用户名: 密码: 验证码:
巴西橡胶树幼苗对低钾胁迫的生理响应及差异表达基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然橡胶是重要的工业原料和战略物资,另外,天然橡胶产业也是我国热带地区农业发展和经济增长的支柱产业。钾是作物生长过程中需要量较大的矿质营养元素,在调节植物细胞渗透势、细胞内多种酶活性以及光合产物运输等方面有非常重要的作用。同样,钾在橡胶树的生长发育过程中也发挥着重要作用,钾素营养缺乏会直接影响橡胶树的生长、产排胶、抗风、抗寒和抗病等。
     我国属于钾矿资源匮乏的国家之一,在钾肥的生产与需求间存在着极大的失衡。近年来,我国有相当一部分橡胶树的钾营养已处于正常值下限或严重亏缺。实际上,植物在营养性状方面存在基因型差异,植物营养性状的遗传学改良是提高不良土壤营养环境中作物产量的一条有效途径,近年来,有关植物营养缺乏应答分子机理的研究越来越多,但橡胶树钾营养比较生理学及营养遗传研究国内外尚属空白。
     本研究应用比较生理学阐述了低钾胁迫与钾营养供应正常条件下橡胶幼苗的形态、生理应答特性;应用抑制差减文库(SSH)技术和寡核苷酸基因芯片分离、筛选低钾胁迫橡胶幼苗差异表达基因,并对差异表达基因进行功能注释,同时,利用荧光实时定量PCR (QPCR)对部分差异表达基因的低钾应答特性进行了验证;应用cDNA末端快速扩增法(RACE法)克隆了橡胶幼苗低钾胁迫相关基因HbMPP1和HbCAB1的全长或部分cDNA,应用生物信息学方法对相应基因的编码蛋白做了生物信息学分析,同时,利用QPCR分析了它们在低钾胁迫下的时空表达特性。主要结果如下:
     1橡胶幼苗对低钾胁迫的形态、生理响应
     采用水培方法研究了橡胶幼苗在不同低钾胁迫(Omg/L、1mg/L、10mg/L、50mg/L)和钾营养正常供应(250mg/L)条件下的形态和生理特性,结果显示:
     (1)橡胶幼苗的株高、根长、茎粗等形态学指标,以及根、茎、叶各器官及整株的生物量均随低钾胁迫程度的提高而逐渐降低。
     (2)低钾胁迫降低了橡胶幼苗各器官中氮和磷积累量,但提高了茎中氮的利用效率。同时,低钾胁迫显著降低了橡胶幼苗各器官的钾含量和钾积累量,但极显著提高了各器官的钾利用效率,表明钾利用效率是反映钾胁迫程度变化的最敏感指标。
     (3)低钾胁迫降低了橡胶幼苗叶、茎部的皮和根中可溶性磷的含量和比例,而提高了叶、茎部的皮、根中不可溶性磷含量和比例,最终导致低钾胁迫下橡胶幼苗植株磷的利用效率降低。
     (4)低钾胁迫降低了橡胶幼苗叶部的叶绿素a和叶绿素b含量而提高了二者的比例,同时,10mg/L以下低钾胁迫处理的叶绿素b含量显著低于正常供钾处理。
     (5)在橡胶幼苗叶部和茎部皮中,不同水平低钾处理对可溶性糖含量的影响不同,Omg/L与1mg/L低钾处理提高了可溶性糖含量,而10mg/L与50mg/L低钾处理却降低了可溶性糖含量;在根中,不同低钾处理均降低了可溶性糖含量。另外,低钾胁迫也降低了橡胶幼苗各器官可溶性蛋白含量。
     (6)低钾胁迫降低了橡胶幼苗各器官中超氧化物歧化酶(SOD)活性,但各器官中的SOD活性不随低钾胁迫处理浓度的变化而呈规律变化。
     (7)在根中,1mg/L低钾胁迫处理显著提高了POD酶活性,而其它低钾胁迫处理对PCD酶活性的影响却不明显;在叶和茎部皮中,不同低钾胁迫处理与正常供钾处理POD酶活性的差异均不显著。
     (8)低钾胁迫显著提高了橡胶幼苗各器官中过氧化氢酶(CAT)活性,但CAT酶活性变化并不随低钾胁迫程度的变化而呈规律变化。
     (9)低钾胁迫显著降低了橡胶幼苗叶部和茎部皮中的硝酸还原酶活性,但在根中该酶活性降低不显著。
     (10)低钾胁迫对橡胶幼苗各器官中酸性磷酸酶活性的影响不显著。
     总之,低钾胁迫抑制了橡胶幼苗的生长,改变了橡胶幼苗体内氮、磷、钾营养代谢特性,降低了叶片叶绿素含量,但低钾胁迫也启动了橡胶幼苗体内细胞的自我防御体系,改变了细胞渗透调节物质如可溶性糖含量和可溶性蛋白含量,调控了橡胶幼苗体内的抗逆酶系统中的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,表明橡胶幼苗在低钾胁迫下能及时调整其生理代谢状态,从而减轻胁迫伤害、适应胁迫环境。
     2橡胶幼苗低钾胁迫相关基因的分离
     (1)首次构建了四个橡胶幼苗低钾胁迫消减文库,即橡胶幼苗低钾叶和低钾根正向消减文库,橡胶幼苗低钾叶和低钾根反向消减文库。四个文库的插入片段长度分布为100-500bp,文库重组率在95%以上,四个文库分别获得432个、1096个、377个和1004个阳性克隆,消减文库的构建为进一步克隆和研究橡胶幼苗耐低钾胁迫相关基因奠定了基础。
     (2)低钾胁迫下橡胶幼苗叶部、根部的差异表达基因多为低丰度表达基因。其中,在叶正向消减文库和反向消减文库中,低丰度表达的unigenes分别为111个(75.00%)和127个(77.91%);在根正向消减文库和反向消减文库中,低丰度表达的unigenes的比例要低一些,分别为85个(57.23%)和55个(56.12%)。由此可见,橡胶幼苗低钾胁迫SSH文库的构建有利于低丰度差异表达基因的分离和鉴定。
     (3)寡核苷酸芯片对橡胶幼苗低钾胁迫SSH文库388个Unigenes进行筛选,获得51个低钾胁迫差异表达基因,分为12个功能类别。包括:未知功能基因(15个,29.41%)、信号传导(7个,13.73%)、转录因子(7个,13.73%)、防御蛋白(5个,9.80%)、次生代谢(4个,7.84%)、蛋白质合成(3个,5.88%)、物质运输(3个,5.88%)、渗透调节物质代谢相关(3个,5.88%)、细胞生长(1个,1.96%)、能量代谢(1个,1.96%)、蛋白质降解(1个,1.96%)、基础代谢(1个,1.96%)。
     (4)利用QPCR分析了差减文库中13个基因,即soluble starch synthase、14-3-3protein、RNA-binding protein、serine/threonine phosphatase、chlorophyll A-B binding protein、Photosystem Ireaction center subunit N、1rr resistance protein、senescence-associated protein、60S ribosomal protein L5、tubulin-sp ecific chaperone A、zinc transporter3、cation efflux protein/zinc transport er和ATPase等在低钾处理橡胶幼苗叶和根中的表达变化,结果表明这些基因均受低钾胁迫调控,并且它们的表达模式与寡核苷酸芯片筛选的结果一致,证实了SSH文库和寡核苷酸芯片联合应用在橡胶幼苗低钾胁迫响应基因筛选中的可靠性。3两个低钾胁迫相关基因的全长cDNA克隆与分析
     (1)首次克隆了橡胶幼苗MPP1基因,该基因cDNA全长为801bp,编码一个长度为115aa、分子量为12.7Kda、等电点为5.72的蛋白质,该蛋白最大可能定位于细胞核,在1-65氨基酸间具有MPP超基因家族蛋白的保守结构域,在16氨基酸处具有一个活性位点/金属离子结合位点。系统进化分析表明,HbMPP1蛋白与水稻、拟南芥的丝氨酸/苏氨酸磷酸酯酶蛋白的亲源关系最近,氨基酸序列一致性分别为95%和94%。QPCR结果表明,低钾胁迫处理后1-8d中,HbMPP1基因在根和茎中的表达量均显著提高,但在叶中的表达量却明显降低。
     (2)首次克隆了橡胶幼苗CAB1基因的549bp cDNA,该基因可能编码一个长度为136aa、分子量为13.9Kda、等电点4.84的蛋白质,该蛋白最大可能定位于叶绿体。系统进化分析表明,HbCAB1蛋白与卷柏的Lhcb1-2蛋白和杨树的CAB亲源关系最近,氨基酸序列一致性分别为95%和98%。QPCR结果表明,低钾胁迫处理4d后,HbCAB1基因在根中的表达量显著提高,但低钾处理1-8d的五个时间点中,该基因在茎和叶中的表达量均显著低于正常供钾处理。
     本文首次较为系统的阐述了橡胶幼苗低钾胁迫应答的形态、生理特性,构建了低钾胁迫条件下的抑制差减文库并对差异表达基因进行了进一步筛选和验证,同时,克隆了2个低钾胁迫相关基因并研究了其低钾胁迫下的时空表达特性。其研究结果将为天然橡胶生产中钾肥的合理施用提供理论指导,为揭示橡胶低钾胁迫的营养生理和分子机制、以及将来的橡胶营养分子遗传改良奠定基础,具有重要的理论意义和应用前景。
Natural rubber is an important raw material for both industry and national defense. The natural rubber industry is the pillar industry of the agricultural development and economic growth in tropical regions. Potassium (K) is a kind of Mineral nutrition element which is greatly needed in the process of plant growth and plays a role in a range of physiological functions in plants:photosynthesis, enzyme activation, protein synthesis, osmotic potential. In Hevea brasiliensis (Hevea hereafter), the availability of K affects the characteristics of latex production, latex flow, wind resistance and cold hardiness, etc.
     China is short of K fertilizer resources. The situation that the supply of K fertilizer does not meet the demand becomes increasingly serious. The acreages of K-deficient soil are increasing rapidly in rubber plantations.In fact, the genetic improvement of plant nutrition traits which exist genotype differences in different plants is one of useful ways improving crop yields under poor soil nutrient environments.Recently, the researches of molecular response mechanisms of plant nutrient deficiencies becomes more and more common.However, in Hevea,similar research reports are almost blank, and the physiological researches of K nutrition are also scarce.
