用户名: 密码: 验证码:
基于碟式的太阳能二次反射及其分频系统的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳辐射能具有能流密度低、不稳定和光谱分布范围宽等特点,因此聚光技术、蓄热技术和分频技术分别是太阳能研究者研究的关键性问题之一。针对上述问题,本文以太阳能碟式热发电系统的研究为背景,对太阳能二次反射下聚光-热发电系统光路的优化设计及新型聚光-分频系统的光路设计展开了相关的数值模拟和实验研究。
     本文的研究工作主要包括:①对五种二次反射系统进行理论推导、数值模拟和比较;②建立旋转双曲面上半支型二次反射系统的三维光学模型并编程,讨论各种误差对系统聚光效果的情况;③搭建太阳能二次反射下聚光试验台,建立聚光镜镜面测量系统和光斑测量系统,开展镜面扫描、光路验证和光斑测量等实验并分析;④设计一种新型分频器,建立二次反射聚光-分频系统的光学模型并编程,讨论各种误差对系统聚光效果的影响;⑤对太阳能二次反射下聚光系统和二次反射聚光-分频系统进行系统分析和比较。
     在数值模拟方面,运用ASAP软件,分别对平面型、旋转椭圆面型、旋转双曲面上半支型、旋转双曲面下半支型和旋转抛物面型等五种二次反射系统建立几何模型、进行数学推导并模拟,讨论一次镜边缘角、二次镜数值孔径、焦点相对位置等几何参数对二次镜相对位置、二次镜直径、遮光率、光斑直径、能量聚光比等的影响。在此基础上,得出适合本实验室研究思路的二次反射系统类型为旋转双曲面上半支型。对该系统建立三维光学模型,根据蒙特卡洛法编写光路追踪程序以研究聚光光斑的能流密度分布,讨论太阳形状、跟踪误差、安装误差等因素对系统聚光比、光斑直径、光斑偏移的影响。
     在实验方面,搭建了一米的和三米的碟式二次反射系统,通过镜面测量系统得到二次反射系统的镜面模型,结合程序对实际镜面模型进行分析;对一米碟式二次反射系统的光路验证结果与模拟结果吻合良好,证实了镜面测量系统的正确性。搭建了光斑测量系统,分别对一米和三米的二次反射系统的聚光情况进行了实验测量和误差分析,一米系统的聚光效果理想,三米系统的聚光镜面需要改进。
     本文还设计了一种新型的分频器,可以将分频后的两束光斑均反射至一次镜下方。对该新型二次反射聚光-分频系统的光路进行了推导,建立三维数学模型并编写模拟程序,讨论太阳形状、跟踪误差、安装误差等因素对系统聚光比、光斑直径、光斑偏移的影响。
     最后,对可蓄热的碟式二次反射下聚光斯特林发电系统和分别以Ⅱ-3B聚光光伏电池和外燃式热机为光伏和光热利用元件的聚光-分频电热联用系统建立分析模型,计算结果表明,碟式二次反射下聚光系统效率为21.3%;对电热联用系统。当ηther<21%或ηther>30%时,根据需要可考虑采用分频系统,系统效率最高为25.9%;当21%<ηther<30%时,应独立发电为主。
     本文的工作为研究太阳能二次反射技术及新型的聚光分频技术提供了理论基础。
There are three main challenges in solar energy utilization, for example lower energy density, changing with season, broad range solar spectrum and so on. Solar concentrating technology, thermal storage technology and beam splitting technology are some of the key technologies in solar power plant. Based on this, this thesis focuses on the development of solar dish systems. Experimental research and numerical simulation are carried out on the two-stage beam down system and the novel beam splitting system.
     The researches carried out in this paper include:①discuss and compare the performances and applications of five types of secondary mirrors.②analyze the3-D optical model of a beam-down system which employs the upper sheet of a hyperboloid as a secondary mirror.③establish the experimental set up, the mirror scanning system and the flux density distribution measuring system; carry out the experiments indoor and outdoor.④design a novel beam splitter and analyze the3-D optical model.⑤analyze the performances of the two designed systems.
