):34.
    [30]. 黄衍寿、冼绍祥,丁有钦,等.保心康治疗气阳虚型充血性心力衰竭的临床研究[J].中药新药与临床病理,2000,11(5):261-265.
    [31]. 李立志.陈可冀治疗充血性心力衰竭治疗[J].中西医结合心脑血管病杂志,2006,4(2):136-138.
    [32]. 葛鸿庆,赵梁,郝李敏.邓铁涛教授从脾论治慢性充血性心力衰竭之经验[J].上海中医药杂志,2002,36(4):9-10.
    [33]. 熊曼琪,龙新生.少阴病与充血性心力衰竭相关性讨论[J].新中医,1997,29(4):2-4.
    [34]. 冯利民,刘长玉,杜武勋.226例慢性心力衰竭的中一整后调查及病死率分析[J].四川中医,2008,25(1):36-37.
    [35]. 邹旭,潘光明,盛小刚,赖仁奎,吴瑜.慢性心力衰竭中医症候规律的临床流行病学调查研究[J].中国中西医结合杂志,2011,31(7):903-908.
    [36]. 周育平,胡元会,吴华芹,等.缺血性心力衰竭中医症候与心功能相关性的临床研究[J].中西医结合心脑血管病杂志,2008,6(12):1390-1391.
    [37]. 廖家桢.心机图在中西医结合研究中的应用[J].1986,6(8):503-504.
    [38]. 姜浩,农一兵,林谦.益气活血药对腹主动脉结扎术后早期心功能不全大鼠血流动力学的干预作用研究[J].中西医结合心脑血管疾病杂志,2010,8(8):948-950.
    [39]. 李岩,武乾,林谦.补气药党参黄芪对慢性心衰大鼠血流动力学的影响[J].中国中医基础医学杂志,2010,16(7):597-598.
    [40]. Otto A. Smiseth and Michal Tendera (Eds.). Diastolic Heart Failure [J]. Springer,2008:3-119.
    [41]. 张子彬, Tsung O. Cheng[美],张玉传.充血性心力衰竭[M].第1版.北京:科学技术文献出版社,2000,3-24,156-172,551-570.
    [42]. Eugent Braunwald. Braunwald's Heart Disease-A Textbook of Cardiovascular Medicine (9th edition) [J]. W.B.Saunders,2011:459-486.
    [43]. 孙娅楠,李思耐,马淑骅,林谦.黄芪、丹参注射液对乳鼠肥大心肌细胞钙瞬变的影响[J].中华中医药杂志,2013,28(5):待发表.
    [44]. 孙娅楠,农一兵,崔晓云,林谦.黄芪对乳鼠肥大心肌细胞钙瞬变及钙调蛋白激酶Ⅱ的影响[J].中国中医基础医学杂志,2013,待发表.
    [45]. 孙娅楠,农一兵,林谦.黄芪及单身对肥大心肌细胞肌浆网钙转运干预作用研究[J].中华中医药杂志,2012,27(1):175-180.
    [46]. 廖家桢,王硕仁,宋崇顺,等.冠心病心气虚证临床微观辨证初探[J].上海中医药杂志,1987,(11):2-6.
    [47]. 林谦,王硕仁,徐西.流式细胞术分析党参对冠心病患者外周血T淋巴细胞亚群的影响[J].中国中西医集合杂志,1994,14(7):434.
    [48]. 杨志霞,林谦,马利,,等.黄芪多糖丹参酮对慢性心衰大鼠MIF表达的调控作用[J].中药药理学通报,2011,27(9):1214-1217.
    [49]. 杨志霞,林谦,农一兵,,等.黄芪多糖联合丹参酮对心衰大鼠心肌NF-KB通路过度激活的影响[J].北京中医药大学学报.2011,34(9):609-613.
    [50]. 林谦.党参治疗冠心病心气虚证的临床及实验研究——并探讨心肌物质能量代谢与心气虚证的关系.北京中医药大学博士论文,1991,29-30,41-46.
    [51]. 安超,农一兵,温志浩,苏敬泽,林谦.黄芪皂苷和黄芪多糖对乳鼠肥大心肌细胞线粒体膜电位的影响[J].北京中医药大学学报(中医临床版),2009,16(3):17-19.