     The response mechanisms of Hevea seedlings to low K stress were investigated in the aspects of morphological and physiological characteristics. Furthermore, the differentially expressed Hevea seedlings genes to low K stress were firstly separated and screened by constructing the suppression subtractive hybridization (SSH) libraries and hybridizing the oligonucleotides chip. On the basis of these, the functions of the differentially expressed genes were preliminarily annotated by BlastX and BlastN, and the response characteristics of part differentially expressed genes to low K stress were verified by the real-time quantitative PCR(QPCR,hereafter). What's more, the full-length or part-length cDNA of HbMPPl and HbCABl were cloned by the rapid amplication method of cDNA ends (RACE), the functional predictions and spatio-temporally expressed characteristics of two genes were done by Bioinformatics methods and QPCR, respectively.The major results were as follows.
     1.Morphological and physiological responses of Hevea seedlings to low k stress
     The hydroponic culture was carried out to investigate the differences of morphological and physiological characteristics between the treatment of normal K supply and four treatments of low K supplies. The five K levels settled were OmgL-1,1mgL-1,10mgL-50mgL-1and150mgL-1(normal), respectively. The major results obtained were summarized as follows.
     (1)The low K supplies gradually decreased the plant height, root length, stem girth and biomass of the root, stem, leaf and whole plant.
     (2)Under low K stress, the accumulations of nitrogen and phosphorus in all Hevea seedling organs were decreased, but the N utilization efficiencies of the stem being increased.Moreover,the K contents and accumulations in all Hevea seedling organs were dramatically decreased, but the K utilization efficiencies, the most sensitive low K-responsive indicators, being significantly increased.
     (3)Under low K stress, the contents and the percentages of soluble phosphorus were decreased in different organs, but the insoluble phosphorus reversely being changed, and the ultimate P utilization efficiencies being decreased.
     (4)The low K supplies decreased the contents of chlorophyll a and chlorophyll b, but significantly increasing the ratio of chla/chlb. The contents of chlorophyll b were significantly different between the treatments of low K (below10mg L-1) supplies and the treatment of the normal K supply.
     (5) The soluble sugar contents (SSC) in the leaves and in the barks of the stem were increased in low K supplies of0and1mg L-1, but being decreased in the low K supplies of10and50mg L-1. However, all treatments of low K supplies decreased the SSC in roots, decreasing the soluble protein contents (SPC) in all organs.
     (6)The low K supplies irregularly decreased the superoxide dismutase (SOD) activities in different organs of Hevea seedlings.
     (7) In root,the low K supply of1mg L-1significantly increased the activities of peroxidase (POD),but other low K supplies having not significantly effects on the activities of POD.In leaves and barks of the stem,the activity diffirences of POD were little between the low K supplies and the normal K. supply.
     (8) The low K supplies significantly increased the activities of catalase (CAT), but the activities of CAT varied irregularly in different levels of low K supplies.
     (9) The low K supplies significantly decreased the activities of nitrate reductase(NR)in the leaves and the barks of the stem,but insignificantly decreasing the activities of NR in the roots.
     (10) The low K supplies affected little on the activities of the acid phosphatase.
     In general, low K stress suppressed the growth of Hevea seedlings, changing the characteristics of nutrient metabolism and decreasing the contents of chlorophyll, but also launching the systems of cell defenses,changing the contents of Osmotic regulation substances(such as SOC and SPC),regulating the activities of SOD,POD and CAT in anti-enzyme system.Thus, Hevea seedling can timely regulated the statuses of physiological metabolism to relieve the stress harm and to adapt the stress environment.
     2. Seperation of low k-induced Hevea seedling genes
     (1)Four suppression subtractive hybridization (SSH) libraries firstly were constructed, including two leaf libraries (forward and reverse) and two root libraries (forward and reverse). The forward libraries of the leaf and root had432and1096cDNA clones, respectively. The reverse libraries of the leaf and root had377and1004cDNA clones, respectively. The clones revealed a recombination efficiency of95%, and containing cDNA inserts of200-500bp.
     (2)Most of the seperated unigenes of Hevea seedling under low K stress were low-abundantly expressed. The numbers and percentages of the low-abundantly expressed genes were111(75.00%),127(77.91%),85(57.23%) and55(56.12) in leaf forward, leaf reverse, root forward and root reverse library. So construction of Hevea SSH libraries under low K stress was useful for the seperation and identification of low-abundant differentially expressed genes.
     (3)The388Hevea seedling Unigenes in SSH libraries under low K stress were screened by oligonucleotidechip.The58gained genes were divided into12categories,including of15unkown functional genes(29.41%),7signal transduction (13.73%),7transcription factors(13.73%),5defence and stress(9.80),4secondary metablism(7.84),3protein synthesis(5.88%),3substance transportation(5.88%),3metablism of osmoregulation substance,l cell gowth(1.96%),1energy metablism(1.96%),1protein degradation(1.96%)and
     Ⅰ primary metabolism(1.96%).