     In terms of numerical simulation, five types of two-stage reflection systems were analyzed and compared by ASAP software, of which the secondary mirror could be a planar, an ellipsoidal, a upper sheet of a hyperboloidal, a lower sheet of a hyperboloidal, or a paraboloidal type, respectively. The effect of the rim angle, numerical aperture of the secondary mirror and the relative position of the focus on the secondary mirror size, shading percentage, spot size and flu concentrator ratio are discussed. The system which employs an upper sheet of a hyperboloid as secondary mirror is discussed. A3-D optical model based on Monte Carlo method is established. The effect of the sun shape, the tracking errors and the alignment errors on the concentration ratio, the spot size and deviation are discussed.
     In terms of experiments, two experimental set ups are established. The shapes of both systems are scanned and compared with the design surfaces. The optical experiments are carried out indoor to verify the mirror scanning system. The flux density distribution measuring system is established and experiments are carried out outdoor. The experimental results show that the1000mm system has a good performance while the3000mm system needs to be improved.
     A novel beam splitter is designed and the3-D optical model is analyzed. The3D optical model of a beam splitting system is also established based on Monte Carlo method. The effect of the sun shape, the tracking error and the alignment error of the second mirror on the concentration ratio, the spot size and deviation are discussed.
     Finally, a two-stage beam down dish-Stirling power system with thermal storage and a hybrid system combining photovoltaic cells with a Stirling engine are analyzed. The comparison of the two systems is carried out based on the system analysis model we set up. The calculated efficiency of the two-stage beam down system is about21.3%. For the beam splitting system, the calculated efficiency is about25.9%when ηther<21%or ηther>30%, and it is not wise to employ the beam-splitting technology when21%<ηther<30%.
     The research in this thesis provides a theoretical basis for the research of two-stage beam down technology and beam splitting technology.
引文
[1]EI-Ashry M. Renewables 2011 global status report[M],2011,
    [2]何梓年.太阳能热利用[M].中国科技大学出版社,2009,
    [3]刚韩国,国曲富,文楠戴,鹭宋,宇韩振,艺苏,辉孔令,华姜.中国20]5年S02排放总量宏观控制目标研究[J].电力科技与环保.2010,26(2):1-4.
    [4]史丹.国际金融危机以来中国能源的发展态势、问题及对策[J].中外能源.2010,15(6):1-11.
    [5]于静,车俊铁,张吉月.太阳能发电技术综述[J].世界科技研究与发展.2008,30(1):56-59.
    [6]百度百科.太阳能.
    [7]Kalogirou SA. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science.2004, 30(3):231-295.
    [8]罗运俊,何梓年,王常贵.太阳能利用技术[M].北京:化学工业出版社,2005,
    [9]中国工程院.中国可再生能源发展战略研究[M].2008,
    [10]英国石油公司.BP Statistical review of world energy.2011.
    [11]王宏华.光伏发电原理及发展现状[J].机械制造与自动化.2010,39(4):186-189.
    [12]寿春晖.使用多层光学介质薄膜滤光的聚光太阳能发电技术的理论与实验研究[D].浙江大学.2012.
    [13]Council WE.2010 Survey of Energy Resources [M].2010,
    [14]赵争鸣,刘建政,孙晓瑛,袁立强.太阳能光伏发电及其应用[M].科学出版社,2005,
    [15]Luque A. Will we exceed 50%efficiency in photovoltaics?[J]. Journal of Applied Physics.2011, 110(3):031301-031301.
    [16]Barnett A, Honsberg C, Kirkpatrick D, Kurtz S, Moore D, Salzman D, Schwartz R, Gray J, Bowden S, Goossen K.50%efficient solar cell architectures and designs.2006.2560-2564.
    [17]Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power[J]. Solar Energy Materials and Solar Cells.2011,95(10):2703-2725.
    [18]Bilgen E, Rheault J. Solar chimney power plants for high latitudes[J]. Solar Energy.2005,79(5):449-458.
    [19]Zhou X, Yang J, Xiao B, Shi X. Special climate around a commercial solar chimney power plant[J]. Journal of Energy Engineering.2008,134(1):6-14.