    [52]. 苏敬泽,林谦,农一兵.黄芪组分对乳鼠肥大心肌细胞ATP含量的影响[J].中国中医基础医学杂志,2011,17(5):500-502.
    [53]. 苏敬泽,农一兵,温志浩,林谦.黄芪组分配伍对乳鼠肥大心肌细胞肌酸激酶同功酶mRNA表达的影响[J].中国实验方剂学杂志,2008,14(5):40-43.
    [54]. 李岩,农一兵,林谦.慢性心力衰竭心气虚证与心肌肌酸水平的相关性研究[J].北京中医药大学学报,2010,33(12):825-828.
    [55]. 李岩,农一兵,林谦.益气药对慢性心力衰竭心气虚证模型大鼠总肌酸激酶活性、肌酸激酶同功酶及腺苷酸转位酶mRNA表达的影响[J].中华中医药杂志,2011,26(5):1216-1231.
    [56]. 宋崇顺,廖家桢,吕晓燕,张露芬,任映,袁纪阁,高金福.气虚证血液流变学的临床观察和实验研究[J].中药材科技,1981,(10):39-41.
    [57]. 徐西,廖家桢,王硕仁,吕希莹,屈贤琴,郭自强,鲁卫星,林谦.310例血瘀证患者血小板功能与中医辨证关系的临床研究[J].中国中西医结合杂志,1993,13(12):718-721.
    [58]. 廖家桢,王硕仁,宋崇顺,等.冠心病心气虚证临床微观辨证初探[J].上海中医药杂志,1987,(11):2-6.
    [59]. 廖家桢,宋崇顺,秦腊梅,等.生脉散对红细胞2,3-二磷酸甘油酸作用的初步研究[J].中国药理学通报,1986,6:25-29.
    [60]. 宋崇顺,廖家桢,张露芬,等.人参——对红细胞中2,3一二磷酸甘油酸的影 响[J].中药通报,1983,8(1):32-34.
    [61]. Helneke J, Molkentin JD. Review Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Cell Biol.2006,7(8):589-600.
    [62]. Frey N, Olson EN. Review Cardiac hypertrophy:the good, the bad, the ugly [J].Annu Rev Physiol,2003,650:45-79.
    [63]. Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin dependent protein kinase Ⅱ [J].Biochem J,2002,364:593-611.
    [64]. Swulius MT, Waxhan MN. Ca2+/calmodulin-dependentprotein kinases [J]. Cell MolLife Sci 2008,May 9[Epub ahead of print]
    [65]. Couchonnal LF, Anderson ME. The role of calmodulin kinase Ⅱ in myocardial physiology and disease [J]. Physiology,2008,23:151-159.
    [66]. Zhang T, Maier LS,Dalton ND, et al. The deltaC of CaMK Ⅱ is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure [J].Circ Res,2003,92:912-919.9.
    [67]. Yang Y, Zhu WZ, Joiner ML, et al. Calmodulin kinase Ⅱ inhibition protects against myocardial cell apoptosis in vivo [J]. Am J Physiol Heart Circ Physio, 1.2006,291(6):3065-3075.,7-9.
    [68]. Ramirez MT, Zhao XL, Schulman H, et al. The Nuclear deltaB Isoform of Ca+/calmodulin-dependent protein kinase Ⅱ regulatesatrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem,1997,272:31203-31208.
    [69]. Saito T, Fukuzawa J, Osaki j, et al. Roles of calcimeurin and calcium. Calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol,2003 Sep; 35(9):1153-60.
    [70]. Zhang T, Johnson EN, Gu Y, et al. The cardiac-specific nuclear delta(B) isoform of Ca2+/calmodulin-dependent protein kinase Ⅱ induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem.2002 Jan 11; 277(2):1261-7.
    [71]. Zhang T, Kohlhaas M, Backs J, et al. CaMKII delta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem.2007 Nov 30; 282(48):35078-87.
    [72]. KirchheferU, SchmitzW, ScholzH, et al. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependentprotein kinase in failing and nonfailing human hearts [J]. Cardiovasc Res,1999,42:254-261.