     (4)The relative expressional characteristics of13genes in roots and leaves were studied by QPCR in the treatments of low K supplies,the genes including of soluble s tarch synthase,14-3-3protein,RNA-binding protein,serine/threonine phosphatase,chlorophy Ⅱ A-B binding protein,Photosystem I reaction center subunit N,lrr resistance protein,sen escence-associated protein、60S ribosomal protein L5,tubulin-specific chaperone A,zinc t ransporter3,cation efflux protein/zinc transporter)and ATPase. The results of QPCR in dicated the expressions of13genes were regulated by the low K stress, their expresse d patterns were consistent between QPCR and oligonucleotides, so the united applicati on of QPCR and oligonucleotides chip increased the reliability of screening low k-ind uced genes in Hevea seedling.
     3. Clone the Hevea seedling full-length cDNA sequences induced by low K stress
     (1)The full-length801bp cDNA sequence of HbMPPl firstly was cloned by meth od of rapid-amplification of cDNA ends(RACE,hereafter). The HbMPPl encoded a115amino acids(aa) protein whose molecular weight and isoelectric point were12.7Kda a nd5.72,respectively. The HbMPP1which most probably locates on nucleus has95%a nd94%amino acid sequence identities to the serine/threonine phosphoesterase family P rotein of Arabidopsis_thaliana and Oryza_sativa_Japonica_Group.Moreover, the HbMPP1has a conserved domain of MPP-superfamily superfamily between the first to66th a mino acid, having a active site/metal-binding site in the16th amino acid. The results o f QPCR indicated the low K stress from the first to the eighth day significantly incre ased the expressed levels of HbMPPl in root and stem,but decreasing the expressed levels in leaf.
     (2)The549bp cDNA sequence of HbCAB1firstly was cloned by RACE.The Hb CAB1probably encoded a protein composed of133amino acids(aa).The molecular we ight and isoelectric point of HbCAB1were13.9Kda and4.84,respectively.Moreover,the HbCAB1which most probably locates on chloroplast has95%and98%amino acid se quence identities to the Lhcbl-2of Selaginella tamariscina and the CAB of poplar.The results of QPCR indicated the expressed levels of HbCAB1significantly were increas ed in root after the fourth day of low K stress,but siginificantly being decreased in st em and leaf in five time points of the low k stress.
     This dissertation made a comprehensive study of the responses mechanisms of Hevea seedling to K-deficiency from the aspects of physiology and molecular biology, constructing4SSH libraries, further screening and validating the differentially expressed genes,cloning two low k-induced Hevea seedling genes.The results presented here would lay a basis for revealing the response mechanism in aspects of morphology,physiology and molecular biology,facilitate the rational application of K-fertilizer in rubber plantations, and provide a guidances for genetic modification of Hevea for improved K-nutrition.
引文
[1]蔡柏岩,葛菁萍,祖伟.施磷水平对不同基因型大豆品种硝酸还原酶活性影响[J].大豆科学,2007,26(3):359-362
    [2]蔡元保,朱家红,畅文军,张全琪,张治礼.巴西橡胶树K+通道蛋白基因HbKC01的克隆与表达分析[J].农业生物技术学报,2010年,第18卷,第1期,第30-36页
    [3]曹卫东.小麦(Triticum aestivum L.)苗期氮、磷、钾吸收和利用的数量性状位点研究[D].中国农业科学院博士研究生学位论文(2000)
    [4]陈际型.钾素营养对水稻根系生长和养分吸收的影响[J].土壤学报,1997,34(2):182-188
    [5]陈洪菊,屈艺,母得志.mTOR信号通路的生物学功能[J].生命的化学,2010,30(4):550--561
    [6]陈霞,罗世巧,段翠芳等.高等植物转录因子研究进展[J].安徽农学通报,2008,14(9):48-51
    [7]陈吉宝,景蕊莲,毛新国,昌小平等.普通菜豆PvP5CS2基因对逆境胁迫的应答[J].作物学报.2008,34(7):1121-1127
    [8]程钰宏,赵瑞雪,董宽虎.植物钾(K+)离子通道的研究[J].山西农业科学,2008,36(2):03-07
    [9]邓义才,倪耀源,陈乃荣.钾对荔枝光合作用和呼吸作用的影响[J].华南农业大学学报,1994,15(4):80-84
    [10]丁玉川.水稻镁营养特性及镁钾营养互作效应研究[D].南京农业大学博士学位论文.2007:10-11
    [11]霍树洪.广辟钾肥来源,支援农业生产[J].现代化工,1988,8:38-41
    [12]胡春梅,王秀峰,季俊杰.钾对瓜尔豆光合及胚乳中糖类含量的影响[J].植物营养与肥料学报,2006,12(6):858-863
    [13]胡晓丽.玉米根系蛋白磷酸酶ZmPP2C2基因的分离、功能鉴定及转基因烟草对逆境胁迫的响应[D].山东农业大学博士学位论文,2008:28-98
    [14]黄瑞冬,王进军,许文娟.玉米和高粱叶片叶绿素含量及动态的比较[J].杂粮作物,2005,25(1):30-31
    [15]郝建军,于长海,王晗,于洋,高兴.碳酸氢钾对大豆幼苗光合作用的影响[J].植物生理学通讯,2008,44(4):723-725
    [16]郝丽芳,、案莲英,唐明林,殷辉安.我国钾肥资源的现状和前景[J].海湖盐与化工,2002,31(5):1-3
    [17]何鹏,吴敏,韦家少.海南省胶园土壤肥力质量指标的时空变异特性研究[J].中国农学通报,2008,24(10):310-316
    [18]何向东、吴小平.海南垦区胶园肥力演变探研[J].热带农业科学,2002,22(1):16-22
    [19]何萍,金继运.氮钾营养对春玉米养分积累动态及模式研究[J].玉米科学,1999,7(3):67-77
    [20]何海斌,王海斌,曾聪明等.不同化感潜力水稻品种对低钾的生理与分子响应[J].中国生态农业学报,2008,16(4):878-882
    [21]贺军军,胡吟胜,林钊沐,罗微,林清火.不同施磷水平对橡胶幼苗营养根碳氮代谢的影响[J].土壤通报,2009,40(5):1123-1126
    [22]贺军军,陶仲华,林钊沐,罗微,林清火.不同施磷措施对橡胶幼苗根系生长的影响[J].林业科技开发,2008,22(3):64-66
    [23]侯永平,陈年来,康恩祥,张玉鑫.低温弱光对西葫芦幼苗渗透调节物质的影响[J].中国瓜菜,2009(1):8-12
    [24]黄伟,张晓光,李文杰,张俊花.施用钾肥对食用百合光合作用、产量和经济效益的影响[J].干旱地区农业研究,2009,27(3):163-166
    [25]黄鑫,戴思兰,孟丽,郑国生.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用[J].分子植物育种,2006,4(5):735-746
    [26]胡宗海,胡娟.低氧与应激蛋白研究进展[J].第三军医大学学报,2003,25(18):1678-1679
    [27]葛莘.高级植物分子生物学[M].科学出版社,2004:113-353
    [28]郭焕茹.低钾下不同耐性玉米自交系根形态及养分吸收和分配研究[D].沈阳农业大学硕士学位论文,2009:1-55
    [29]高亚平.盐芥磷高效利用的生理以及分子机制[D].山东师范大学硕士学位论文,2011:9-27
    [30]蒋丽,刘延吉.不同玉米自交系耐低钾的酶学特性研究[J].沈阳农业大学学报,2005,36(3):279-281
    [31]焦峰,王鹏,翟瑞常.钾肥对大豆硝酸还原酶和谷氨酰胺合成酶活性及产量和品质的影响[J].黑龙江八一农垦大学学报,2009,21(4):12-15
    [32]金蓉,朱长青,徐昌杰.1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因[J].细胞生物学杂志,2007,29:706-712
    [33]李强,纪春艳.马铃薯追施钾肥增产效果的研究[J].中国林副特产,2005(6):25-26
    [34]李廷轩,马国瑞,张锡洲.富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用[J].应用生态学报,2006,17(3):368-372.