    [20]Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems-utilization of solar induced convective flows for power generation[J]. Transactions of the ASME-N-Joumal of Solar Energy Engineering.2005,127(1):117-124.
    [21]Balzani V, Armarolin N. Energy for a Sustainable World:From the Oil Age to a Sun-Powered Future[M]. Wiley-VCH,2011,
    [22]Wang N, Han L, He H, Park NH, Koumoto K. A novel high-performance photovoltaic-thermoelectric hybrid device[J]. Energy & Environmental Science.2011,4(9):3676-3679.
    [23]Riffat SB, Ma X. Thermoelectrics:a review of present and potential applications[J]. Applied Thermal Engineering.2003,23(8):913-935.
    [24]Rowe DM. CRC handbook of thermoelectrics[M]. CRC,1995,
    [25]Shou CH, Luo ZY, Wang T, Shen WD, Rosengarten G, Wei W, Wang C, Ni MJ, Cen KF. Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems[J]. Applied Energy.2012, 92(0):298-306.
    [26]Ju X, Wang Z, Flamant G, Li P, Zhao W. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system[J]. Solar Energy.2012,86(6):1941-1954.
    [27]万钢.五项新能源技术特别值得关注.2009.
    [28]国家发展和改革委员会.产业结构调整指导目录(2011年本).2011.
    [29]Survey of Thermal Storage for Parabolic Trough Power Plants.
    [30]concentrating solar power (CSP) projects.
    [31]Xie WT, Dai YJ, Wang RZ, Sumathy K. Concentrated solar energy applications using Fresnel lenses:A review[J]. Renewable and Sustainable Energy Reviews.2011,15(6):2588-2606.
    [32]Taggart S. CSP:dish projects inch forward[J]. Renewable Energy Focus.2008,9(4):52-54.
    [33]Li X, Zhang M, Wang Z, Chang C. The experimental analysis on thermal performance of a solar dish concentrator.2009.644-650.
    [34]Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, Buck R, Diver R, Andraka C, Moreno J. Dish-Stirling Systems:An Overview of Development and Status[J]. Journal of Solar Energy Engineering. 2003,125(2):135-151.
    [35]Stine WB, Diver RB. A compendium of solar dish/Stirling technology.1994.
    [36]ReGrid:Concentrated Solar Power.
    [37]帅鸥.碟式太阳能聚光系统的聚光与传热特性的研究[D].浙江大学.2012.
    [38]庄立强.碟式太阳能聚光器二次反射性能研究[D].浙江大学.2011.
    [39]王涛,骆仲泱,郭顺松,岑可法.可控纳米流体的制备及热导率研究[J].浙江大学学报(工学版).2007,41(3):514-518.
    [40]郭顺松.纳米流体的热物理特性研究[D].浙江大学.2006.
    [41]蔡洁聪.纳米流体对太阳能辐射选择吸收特性的研究[D].浙江大学.2008.
    [42]王涛.纳米溶胶及微米线/薄膜热物理特性的理论和实验研究[D].浙江大学.2008.
    [43]张邵波.纳米流体强化传热的实验和数值模拟研究[D].浙江大学.2009.
    [44]赵佳飞.纳米流体辐射特性机理研究及其在太阳能电热联用系统中的应用研究[D].浙江大学.2009.
    [45]王辉.纳米流体导热及辐射特性研究[D].浙江大学.2010.
    [46]武婷婷.纳米流体水平圆管内低雷诺数流动换热特性的实验研究[D].浙江大学.2011.
    [47]寿春晖.使用多层光学介质薄膜滤光的聚光太阳能发电技术的理论与实验研究[D].浙江大学.2012.
    [48]Rabl A. Tower reflector for solar power plant[J]. Solar Energy.1976,18(3):269-271.
    [49]Mauk CE, Prengle Jr. HW, Sun EC. Optical and thermal analysis of a cassegrainian solar concentratorfJ]. Solar Energy.1979,23(2):157-167.
    [50]Feuermann D, Gordon JM. Solar fiber-optic mini-dishes:a new approach to the efficient collection of sunlight[J]. Solar Energy.1999,65(3):159-170.