    [73]. Anderson ME. Calmodulin kinase signaling in heart an intriguing candidate target for therapy of myocardial dysfunction and arrhythmia [J]. Pharmacol Ther, 2005,106:39-55.
    [74]. Maier LS, Zhang T, Chen L, De Santiago J, Brown JH, Bers DM. Transgenic CaMKII deltaC over expression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2t load and activated SR Ca2+ release. Circ Res.2003 May 2; 92(8):904-11.
    175]. Luo W, Grupp IL, Harrer J, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta agonist stimulation. Circ Res.1994 Sep; 75(3):401-9.
    [76]. Zhang T, Guo T, Mishra S, Dalton ND, et al. Phospholamban ablation rescues sarcoplasmic reticulum Ca(2+) handling but exacerbates cardiac dysfunction in CaMKⅡ delta(C) transgenic mice. Circ Res.2010 Feb 5; 106(2):354-62.
    [77]. Ling H, Zhang T, Pereira L, et al. Requirement for Ca+/calmodulin dependent kinase Ⅱ in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest.2009 May; 119(5):1230-40.
    [78]. Shikha Mishra, Haiyun Ling, Michael Grimm, et al. Cardiac Hypertrophy and Heart Failure Development Through Gq and CaM Kinase Ⅱ Signaling, J Cardiovasc Pharmacol.2010 December; 56(6):598-603.
    [79]. Ji Y, Li B, Reed TD, et al. Targeted inhibition of Ca2+/calmodulin-dependent protein kinase Ⅱ in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17. J Biol Chem.2003 Jul4;278(27):25063-71.
    [80]. Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature.2005 Mar31;434(7033):658-62.
    [81]. Zhu W, Woo AY, Yang D, et al. Activation of CaMKⅡ deltaC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem.2007 Apr 6; 282(14):10833-9.
    [82]. Little GH, Saw A, Bai Y, et al. Critical role of nuclear calcium/calmodulin dependent protein kinase Ⅱ deltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem.2009 Sep 11; 284(37):24857-68.
    [83]. Ai X, Curran JW, Shannon TR, et al. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+leak in heart failure. Circ Res.2005 Dec 9; 97(12):1314-22.
    [84]. Zhang T, Brown JH. Role of Ca2+/calmodulin dependent protein kinase Ⅱ in cardiac hypertrophy and heart failure [J]. Cardiovasc Res,2004,63(3):476-486.
    [85]. Gerard PS, Susumu O, James AR, et al. Regulation of Kv4.3 currents by Ca2+/calmodulin-dependentprotein kinase Ⅱ [J].Am J Physiol Cell Physiol,2005, 288:304-313.
    [86]. Zhang R, Khoo MS, Wu Y, et al. Calmodulin kinase Ⅱ inhibition protects against structural heart disease [J]. Nat Med,2005,11(4):409-417.
    [87]. Colomer JM, Mao L, Rockman HA, et al. Pressure over load selectively upregulates Ca2+/calmodulin-dependent protein kinase Ⅱ in vivo. Mol Endocrinol, 2003,17:183-192.
    [88]. Erickson JR, Joiner MA, Guan X, et al. A dynamic pathway for calcium-independ entactivation of CaMKⅡby methionine oxidation [J]. Cell, 2008,133:462-474.
    [89]. Hudmon A, Schulman H, Kim J, et al. CaMK Ⅱ tethers to L-type Ca2+ channels, establishing a localand dedicated integrator of Ca2+ signals for facilitation[J]. J Cell Biol,2005,171:537-547.
    [90]. Ke J, Chen F, Zhang C, et al. Effects of calmodulin-dependent protein kinase Ⅱ inhibitor, K.N-93, on electrophysiological features of rabbit hypertrophic cardiac myocytes. J Huazhong Univ Sci Technolog Med Sci.2012 Aug; 32(4):485-9.
    [91]. Anderson ME. QT interval prolongation and arrhythmia:anunbreakable connection? J Intern Med,2006,259:81-90.
    [92]. Meffert MK, Chang JM, Wiltgen BJ, et al. NF-kappaB functions in synaptic signaling and behavior [J].Nat Neuro sci,2003,6:1072-1078.
    [93]. Li JD, Marionneau C, Zhang R, et al. Calmodulin kinase Ⅱ inhibition shortens action potential duration by up regulation of K+current [J].Circ Res, 2006,99:1092-1099.