    [35]李玉影,金继运,刘双全,黄绍文.钾对春小麦生理特性、产量及品质的影响[J].植物营养与肥料学报,2005,11(4):449-455.
    [36]李志刚董丽杰,宋书宏,等.磷素和干旱胁迫对大豆叶片活性氧和保护酶系统的影响[J].作物杂志,2007,6:35-37
    [37]李海波.水稻侧根生长对低磷胁迫的适应性反应及其机理研究[D].浙江大学硕士学位论文,2001:29-52
    [38]李兴涛,曹萍,王伟等.不同耐性大豆品种叶片对低钾胁迫的生理响应[J].大豆科学,2010,29(6):964-970
    [39]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002
    [40]林春华,黄亮华,陈永泉,等.缺氮、磷、钾、钙、镁对芥蓝硝酸盐积累、硝酸还原酶和过氧化物酶活性的影响[J].华南农业大学学报,1998,19(4):55-58
    [41]林钊沐,罗微,茶正早.海南橡胶钾素营养状况及钾肥施用效果[J].热带农业科学,2003,23(5):18-21
    [42]刘鹏,杨玉爱.硼钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响[J].浙江大学学报(农业与生命科学版),2000,26(2):151-154
    [43]刘关君.EST技术分析西伯利亚蓼耐盐机制及耐盐相关基因克隆[D].东北林业大学博士论文,2007
    [44]刘昊,余树全,江洪,方江保.模拟酸雨对山核桃叶绿素荧光参数、叶绿素和生长的影响[J].浙江林学院学报,2009,26(1):32-37
    [45]刘鸿先,曾韶西,王以柔等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响[J].植物生理学报,1985,11(1):48-57
    [46]刘咏梅,谈锋,王鹏.低钾对番红花叶片中超氧物歧化酶、过氧化氢酶、过氧化物酶活性和膜脂过氧化的影响[J].西南师范大学学报(自然科学版),1999,24(1):116-119
    [47]刘巧.油茶蛋白磷酸酶基因的全长cDNA克隆与序列分析[D].中南林业科技大学硕士论文,2010:13-21
    [48]刘旭光,宋福平,张杰.寡核苷酸芯片在微生物检测中的应用[J].生物技术通报,2005,1:29-31
    [49]刘文娟.水分胁迫对两种胁迫耐受能力不同的小麦品种光系统Ⅱ的影响[D].四川大学硕士学位论文.2005:5-13
    [50]刘玉汇,王丽,张俊莲,王蒂.低钾胁迫下马铃薯试管苗生长及生理指标的变化[J].中国马铃薯,2011,25(3):152-156
    [51]陆行正,吴小平,何向东.海南岛胶园土壤的钾素状况[J].热带作物学报,1989,10(1):17-23
    [52]罗胜.我国化肥行业发展的战略思考[J].学术论坛,2008(8):135-140
    [53]马丽琼,曹敏建,刘蓓,李必富.不同钾营养效率型玉米品种的苗期生理特性[J].安徽农业科学,2006,34(13):3011-3013
    [54]马新明,王小纯,丁军.钾肥对砂姜黑土不同粒型冬小麦穗粒发育及生理特性的影响[J].中国农业科学,2000,33(3):67-72
    [55]马振峰,杨军,刘桂华.钾营养对奈李果实品质的影响[J].安徽农业大学学报,2010,37(1):145-149
    [56]麦全法.中国主要植胶区胶园生态系统养分变化趋势的研究[J].华南热带农业大学硕士学位论文(2006):14-26
    [57]南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社
    [58]倪晋山等.三系杂交稻幼苗NH4+、K十吸收的动力学分析[J].植物生理学报,1984,10(4):381-390
    [59]全先庆,张渝洁,单雷,毕玉平.高等植物脯氨酸代谢研究进展[J].生物技术通报,2007,1:14-18
    [60]佘贵连,吴敏,韦家少,何鹏,吴炳孙,张焱华.低磷胁迫对巴西橡胶树苗期生长及相关生·理指标的影响[J].福建林业科技,2009,36(4):136-138
    [61]石谷学,荒川圭太,高倍铁子.植物耐盐性的分子机构[J].植物的化学调节(日),1990,25:149
    [62]石磊,梁宏玲,徐芳森,王运华.甘蓝型油菜幼苗体内磷组分差异与磷高效关系的研究[J].植物营养与肥料学报,2008,14(2):351-356
    [63]史玉炜,王燕凌,李文兵,高述民,李霞.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8
    [64]史振声.不同施钾量对甜玉米茎秆含糖量的影响[J].沈阳农业大学学报,1995,26(1):18-21
    [65]史胜青.梭梭干旱诱导表达基因及其调控研究[D].中国林业研究科学院博士学位论文,2006:26-86
    [66]舒海燕,常胜合,杨铁钊.烟草生育后期烟叶钾含量杂种优势及遗传分析[J].河南农业科学,2005,7:35-41
    [67]斯琴,魏磊,田自华,邵金旺等.亚硫酸氢钠和碳酸氢钾对甜菜光合作用、块根产量及含糖率的影响[J].华北农学报,2010,25(3):212-216
    [68]沈伟其.低钾胁迫对不同基因型杂交水稻氮代谢的影响[J].科技通报,1999,15(5):382-386
    [69]宋克敏,焦新之,李琳,等.磷酸饥饿对番茄幼苗酸性磷酸酶活性的变化与Pi吸收的关系[J].云南植物研究,1999,21(1):101-108
    [70]汤章诚.逆境下植物脯氨酸的累积及其可能意义[J].植物生理学通讯,1984(4):6-10
    [71]田晓艳,刘延吉,曹敏建.低钾胁迫对玉米自交系苗期部分光合特性的影响[J].玉米科学,2008,16(1):83-85,90
    [72]涂书新,郭智芬,孙锦荷.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究[J].核农学报,1999,13(5):305-311
    [73]王国烘.我国植胶区的钾素营养问题[J].云南热作科技,1991,14(3):11-14
    [74]王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望[J].植物营养与肥料学报,1998,4(2):107-116
    [75]王为木.水稻适应土壤低钾营养胁迫的机理研究[D].浙江大学博士学位论文,2003:28-34
    [76]王伟.低钾耐性的大豆品种(系)筛选及其形态、生理特性研究[D].沈阳农业大学硕士论文,2005:52-56
    [77]王毅,武维华.植物钾营养高效分子遗传机制[J].植物学报,2009,44(1):27-36
    [78]王正瑞,芮玉奎,申建波,张福锁.氮肥施用量和形态对玉米苗期叶绿素含量的影响[J].光谱学与光谱分析,2009,29(2):410-412
    [79]王忠主编.植物生理学[M].北京:中国农业出版社,2000:85-86
    [80]王丽媛,丁国华,黎莉.脯氨酸代谢的研究进展[J].哈尔滨师范大学自然科学学报,2010,26(2):84-88
    [81]王勇,谭丽丽,燕正民等.番茄长花柱品系T431低温胁迫下正向差减文库的构建及ESTs分析[J].中国农业大学学报,2010,15(6):27-33
    [82]王钧.真核生物的信号传导[J].生命科学,1994,6(5):34-49
    [83]王三根.植物的应激反应和应激蛋白[J].生命的化学,1995,15(1):21-22
    [84]温国胜,田海涛,张明如,等.叶绿素荧光分析技术在林木培育中的应用[J].应用生态学报,2006,17(10):1973-1977
    [85]吴平,印莉萍,张立平.植物营养分子生理学[M].北京:科学出版社,2001:163-211
    [86]吴平等.应用分子标记研究水稻耐低钾胁迫数量性状位点[J].植物营养与肥料学报,1997,3(3):209-217
    [87]汪仁,李晓丹,江玉梅,等.石蒜捕光叶绿素a/b结合蛋白基因的克隆和序列分析[J].江苏农业科学,2011,39(2):42-44
    [88]吴彬,周淑芸,刘晓力.基因芯片技术在恶性血液系统疾病研究中的应用[J].国外医学内科学分册,2001,28(6):234-236
    [89]夏乐,于海秋,郭焕茹等.低钾胁迫对玉米光合特性及叶绿素荧光特性的影响[J].玉米科学,2008,16(6):71-74
    [90]项虹艳,丁洪,郑金贵,李卫华.低钾胁迫对水稻部分生理生化特性的影响[J].仲恺农业技术学院学报,2004,17(3):12-18
    [91]肖艳,黄建昌,刘少娴.模拟酸雨对12种园林植物的伤害及敏感性反应[J].西南农大学报:自然科学版,2004,26(3):270-276
    [92]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,21(3):191-195
    [93]谢少平,倪晋山,不同釉稻品种整株幼苗根系K+吸收和H+释放的关系一一种筛选高效K+吸收水稻品种的方法[J].中国水稻科学,1990,4(1):22-26
    [94]严小龙主编.植物营养遗传学[M].北京:农业出版社,1997.3
    [95]阎洪奎,曹敏建,胡兴波.钾高效玉米遗传规律的研究[J].玉米科学,2003,11(2):83-85
    [96]杨逞,关佩聪.青花菜硝酸还原酶活性与氮钾营养的关系[J].中国蔬菜,1995(5):4-6
    [97]杨俊霞,郭爱花,陈钰.不同供磷水平对韭菜根构型及酸性磷酸酶活性的影响[J].山东农业科学,2008,7:71-73
    [98]杨少琼,何宝玲.螯合稀土钼微肥对巴西橡胶树胶乳的细胞质碱性无机焦磷酸酶活性的影响[J].热带农业科学,1992,04:18-22
    [99]杨少琼等.割胶对胶乳硫醇影响的初步研究[J].热带作物研究,1994(4):7-11
    [100]杨铁钊,杨志晓,林娟等.不同烤烟基因型根际钾营养和根系特性研究[J].土壤学报,2009,46(4):646-649