    [51]Kauder K.,傅敬熙.太阳能烧砖[J].能源工程.1991,11(1):43-44.
    [52]Meinel AB, Meinel WB. Solar energy collector and concentrator[J].1978,
    [53]Wientzen R, Davis WJ, Forkey RE. High temperature solar concentrator design.1980.281-291.
    [54]Conversion of solar to electrical energy.
    [55]Point focus solar concentrator using reflector strips of various geometries to form primary and secondary reflectors.
    [56]Feuermann D, Gordon JM. High-concentration photovoltaic designs based on miniature parabolic dishes[J]. Solar Energy.2001,70(5):423-430.
    [57]Gordon JM. Tailoring optical systems to optimized photobioreactors[J]. International journal of hydrogen energy.2002,27(11):1175-1184.
    [58]Feuermann D, Gordon JM, Huleihil M. Solar fiber-optic mini-dish concentrators:first experimental results and field experience[J]. Solar Energy.2002,72(6):459-472.
    [59]Gordon JM, Feuermann D. Optical performance at the thermodynamic limit with tailored imaging designsfJ]. Applied Optics.2005,44(12):2327-2331.
    [60]Chen CF, Lin CH, Jan HT, Yang YL. Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method[J]. Optics Communications.2009,282(3):360-366.
    [61]Chen CF, Lin CH, Jan HT. A solar concentrator with two reflection mirrors designed by using a ray tracing method[J]. Optik.2010,121(11):1042-1051.
    [62]Jiang SL, Hu P, Mo SP, Chen ZS. Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting Photovoltaic/Thermal System.2009.1-4.
    [63]Jiang SL, Hu P, Mo SP, Chen ZS. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology[J]. Solar Energy Materials and Solar Cells.2010,94(10):1686-1696.
    [64]江守利.反射聚光利用太阳能的基础理论与实验研究[D].合肥.中国科学技术大学.2009.
    [65]江守利,陈则韶,胡芃,莫松平.二次反射聚光分频光伏系统的三维光学模型[J].太阳能学报.2009,30(9):1188-1193.
    [66]江守利,陈则韶,胡芃,莫松平,陈建新.二次反射聚光分频光伏系统的光学分析[J].工程热物理学报.2008,29(3):369-372.
    [67]袁远,帅永,谈和平,王雁鸣.椭圆形二次反射面聚光特性模拟.2009.
    [68]Multiple reflector concentrator solar electric power system.
    [69]Kribus A, Zaibel R, Segal A. Extension of the hermite expansion method for cassegrainian solar central receiver systems[J].Solar Energy.1998,63(6):337-343.
    [70]Segal A, Epstein M. Comparative Performances of Tower-top' and Tower-reflector'Central Solar Receivers[J]. Solar Energy.1999,65(4):207-226.
    [71]Segal A, Epstein M. The optics of the solar tower reflector[J]. Solar Energy.2001,69(1-6):229-241.
    [72]Hasuike H, Yoshizawa Y, Suzuki A, Tamaura Y. Study on design of molten salt solar receivers for beam-down solar concentrator[J]. Solar energy.2006,80(10):1255-1262.
    [73]Karabulut H, Yucesu HS, Cinar C, Aksoy F. Construction and testing of a dish/Stirling solar energy unit[J]. Journal of the Energy Institute.2009,82(4):228-232.
    [74]Schlegel GO, Burkholder FW, Klein SA, Beckman WA, Wood BD, Muhs JD. Analysis of a full spectrum hybrid lighting system[J]. Solar Energy.2004,76(4):359-368.
    [75]Imenes AG, Mills DR. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review[J]. Solar Energy Materials and Solar Cells.2004,84(1-4):19-69.
    [76]Royne A, Dey CJ, Mills DR. Cooling of photovoltaic cells under concentrated illumination:a critical review[J]. Solar energy materials and solar cells.2005,86(4):451-483.
    [77]Lindberg E. TPV Optics Studies.2002.
    [78]Bauer T. Thermophotovoltaics:Basic principles and critical aspects of system design[M]. Springer,2011,
    [79]Bosia M, Ferraria C, Melinoa F, Pinellib M, Spinab PR, Venturinib M. Thermophotovoltaic Generation:A state of the art review.2012.