    [94]. Wagner S, Dybkova N, Rasenack EC, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ regulates cardiac Na+channels[J]. J Clin Invest,2006,116(12): 3127-3138.
    [95]. Grimm M, Brown JH. Review Beta-adrenergic receptor signaling in the heart: role of CaMKⅡ. J Mol Cell Cardiol.2010 Feb; 48(2):322-30.
    [96]. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observation and clinical implications [J]. Circulation,1990,81: 1161-1172
    [97]. Nahrendorf M, Hu K, Hiller KH et al. Impact of hydroxymethylglutaryl coenzyme a reductase inhibition on left ventricular remodeling after myocardial infarction [J]. JACC,2002,40:1695-1700.
    [98]. 殷仁富,陈金明.心脏能量学-代谢与治疗[M],第一版.上海:第二军医大学出版社,2002,6:168-181
    [99]. 周金黄,王建华.中药药理与临床研究进展(第四册).第1版.北京:军事医学科学出版社,1 996:111-124(心气虚证的中西医结合研究 廖家桢,林谦,于友华).
    [100]. Maack C, O'Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol,2007,102:369-392
    [101]. Eugent Braunwald.Braunwald's Heart Disease-A Textbook of Cardiovascular Medicine (9th edition). W.B.Saunders,2011:459-486.
    [102]. Couchonnal LF, Anderson M E. The role of calmodulin kinase Ⅱ in myocardial physiology and disease [J]. Physiology,2008,23:151-159.
    [103]. Hao L Y, Xu JJ, Minobe E, et al. Calmodulin kinase Ⅱ activation is required for the maintenance of basal activity of L-type Ca2+ channels in guinea-pig ventricular myocytes [J]. J Pharmacol Sci,2008,108(3):290-300.
    [104]. Maier LS, Zhang T, Chen L, et al. Transgenic CaMKⅡδC over expression uniquely alters cardiacmyocyte Ca2+ handling reduced SR Ca2+ load and activated SR Ca2+ release[J]. Circ Res,2003,92:904-911.
    [105]. Currie S, Loughrey CM, Craig MA, et al. Calcium/calmodulin dependent protein kinase Ⅱ delta associates with the ryanodine receptor complex and regulates channel function in rabbit heart [J]. Biochem J,2004,377(Pt 2): 357-366.
    [106]. Grueter C E, Colaran R J, Anderson M E. CAMK Ⅱ an emerging molecular driver for calcium homeostasis, arrhythmias,and cardiac dysfunction [J]. J Mol Med,2007,85:5214.
    [107]. Yanagisawa T, Nunoki K, Hagiwara K. Basic arrhythmogenic mechanisms in both inherited and acquired long QT syndrome [J]. Folia Phamacologica Japonica, 2003,122(5):367-374.
    [108]. Chakraborti S, Das S, Kar V,et al. Calcium signaling phenomena in heart diseases:a perspective[J]. Mol Cell Biochem.2006 Nov 21.
    [109]. 姚尖平,王礼春,徐颖琦等.培哚普利对心衰大鼠心肌细胞收缩力-频率关系的影响[J].中华实验外科杂志,2006(7):840-847.
    [110]. Xiaobing Guo, Donald Chapman,Naranjan S.Dhalla. Partial prevention of changes in SR gene expression in congestive heart failure due to myocardial infarction by enalapril or losartan [J]. Mol Cell Biochem.2003,254:163-172.
    [111]. Shao Q, Ren B, Saini HK, et al. Sarcoplasmic reticulum Ca2+transport and gene expression in congestive heart failure are modified by imidapril treatment [J]. Am J Physiol Heart Circ Physiol.2005 Apr; 288(4):H 1674-82.
    [112]. 姜浩,农一兵,林谦.益气活血药对腹主动脉结扎术后早期心功能不全大鼠血流动力学的干预作用研究[J].中西医结合心脑血管疾病杂志,2010,8(8):948-950.
    [113]. 陈相健,陆曙,耿茜.黄芪总皂甙对病毒性心肌炎小鼠慢性期SERCA活性的影响[J].江苏医药,2000,26(10):757-759.