    [101]乙引,汤章城.渗透胁迫对高粱根K+吸收的影响[J].植物生理学报,1996,22(2):91-196
    [102]郁万文,曹福亮.高温胁迫下银杏叶片部分渗透调节物质的动态变化[J].福建林业科技,2008,35(2):126-128
    [103]依兵,于海秋,蒋春姬等.玉米自交系根系对低钾胁迫的响应[J].玉米科学,2010,18(6):46-50
    [104]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶片叶绿素降低有关的酶促反应[J].植物生理学报,1991,17(2):177-182.
    [105]张杰,邹学忠,杨传平,等.硝酸还原酸和可溶性蛋白对蒙栎种源生长的影响[J].植物研究,2005,25(3):318-323
    [106]张黎华,张驰,姚国年等.关于气温对银杏生长影响的探讨[J].防护林科技,2007(增刊):111
    [107]张秋芳,黄跃东,林真.缺硫胁迫对水稻膜脂过氧化及保护酶系统活性的影响[J].上海交通大学学报(农业科学版),2003,21(1):25-33
    [108]张世平,张世峰.环氧丙酸钾对水稻光呼吸的抑制效应及其增产效果[J].黑龙江大学自然科学学报,1985(3):64-68
    [109]张松贺.结球大白菜表达序列标签数据库构建与软腐病菌胁迫下的基因表达分析[D].南京农业大学博士论文,2006
    [110]张义,叶娇.施钾对红叶李叶片光合作用日变化及色素含量的影响[J].现代农业科技.2009,21:158-163
    [111]张正斌,山仑.作物生理抗逆性的若干共同机理研究进展[J].作物杂志,1997(4):10-12.
    [112]张志明.立枯丝核菌AG1-IA诱导玉米差异表达基因的研究[D].四川农业大学博士学位论文,2006:62-83
    [113]张志明,刘丽,王静.玉米衰老相关蛋白基因ZmSAP的克隆与表达分析[J].植物病理学2010,40(4):373-380
    [114]张亚莉,马文丽,莫小阳等.两种标记方法对60mer寡核苷酸芯片背景信号影响的初步分析[J].中国生物工程杂志,2006,26(1):42-45
    [115]赵可夫主编.玉米生理[M].山东科学技术出版社,1982
    [116]赵琴.植物钾吸收分子机制进展[J].安徽农业科学,2010,38(24):12961-12963
    [117]赵淑清,林春,杨小贺,武维华.拟南芥耐低钾突变体的筛选及遗传分析[J].植物学报,2001,43(1):105-107
    [118]赵学强,介晓磊,李有田,许仙菊等.不同基因型小麦钾离子吸收动力学分析[J].植物营养与肥料学报,2006,12(3):307-312
    [119]赵泽茹,魏永胜.干旱胁迫下施钾水平与烟草叶片主要渗透调节物质的关系[J].西北农业学报,2009,18(6):356-360
    [120]赵丽华.水稻硝酸还原酶基因的克隆和功能研究[D].兰州大学硕士研究生论文,2008:10-22
    [121]赵雅静.干旱胁迫下圆叶决明(86134R1)生理代谢及蛋白质组学研究[D].福建农业大学硕士学位论文,2009:21-70
    [122]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].科学出版社,2007
    [123]周牮君.植物根系分泌物对难溶磷钾及土壤硒的活化作用研究[D].西南农业大学硕士学位论文,2001:33-42
    [124]周珺,林位夫,王军等.低N胁迫下巴西橡胶树实生苗叶片SPAD值、N素营养及农艺性状的变化[J].亚热带植物科学,2010,39(1):29-33
    [125]周楠.铝胁迫下油菜(Brassica napus L.)根系分泌物的分泌特性及其对根际环境的影响[D].浙江师范大学硕士学位论文,2010:15-27
    [126]朱广廉,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:51-54,245-252
    [127]朱桂才,杨中艺.水分胁迫下李氏禾叶绿素含量变化研究[J].山东农业科学,2009,11:48-50
    [128]朱启忠.核基因表达的转录调控[J].枣庄师专学报(自然科学版),1991,8(2):102-106
    [129]邹春琴,李振声,李继云.钾营养效率不同的小麦品种间根际钾营养动态的比较[J].中国农业大学学报,2000,5(3):57-91
    [130]Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., etal. Identification and disrupt-ion of a plant shaker-like outward channel involved in K+ release into th e xylem sap[J].Cell,1998,94.(5):647-655
    [131]Hsiao TC, A Lauchli.Role of potassium in plant-water relation. Advances in Plant Nutrition[J].Praeger Publishers,1986,2:281-312
    [132]Mengel K..Kirkby E. A.. Potassium in crop production[J].Adv Agron,1980,33:5 9-110
    [133]Nieves-Cordones, M., Martinez-Cordero, M. A., Martinez, V. and Rubio, et al.An
    NH4+ sensitive component dominates high-affinity K+ uptake in tomato plants[J].Plant Science,2007,172:273-280
    [134]Rubio F. Gassmann W. Schroeder J I. Sodiun-driven potassium uptake by the plant potassinm trasportr HKTI and mutations conferring salt tolerance [J]. Science, 1995,270:1660-1663
    [135]Abdul Razaque Memon, M. Yaeesh Siddiqi and Anthony D. M. Class. Efficiency of K+ Utilization by Barley Varieties:Activation of Pyruvate Kinase[J]. Journal of Experimental Botany,1985,36(1):79-90
    [136]Amako K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants[J]. Plant CellPhysiol,1994,35:497-504
    [137]Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF. Functional expression of a probable Arabidopsisthaliana potassium channel in Saccharomy-ces cerevisiae[J].Proc Natl Acad Sci USA,1992,89:3736-3740
    [138]Apse, M. P., Sottosanto, J. B. and Blumwald, E.. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter[J]. Plant J,2003,36:229-239
    [139]Arazi T, Ramanjulu Sunkar, Kaplan B, etal. A tobacco plasma membrane calmodul in-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants [J]. Plant J.1999,20:171-182
    [140]Armengaud, P., Breitling, R., Amtmann, A.. The potassium-dependent transcri-pto me of Arabidopsis reveals a prominent role of jasmonic acid in nut-rient signal ing [J]. Plant Physiol,2004,136:2556-2576
    [141]Arnold J. Bloom, John Finazzo. The Influence of Ammonium and Chloride on Potassium and Nitrate Absorption by Barley Roots Depends on Time of Exposure and Cultivar[J]. Plant Physiol,1986,81:67-69
    [142]Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies:a role for potassium transport proteins[J].J Exp Bot,2006,57:425-436
    [143]Claudine Balague, Baiqing Lin, Carine Alcon, et al. HLM1, an essential signaling component in the hypersensitive response, is amember of the cyclic nucleotide-gated channel ion channel family[J]. Plant Cell,2003,15:365-379