    [80]Richards BS. Luminescent layers for enhanced silicon solar cell performance:Down-conversion[J]. Solar energy materials and solar cells.2006,90(9):1189-1207.
    [81]Shalav A, Richards BS, Green MA. Luminescent layers for enhanced silicon solar cell performance: Up-conversion[J]. Solar Energy Materials and Solar Cells.2007,91(9):829-842.
    [82]Hermann AM. Luminescent solar concentrators— A review[J]. Solar Energy.1982,29(4):323-329.
    [83]Van Sark W, Barnham KW, Slooff LH, Chatten AJ, Buchtemann A, Meyer A, McCormack SJ, Koole R, Farrell DJ, Bose R. Luminescent solar concentrators:a review of recent results[J]. Optics express [EJ.2008, 16(26):21773-21792.
    [84]GREENY MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 37)[J]. Progress in photovoltaics.2011,19(1):84-92.
    [85]Guter W, Schone J, Philipps SP, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett AW, Dimroth F. Current-matched triple-junction solar cell reaching 41.1%conversion efficiency under concentrated sunlight[J]. Applied Physics Letters.2009,94(22):223504-223504.
    [86]Garg HP, Adhikari RS. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors:steady-state simulation[J]. Renewable Energy.1997, 11(3):363-385.
    [87]Kalogirou SA, Tripanagnostopoulos Y. Hybrid PV/T solar systems for domestic hot water and electricity production[J]. Energy Conversion and Management.2006,47(18):3368-3382.
    [88]Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors[J]. Renewable and Sustainable Energy Reviews.2011,15(1):352-365.
    [89]Zhao J, Luo Z, Zhang Y, Shou C, Ni M. Optimal design and performance analysis of a low concentrating photovoltaic/thermal system using the direct absorption collection concept.2010. IEEE Power and Energy Society (PES); State Grid of China; Siemens Ltd.; Sichuan University; Chongqing University.
    [90]Chow TT. A review on photovoltaic/thermal hybrid solar technology[J]. Applied Energy.2010, 87(2):365-379.
    [91]Tripanagnostopoulos Y, Nousia TH, Souliotis M, Yianoulis P. Hybrid photovoltaic/thermal solar systems[J]. Solar energy.2002,72(3):217-234.
    [92]Green MA, Ho Baillie A. Forty three per cent composite split-spectrum concentrator solar cell efficiencyfJ]. Progress in Photovoltaics:Research and Applications.2010,18(1):42-47.
    [93]Peters M, Goldschmidt JC, L Per P,Gro B, Upping J, Dimroth F, Wehrspohn RB, Bl Si B. Spectrally-selective photonic structures for PV applications [J]. Energies.2010,3(2):171-193.
    [94]Ortabasi U, Lewandowski A, McConnell R, Aiken DJ, Sharps PL, Bovard BG. Dish/photovoltaic cavity converter (PVCC) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions.2002.1616-1620.
    [95]Ortabasi U, Winston R, Ellis S. Second-generation PVCC design with a dielectric light injector and polyhedron interior cavity.2006.6339OC-1.
    [96]Xiong K, Lu S, Dong J, Zhou T, Jiang D, Wang R, Yang H. Light-splitting photovoltaic system utilizing two dual-junction solar cells[J]. Solar Energy.2010,84(12):1975-1978.
    [97]Barnett A, Wang X. High Efficiency, Spectrum Splitting Solar Cell Assemblies:Design, Measurement and Analysis.2010.
    [98]Mitchell B, Peharz G, Siefer G, Peters M, Gandy T, Goldschmidt JC, Benick J, Glunz SW, Bett AW, Dimroth F. Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency[J]. Progress in Photovoltaics:Research and Applications.2010,19(1):61-72.
    [99]Zhao Y, Sheng M, Zhou W, Shen Y, Hu ET, Chen JB, Xu M, Zheng Y, Lee Y, Lynch DW. Study of spectrum-splitting solar photovoltaic system.2011.806507-1.