    [114]. 陆曙,张寄南,耿茜,等.黄芪总皂甙影响病毒感染心肌细胞肌浆网钙泵活力 及其基因表达[J].中华医学杂志,2000,80(12):953-954.
    [115]. 孙宇扬,刘建勋.作用于心肌细胞钙通道的中药研究近况[J].中国实验方剂学杂志,2006(5):70.
    [116]. 赵耐久,张玉东.血管紧张素Ⅱ受体拮抗剂与心力衰竭患者心室重塑的研究进展[J].中华现代临床医学杂志,2005,3(11):1041-1042.
    [117]. Crawford D C, Chobanian A V, Brecher P. Angiotensin Ⅱ induces fibronection expression associated with cardiac fibrosis in the rat [J]. Circ Res, 1994,74:727-739.
    [118]. Baker K, Booz G W, Dostal D E. Cardiac actions of angiotensin Ⅱ:the role of an intra cardiacren in angiotensin system [J]. Annu Rev Physiol,1992, 54:227-241.
    [119]. 陈光辉,祝善俊,孟素荣.培多普利抑制心肌重构的动物实验研究[J].中华心血管病杂志,1998,26(2):104.
    [120]. 陈光辉,祝善俊,袁玉权.培多普利治疗充血性心衰的临床研究[J].第三军医大学报,1997,19(3):257-260.
    [121]. 苏敬泽,林谦,农一兵.黄芪组分配伍对血管紧张素Ⅱ致肥大心肌细胞模型线粒体活力的影响[J].2007,26(11):742-744.
    [122]. Sussman MA, Lim HW, Gude N. Prevention of cardiac hypertrophy in mice by calcineruin inhabitation. Science,1998,281:1690-1693.
    [123]. Bers DM. Cardiac excitation-contraction coupling [J]. Nature 2002, 415(6868):198-205.
    [124]. Cheng H, Wang S Q. Calcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells [J]. Front Biosci 2002; 7:d1867-78.2.
    [125]. Song LS, Sham JS, Stern MD, et al. Direct measurement of SR release flux by tracking"Ca2+spikes"in rat cardiac myocytes [J]. J Physiol 1998,512 (Pt3): 677-91.
    [126]. O'Rourke B, Kass DA, Tomaseklli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. L Experimental studies, Circ Res,1999,84:526-527.
    [127]. Dipla K, Mattiello JA, Margulies KB, et al. The sarcoplasmic reticulum and the Na+/Ca2+exchanger both contribute to the Ca2+transient of failing human ventricular myocytes. Circ Res.1999,84:435-444.
    [128]. Winslow RL, Rice J, Jafri S, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure Ⅱ [J]. Model studies. Circ Res.1999,84:571-586.
    [129]. Stengl M, Mubagwa K, Carmeliet E, et al. Phenylephrine-induced stimulation of Na+/Ca2+ exchange in rat ventrioular myocytes. Cardiovasc Res. 1998,38:703-710.
    [130]. 沈建新,王海燕,李超彦,等.心肌胞内钙瞬变的记录方法——快速二维扫描法与线扫描法[J].中国应用生理学杂志,2008,24(4):500-503.
    [131]. Hagemann D, Hoch B, Krause E G, et al. Developmental changes in isoform expression of Ca2+/calmodulin dependent protein kinase Ildelta2subunit in rat heart [J]. J Cell Biochem,1999,74 (2):202-210.
    [132]. Hoch B, Wobusb A M, Krause EG,d al. Delta2 Ca2+/calmodulin2dependent protein kinase Ⅱ expression pat tern in adult mouse heart and cardio genie differentiation of embryonic stem cells [J]. J Cell Biochem,2000,79 (2):293-300.
    [133]. Hao L Y, Wang W Y, Minobe E, et al. The distinct roles of calmodulin and calmodulin kinase Ⅱ in the reversal of run-down of L-type Ca2+channels in guinea-pig ventricular myocytes [J]. J Pharmacol Sci,2009,111 (4):416-425.
    [134]. Muller OJ, Lange M, Rattunde H, et al. Transgenic rat hearts over expressing SERCA2a show improved contractility under baseline conditions and pressure overload[J]. Cardiovasular Research,2003,59:380-389.