    [144]Banuelos, M. A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. Inventory and functional characterization of the HAK potassium transporters of rice[J].Plant Physiol.,2002,130:784-795.
    [145]Birgit Reintanz, Alexander Szyroki, Natalya Ivashikina, etal. AtKCl, a silent Arabidopsis potassium channel subunit modulates root hair K influx[J]. PNAS,2002,99(6):4079-4084
    [146]Boardman N K. Comparative photosynthesis of sun and shade.plants[J].Annua-1 Review of Plant Physiology,1977,28:355-377
    [147]Boscari A, Clement M,Volkov V, Golldack D, etal. Potassium channels in barley:cloning, functional characterization and expression analyses in relation to leaf growth and development[J]. Plant Cell Environ,2009, 32:1761-1777
    [148]Busch W.The Transporter Classification (TC) System[J]. Critical Reviews in Biochemistry & Molecular Biology,2002,37:287-337.
    [149]Spehar C R. Diallel analysis for mineral element absorption in tropical adapted soybeans [Glycine max (L.) Merrill]. TAG Theoretical and Applied Genetics[J].1995,90(5):707-713
    [150]Cellier, F., Conejero, G., Ricaud, L., Luu, D. T., etal. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis[J]. Plant J,2004,39:834-846
    [151]Chen J J, Gabelman W H, Potassium-transPort rate from root to shoot unrelated to Potassium-use effieiency in tomato grown under low-Potassium stress[J]. Journal of Plant Nutrition,1999,22(4-5):621-631.
    [152]Ch e rel I, Michard E, Platet N, Mouline K, etal. Physical and functional interaction of the Arabidopsis K+channel AKT2 and phosphatase AtPP2CA[J]. Plant Cell,2002,14:1133-1146
    [153]Christian Hermansl, John P. Hammond, Philip J. White, Nathalie Verbruggen. How do plants respond to nutrient shortage by biomass allocation?[J]. TRENDS in Plant Science.2006,11 (12):610-617
    [154]Cramr WJ. Negative feedback regulation of transport in cells. The mainternance of turger, volume and nutrient supply. Luttge U, Pltman MG(eds)Transport Ⅱ. Encyclopedia of Plant Physiology New Ser[J].New York.1976, Ⅱ(a):284-346
    [155]Cun-cang JIANG, Fang CHEN, Xiang-zhao GAO, Jian-wei Lua, etal. Study on the N-utrition Characteristics of Different K Use Efficiency Cotton Genotypes t o K Deficiency Stress. Agricultural Sciences in China[J].2008,7(6):740-745
    [156]CzempinskiK, Frachisse J M, Maurel C, Barbler B H, etal. Vacuolar membrane-elo calization of theArabidopsis 'two-pore' K+ channel KC01[J]. Plant J.,2002,29: 809-820
    [157]Czempinski K, Gaedeke N, Zimmermann S, Muller-Rober B. Molecular mechanisms and regulation of plant ion channels[J].Exp. Bot,1999,50:955-966
    [158]Czempinski K, Zimmermann S, Ehrhardt T, M Ller R B. New structure and function in plant K+ channels:KC01, an outward rectifier with a steep Ca2+ dependency[J].EMBO J,1997,16:2565-2575
    [159]Davenport, R. J. et al.The Na+ transporter AtHKTl;1 controls retrieval of Na+ from the xylem in Arabidopsis[J]. Plant Cell Environ.,2007,30:497-507
    [160]Davies, C., Shin, R., Liu, W., Thomas, M. R. etal. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation[J].J.Exp. Bot,2006, 57:3209-3216
    [161]Davies, D. D. The fine control of cytosolic pH. Physiol. Plant.1986,67:702-706
    [162]Desbrosses, G.,Kopka, C., Ott, T. and Udvardi, M. K. Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane[J].Mol. Plant Microbe Interact.2004,17:789-797.
    [163]Ebdon. Interaction of nitrogen, PhosPhorous, and potassium on evapotranspi ration rate and growth of Kentucky bluegrass. CroPsei.,1999,39(1):209-21 8
    [164]Edward Gerardeaux, Lionel Jordan-Meille, Julie Constantin, Sylvain Pellerin, Michael Dingkuhn. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.)[J]. Environmen-tal and Experimental Botany,2010,67:451-459
    [165]Elena Degl' Innocenti, Chokri Hafsi, Lucia Guidi, Flavia Navari-Lzzo. The effect of salinity on photosynthetic activity in potassium-deficient barley species[J]. Journal of Plant Physiology,2009,166:1968-1981
    [166]Elide Formentin, Alessia Naso, Serena Varotto, Cristiana Picco, etal.KDC2, a functional homomeric potassium channel expressional during carrot embryogenesis[J].FEBS Letters,2006,580 (21).-5009-5015
    [167]Elide Formentin, Serena Varotto, Alex Costa, Patrick Downey, etal. a novel K+ channel from carrot, forms functional heteromeric channels with KDC1 [J]. FEBS Letters,2004,573 (1-3):61-67
    [168]Epstein E, Rains DW.Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roots[J]. Proc Natl Acad Sci USA,1963,49:684-692.
    [169]Epstein, W.,Kim,B.S..Potassium transport loci in Escherichia coli K-12[J]. J. Bacteriol,1971,108:639-644.