    [100]JOsborn DE, Chendo M, Hamdy MA, Luttmann F, Jacobson MR, Macleod HA, Swenson R. Spectral selectivity applied to hybrid concentration systems[J]. Solar Energy Materials.1986,14(3):299-325.
    [101]Chendo M, Jacobson MR, Osborn DE. Liquid and thin-film filters for hybrid solar energy conversion systems[J]. Solar & wind technology.1987,4(2):131-138.
    [102]Hamdy MA, Osborn DE. The potential for increasing the efficiency of solar cells in hybrid photovoltaic/thermal concentrating systems by using beam splitting[J]. Solar & wind technology.1990, 7(2-3):147-153.
    [103]Soule DE, Rechel EF, Smith DW, Willis FA. Efficient Hybrid Photovoltaic-Photothermal Solar Conversion System With Cogeneration[J]. Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IV, Proceedings of the International Society for Optical Engineering.1985,562166-173.
    [104]Soule DE, Wood SE. Heat-mirror spectral profile optimization for TSC hybrid solar conversion[J]. Optical Materials Technology for Energy Efficiency and Solar Energy Conversion V, Proceedings of the SPIE.1986, 653172-180.
    [105]Izumi H. Wavelength separating and light condensing type generating and heating apparatus.1997.
    [106]Lasich JB, Cleeve A, Kaila N, Ganakas G, Timmons M, Venkatasubramanian R, Colpitts T, Hills J. Close-packed cell arrays for dish concentrators.1994.1938-1941.
    [107]Yogev A, Appelbaum J, Oron M, Yehezkel N. Concentrating and splitting of solar radiation for laser pumping and photovoltaic conversion[J]. Journal of propulsion and power.1996,12(2):405-409.
    [108]Yogev A, Krupkin V, Epstein M. Solar energy plant.1996.
    [109]Yogev A, Epstein M. Solar energy plant.2003.
    [110]Imenes AG, Buie D, McKenzie D. The design of broadband, wide-angle interference filters for solar concentrating systems[J]. Solar energy materials and solar cells.2006,90(11):1579-1606.
    [111]Imenes AG, Buie D, Mills DR, Schramek P, Bosi SG. A new strategy for improved spectral performance in solar power plants[J]. Solar energy.2006,80(10):1263-1269.
    [112]Imenes AG. Design and Optimisation of Spectral Filters for Hybrid Receiver Solar Concentrating Systems(J]. 2006,
    [113]Shou CH, Luo ZY, Wang T, Shen WD, Rosengarten G, Wang C, Ni MJ, Cen KF. A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation[J]. Chinese Physics Letters.2011,28(12):128402.
    [114]Fraas LM, Pyle WR, Ryason PR. Concentrated and piped sunlight for indoor illumination[J]. Applied Optics. 1983,22(4):578-582.
    [115]Fraas LM, Daniels WE, Muhs J. Infrared photovoltaics for combined solar lighting and electricity for buildings.2001.
    [116]Fraas LM, Avery JE, Nakamura T. Electricity from concentrated solar IR in solar lighting applications.2002. 963-966.
    [117]Muhs JD. Hybrid solar lighting doubles the efficiency and affordability of solar energy in commercial buildings[J]. CADDET Energy Efficiency Newsletter.2000, (4):6-9.
    [118]Muhs JD. Design and analysis of hybrid solar lighting and full-spectrum solar energy systems.2001.
    [119]Muhs JD, Earl DD. Adaptive, full-spectrum solar energy system.2003.
    [120]Schlegel GO, Wood BD, Muhs JD, Klein SA, Beckman WA. Full spectrum hybrid lighting for commercial buildings.2002.
    [121]Rabl A. Active solar collectors and their applications[M]. Oxford University Press, USA,1985,
    [122]Winston R, Mi Ano JC, Benitez PG. Nonimaging optics[M]. Academic Press,2004,
    [123]Rabl A. Radiation transfer through specular passages— a simple approximation[J]. International Journal of Heat and Mass Transfer.1977,20(4):323-330.
    [124]Duffie JA, Beckman WA. Solar engineering of thermal processes[M]. Wiley New York,2006,
    [125]百度百科.圆锥曲线.