    [135]. Aoyagi T, YoneKura K, Eto Y, et al. The sarceplasmic reticulum Ca2+-ATPase(SERCA2) gene promoter activity is decreased in response to severe left ventricular pressure-overload hypertrophy in rat hearts[J]. J Mol Cell Cardiol, 1991,31(4):919-926.
    [136]. Dipaola NR, Sweet WE, Stull LB, et al. Beta-adrenergic receptors and calcium cycling proteins in non-failing, hypertrophied and failing human hearts: transition from hypertrophy to failure [J]. J Mol Cell Cardiol,2001,3:1283.
    [137]. Frank KF, Bolck B, Erdmann E, et al. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation[J]. Cardiovasc Res,2003,57:20-27.
    [138]. Ito K, Yan XH, Tajima M, et al. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts [J]. Circ Res.2000,87:588-595.
    [139]. Wang Z, Nolan B, Kutschke W, Hill JA. Na+-Ca2+exchanger remodeling in pressure-overload cardiac hypertrophy [J]. J Biol Chem,2001,276:17706-17711.
    [140]. Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice:anoikis and the progression to early failure [J]. Circulation.2000,101:2854-2862.
    [141]. Boateng SY, Naqvi RU, Koban MU, et al. Low-dose ramipril treatment improves relaxation and calcium cycling after established cardiac hypertrophy[J]. Am J Physiol.2001,280:H1029-H1038.
    [142]. Heerdt PM, Holmes JW, Cai B, et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure [J]. Circulation.2000,102:2713-2719.
    [143]. Periasamy M, Reed TD, Liu LH, et al. Impaired cardiac performance in hetetozygous mice with a-all mutation in the sarco (endo) plamic reticulum Ca2+ -ATPase isoform 2(SERCA2) gene [J]. J Bio Chem.1999,274:2556-2562.
    [144]. Yasuhiro Ikeda, Masahiko Hoshijima, Kenneth R. Chien, et al, Toward biologically targeted therapy of calcium cycling defects in heart failure [J]. Physiology,2008,23:9.
    [145]. 苏丹、严浩然、张蓓蓓,等.黄芪对慢性心衰大鼠心功能及心肌肌浆网钙泵基因表达的影响[J].中药材杂志,2009,32(1):85-88.
    [146]. 卢振,胡申江,孙坚,等.黄芪对SHR心肌SERCA表达及血管平滑肌钙离子水平影响的初步探讨[J].中国医院药学杂志,2006,26(5):536-538.
    [147]. 卢振,孙坚,胡申江,等.黄芪对自发性高血压大鼠心肌受磷蛋白和肌浆网钙泵表达的影响[J].中国医院药学杂志,2006,26(5):536-538.
    [148]. 苏丹,许冰,石海莲,等.黄芪注射液对左室肥厚大鼠心肌钙超载及肌浆网钙泵表达的影响[J].中国中药杂志,2008,33(14):1724-1727.
    [149]. 孙学刚,贾玉华,张丽华.丹参酮ⅡA对大鼠缺氧及正常细胞内钙、膜电位和线粒体膜电位的影响[J].中国中医药信息杂志,2002,9(9):21-23.
    [150]. Minami H, Inoue S, Hidaka H. The effect of KN-62, Ca2+/calmodulin dependent protein kinase Ⅱ inhibitor on cell cycle [J]. Biochem Biophys Res Commun,1994,199(1):242-248.
    [151]. Sumi M, Kiuchi K, Ishikawa T, et al. The newly synthesized selective Ca2+/calmodulin dependent protein kinase Ⅱ inhibitor K.N-93 reduces dopamine content in PC12h cells [J]. Biochem Biophys Res Commun,1991,181:968-975.
    [152]. 丁翔,仝识非,秦瑶等.钙/钙调素依赖性蛋白激酶Ⅱ抑制剂对新生大鼠心房肌细胞钙超载的干预作用[J].第三军医大学学报,2010,32(12):1275-1277.
    [153]. 王岚,吕家高,张存泰等.RNA干扰下调钙调蛋白激酶Ⅱδ表达对血管紧张素Ⅱ诱导心肌细胞肥大的影响[J].临床心血管病杂志,2008,2(5):378-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700