    [170]Eric Hosy, Alain Vavasseur, Karine Mouline, Ingo Dreyer, etal. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration[J].PNAS,2003,100 (9):5549-5554
    [171]Fabiana R. Fulgenzi, Maria, Luisa Peralta, Silvina Mangano, Cristian-H. Danna, etal.The Ionic Environment Controls the Contribution of the Barley HvHAK1 Transporter to Potassium Acquisition[J]. Plant Physiology Preview.2008:10.1104/pp.107.114546
    [172]Fairbairn,D. J.,Liu, W.,Schachtman, D. P., etal. Characterisation of two distinct HKT1-like potassium transporters from Eucalyptuscamaldulensis[J]. Plant Mol. Biol.2000,43,515-525
    [173]FanMS, xuB, WangY. Acid PhosPhatase activities of in-tact roots and ground root tissues of maize grown in high P or low P nutrient solution [J]. Review of china Agricultural Science Technology,2001,3,33-36. (in Chinese with English abstract)
    [174]FanMS, Zhang FS. The Variation in Plant PhosPhorus acqui-sition efficiency and its physiological mechanism[J].Chinese Bulletin of Life Science, 2001,13:129-131. (in Chinese with English abstract)
    [175]Figdore Scotts, Ge Gerloff, Gabelman W H, The effect of Increasing sodi-um chloride levels on Potassium utilization efficiency of tomato grow-n under low -potassium stress [J]. plant and soil,1989,1-9(2):295-304
    [176]Fuchs I, StOlzle S, Ivashikina N, Hedrich R. Rice K+ uptake channel O-sAKT1 is sensitive to salt stress[J]. Planta,2005,221:212-221
    [177]Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., etal. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant Cell Physiol,2004,45:146-159
    [178]Garciadeblas, B., Benito, B. and Rodriguez-Navarro. A Molecular cloning and functional expression in bacteria of the potassium transporters CnHAKl and CnHAK2 of the seagrass Cymodocea nodosa[J]. Plant Mol. Biol.,2002,50:623-633.
    [179]Garciadeblas, B., Senn, M. E., Banuelos, M. A. and Rodriguez-Navarro, A. Sodium transport and HKT transporters:therice model[J]. Plant. J.,2003,34:788-801.
    [180]Glass A D. Plant Nutrition, An introduction to current concepts[J]. Jones and Bartlett Pub Inc.,1989:84-124
    [181]George M, William JW. Clinical implication of the stress response. J Clin-Invest,1995,95:3-8.
    [182]Gong JM, Waner DA, Horie T, Li SL, et al. Microarray-based rapid cloning of an ion accumulation deletionmutant in Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. U.S. A.,2004,101:15404-15409
    [183]Gram W J. Negative feedback regulation of transport in cells. In:Luttage U, Pitman M C(eds).encyl plant Physiol[J]. Berlin:Sppringer-Verlag, 1976:284-331
    [184]Harada H, Leigh RA.Genetic mapping of natural variation in potassium conce-ntrations in shoots of Arabidopsis thaliana[J]. J Exp Bot.,2006,57(4):953-60.
    [185]Hare P D, Cress W A, Van stdaden J. Dissecting the roles of osmolyte accumul-ation during stress[J]. Plant Cell and Environment,1998,21:535-553
    [186]Hartje S, Zimmermann S, Klonus D,Mueller-Roeber B. Functional characterisati-on of LKT1, a K+ uptake channel from tomato root hairs, and compar-ison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes[J]. Planta.2000,210(5):723-31
    [187]Horie, T, Horie, R, Chan, WY, Leung, HY, et al. Calcium regulation of sodium hypersensitivities of sos3 and athktl mutants [J]. Plant Cell Physiol.,2006, 47:622-633
    [188]Horie, Tomoaki Sugawara, Mitsuo Okunou, Kiyotaka Nakayama, Hideki. Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress[J]. Plant Biotech,2008,25:233-239
    [189]Tomoaki Horie, Alex Costa, Tae Houn Kim,Min Jung Han, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth[J]. EMBOJ.2007,26:3003-3014
    [190]Ivashikina N, Deeken R, Fischer S, Ache P, et al.AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive [J]. J Gen Physiol.,2005,125:483-492
    [191]J. J. Choi, N. W. Alkharouf, K.T.Schneider, etal. Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases[J].Funct Integr. Genomics (2008)8:341-359
    [192]Jamila Bernardi, ConcettaLicciardello, MariaPatriziaRusso, et al.Use of a custom array to study differentially expressional genes during blood orange(Citrus sinensis L. Osbeck)ripening[J]. Journal of Plant Physiology, 2010,167:301-310
    [193]K. R. Gupta, R. S. Waldia, B. S. Dahiya, K. P. Singh, et al. Inheritance of seed yield and quality traits in peas (Pisum sativum L.)[J].TAG Theoretical and Applied Genetics,1984,69(2):133-137
    [194]Kim EJ,Kwak JM, Uozumi N, et al. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity Plant Cell,1998,10:51-62
    [195]Kohler C,Merkle T,Neuhaus G.Characterisation of a novel gene family of putative cyclic nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana[J]. Plant J.,1999,18:97-104
    [196]KOhler,C.,Neuhaus,G..Cloning and partial characterization of two putative cyclic nucleotide-regulated ion channels from Arabidopsis-thaliana, designated CNGC1 (Y16327), CNGC2 (Y16328) (PGR98-062) [J]. Plant Physiol, 1998,116:1604
    [197]Koji Kwbota.利用具有低丝氨酸脱水酶活性的嗜甘氨酸棒杆状菌突变株提高L—丝氨酸产量[J].氨基酸和生物资源,1986,4:39-44
    [198]Legong Li,Kun Liu, Yong Hu,Dongping Li,et al. Single mutations convert an outward K+channel into an inward K+channel[J]. PNAS,2008,105(8):2871-2876
    [199]Liaqat Alil,Rahmatullahl,Tariq Aziz, M. Ashraf, et al. Differential potassium influx influences growth of two cotton varieties in hydroponics[J]. Pak. J. Bot.,2010,42 (2):943-953.
    [200]Maresova, L, Sychrova, H. Arabidopsis thaliana CHX17 gene complements the kha1 deletion phenotypes in Saccharomyces cerevisiae[J]. Yeast,2006,23:1167-1171
    [201]Maria Benlloch-Gonzaleza, Octavio Arquerob, Jose Maria Fourniera, Dieg-o Barrancoa, et al. K+ starvation inhibits water-stress-induced stomatal closure[J]. Journal of Plant Physiology.2008,165(6):623-630
    [202]Markus Gierth, Pascal Maser. Potassium transporters in plants-Involvemen-t in K+ acquisition,redistribution and homeostasis[J].FEBS Letters,2007,58 1:2348-2356
    [203]Martinez-Cordero, M. Angeles, Martinez, Vicente, Rubio, Francisco. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper[J]. Plant Mol. Biol.,2004,56(3):413-21
    [204]Maser P, Thomine S, Schroeder JI,Ward JM, et al. Phylogenetic relationships w-ithin cation transporter families of Arabidopsis[J]. Plant Physiol,2001,1 26:1646-1667
    [205]Melvin Sidikie George, Guoquan Lu, Weijun Zhou. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.)[J]. Field Crops Research,2002,77(1):7-15
    [206]Moshelion M, Becker D, Czempinski K, et al. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ[J]. Plant Physiol,2002,128:634-642.
    [207]Mouline K, Very A-A, Gaymard F et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes and Development,2002,16:339-350
    [208]0hnishi, M., Fukada-Tanaka, S, Hoshino, A., Takada, J., etal. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory [J]. Plant Cell-Physiol.,2005,46:259-267
    [209]Okada, T., Nakayama, H., Shinmyo, A., Yoshida, K.. Expression of OsHAK Genes enco-ding potassium ion transporters in rice[J].Plant Biotech.,2008,25:241-245
    [210]Philippar K, Buchsenschutz K, Edwards D, Loffler J, et al. The auxin induced K(+) channel gene Zmkl in maize functions in coleoptile growth and is required for embryo development.Plant Mol Biol.,2006,61(4-5):757-6880
    [211]Pilot, G., Lacombe, B., Gaymard, F., Cherel, I., et al. Guard cell inward K+ channel activity in arabidopsis involves expression of the twin channel subunits KAT1 and KAT2[J].Biol.Chem.,2001,276 (5):3215-3221
    [212]Pratelli, R., Lacombe, B., Torregrosa, L., Gaymard, F., etal. A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry [J]. Plant Physiol.,2002,128:564-577
    [213]Robert T, Besford, Graeme E. Hobson. Effect of potassium nutrition on some enzymes from ripening Lycopersicon esculentum fruit[J].phytochemistry,197 5,94:57-59
    [214]Rubio F,Nieves-Cordones M, Aleman F,Martinez V. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the highaffinity range of concentrations[J]. Physiol. Plant,2008,134:598-608
    [215]SANTA-MARIA G E, RUBIO F, DUBCOVSKY J.The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell,1997,9:2281-2289
    [216]Scandalious J G. Oxygen stress and superoxide dismutase[J]. Plant Physiol.,1993,101:7-12
    [217]Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, et al. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA[J]. Science,1992,258:1654-1658
    [218]Schuurink R C, Shartzer S F, Fath A et al. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone[J].Proceedings of the National Academy of Sciences,USA,1998, 95:1944-1949
    [219]Schwacke, R.,Schneider, A., van der Graaff, E., Fischer, etal.a novel database for Arabidopsis integral membrane proteins[J]. Plant Physiol.,2003,131:16-26
    [220]Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium ion transport system[J]. Science,1992,256:663-665
    [221]Shea, P. F., Gerloff, G. C., Gabelman, W. H.. Different efficiencies of potassium utilization in strains of snap beans phaseolus vulgaris L[J]. Plant Soil,1968(28):337-346
    [222]Shin, R. and Schachtman, D. P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J], Proc. Natl Acad.Sci., USA,2004,101:8827-8832
    [223]Sintho Wahyuning Ardie, Shenkui Liu, Tetsuo Takano. Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKTl, enhancees salt tolerance in Arabidopsis [J]. Plant Cell Rep.,2010,29:865-874
    [224]Song, C. P., Guo, Y., Qiu, Q., Lambert, G., et al. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci., USA,2004, 101:10211-10216
    [225]Spalding EP, Hirsch RE, Lewis DR, Qi Z, et al. Potassium uptake supporting plant growth in the absence of AKT1 channel activity inhibition by ammonium and stimulation by sodium[J]. Journal of General Physiology,1999,113:909-918
    [226]Su H.Golldack D, Katsuhara M, et al. Plant Physiol,2001,125:604-614
    [227]Su, H., Balderas, E., Vera-Estrella, R.,Golldack, D., et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Mol. Biol.,2003,52:967-980
    [228]Su, H.,Golldack,D., Zhao, C.S. and Bohnert, H. J. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant[J]. Plant Physiol.,2002,129:1482-1493
    [229]Sunarpi,Horie, T, Motoda, J,Kubo, M, et al. Enhanced salt tolerance mediated by AtHKTl transporter-induced Na+ unloading from xylem vessels to xylem paren chyma cells [J]. Plant J.,2005,44:928-938
    [230]Sze, H., Padmanaban, S.,Cellier, F.,Honys, D., et al. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development [J]. Plant Physiol,2004,136:2532-2547
    [231]Talke IN, Blaudez D, Maathuis FJM, et al.CNGCs:prime targets of plant cyclic nucleotide signalling?[J]Trends Plant Sci.,2003,8:286-293
    [232]Tang HX, Vasconcelos AC, Berkowitz GA. Evidence that plant K+ channel proteins have tow different types of subunits[J]. Plant Physiol.,1995,109:327-330
    [233]Thomas T. Cochrane, Thomas A. Cochrane. Differences in the way potassium chlo rideand sucrose solutions effect osmotic potential of significance to sto mata aperture modulation[J].Plant Physiology and Biochemistry,2009,47:205-209
    [234]Tomoaki Horie, Felix Hauser, Julian I.Schroeder.HKT transporter mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science,2009,14 (12):660-668
    [235]Tomoaki Horie, Mitsuo Sugawara, Tomoyuki Okada, Koichiro Taira, et al.Rice so dium-insensitive potassium transporter,OsHAK5, confers increased salt tol erance in tobacco BY2 cells[J]. Journal of Bioscience and -Bioengineering, 2011(3):346-356
    [236]Uozumi N, Kim EJ, Rubio F, Yamagushi T, et al.The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiol.,2000,122:1249-1259
    [237]Venema, K., Belver, A., Marin-Manzano, M. C., Rodriguez-Rosales, M. P., etal. A nove 1 intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants[J]. J. Biol. Chem.,2003,278:22453-22459
    [238]Venema, K.,Quintero, F. J., Pardo, J. M. and Donaire, J. P.. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes[J]. J. Biol. Chem.,2002,277,2413-2418
    [239]Villalta I, Reina-Sanchez A, Bolarin MC, Cuartero J, et al. Genetic analysis of Na(+) and K(+) concentrations in leaf and stem as physiological components of salt tolerance in Tomato[J].Theor. Appl. Genet.,2008,116(6):869-80
    [240]Wrona AF, Epstein E. Potassium and sodium absorption kinetics in roots of two tomato species:lycopersicon esculentum and lycopersicon chees-manii[J]. P1-ant Physiol.,198,79(4):1064-7
    [241]Y Zhang, Z Wang, L Zhang, Y Cao, et al. Molecular cloning and. stress-dependent regulation of potassium channel gene in Chinese cabbage[J].J Plant Physiol.,2006,163:968-978
    [242]Yamaguchi, T., Aharon, G. S., Sottosanto, J. B. and Blumwald, E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner [J]. Proc. Nat1.Acad. Sci.USA,2005, 102:6107-16112
    [243]]Yang X E, Liu J X, Wang W M, et al. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.)[J]. Nutrient Cycling in Agroecosystems,2003,67:273-282.
    [244]Yucheng Wang, Chuanping Yang, Guifeng Liu.Microarray and suppression subtractive hybridization analyses of gene expression in Puccinellia tenuiflora after exposure to NaHC03 [J].Plant Science,2007,173:309-320
    [245]Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., et al. Differen-tial expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant J.,2002,30:529-539
    [246]Zelitch I. The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis Archives of Biochemistry and Biophysics.1974,163(1):77-367
    [247]Zhang,G. P., Chen, J.X.,Tirore,E. A..Genotypic variation for potassium uptake and utilization efficiency in wheat[J]. Nutrient Cycling in Agroecosystem-s,1999,54(1):41-48
    [248]Zhang, H. X. and Blumwald, E..Transgenic salt-tolerant tomato plants accumul-ate salt in foliage but not in fruit[J].Nat. Biotech.,2001,19:765-768
    [249]Zimmermann S.Hartje S, Ehrhardt T, Plesch G, et al.The K+ channel SKT1 is coexpressional with KST1 in potato guard cells-both channels can coassemble via their conserved KT domains[J]. Plant J.,2001,28(5):517-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700