    [126)Liou K. An introduction to atmospheric radiation[M]. Academic press,2002,
    [127]Goody RM, Yung YL. Atmospheric radiation:theoretical basis[M]. OUP USA,1996,
    [128]Junge CE. Air chemistry and radioactivity[M]. New York:Academic Press,1963,
    [129]Mie G. Beitr ge zur Optik trtuber Medien, speziell kolloidaler Metall sungen[J]. Annalen der Physik.1908, 330(3):377-445.
    [130]Neumann A, Witzke A, Jones SA, Schmitt G. Representative terrestrial solar brightness profiles[J]. Journal of solar energy engineering.2002,124(2):198-204.
    [131]Noring JE, Grether DF, Hunt AJ. Circumsolar radiation data: The Lawrence Berkeley Laboratory reduced data base. Final subcontract report[J].1991,
    [132]Schubnell M. Sunshape and its influence on the flux distribution in imaging solar concentrators[J]. Journal of solar energy engineering.1992,114(4):260-266.
    [133]Biggs F, Vittitoe CN. Helios model for the optical behavior of reflecting solar concentrators.1979.
    [134]Buie D, Monger AG, Dey CJ. Sunshape distributions for terrestrial solar simulations[J]. Solar Energy.2003, 74(2):113-122.
    [135]Minnaert M. The Photosphere, The Sun, The Solar System, G.P. Kuiper (ed.)[M]. Chicago:University of Chicago Press,1953,
    [136]Buie D, Dey CJ, Bosi S. The effective size of the solar cone for solar concentrating systems[J]. Solar energy. 2003,74(5):417-427.
    [137]Buie D, Monger AG. The effect of circumsolar radiation on a solar concentrating system[J]. Solar energy. 2004,76(1):181-185.
    [138]刘鉴民.太阳能利用原理·技术·工程[M].北京:电子工业出版社,2010,
    [139]Welford WT, Winston R. High Collection Nonimaging Optics[M]. New York:Academic Press,1978,
    [140]Rabl A. Comparison of solar concentrators[J]. Solar Energy.1976,18(2):93-111.
    [141]刘梦夏,强西林.光学薄膜膜系设计方法及发展趋势[J].西安工业学院学报.2000,20(3):194-199.
    [142]查家明.宽波段分色膜研制[D].南京理工大学.2007.
    [143]刘颖.太阳能聚光器聚焦光斑能流密度分布的理论与实验研究[D].哈尔滨工业大学.2008.
    [144]Bendt P, Rabl A. Optical analysis of point focus parabolic radiation concentrators[J]. Applied Optics.1981, 20(4):674-683.
    [145]Mobarak A, Rahim AA. Determination of focal flux distribution of a parabolic dish solar concentrator applying real sunshape[J]. Twelfth Annu. Int. Sol. Engng.1990,79-86.
    [146]Chen CW, Hopkins GW. Ray tracing through funnel concentrator optics[J]. Applied optics.1978, 17(9):1466-1467.
    [147]Rottigni GA. Concentration of the sun's rays using catenary curves[J]. Applied optics.1978,17(6):969-974.
    [148]Riveros HG, Oliva AI. Graphical Analysis of Sun Concentrating Collectors[J]. Solar energy.1986, 36(4):313-322.
    [149]Roman R, Peterson JE, Goswami DY. An off-axis Cassegrain optimal design for short focal length parabolic solar concentrators[J]. Journal of solar energy engineering.1995,117(1):51-56.
    [150]O' Gallagher J, Winston R. Performance model for two-stage optical concentrators for solar thermal applications[J]. Solar energy.1988,41(4):319-325.
    [151]Ryu S, Seo T, Kang YH. Thermal Performance of Receivers for a Multifaceted Parabolic Dish Solar Thermal Collector.2001.785-794.
    [152]Kreske K. Optical design of a solar flux homogenizer for concentrator photovoltaics[J], Applied optics.2002, 41(10):2053-2058.
    [153]Steinfeld A, Schubnell M. Optimum aperture size and operating temperature of a solar cavity-receiver[J]. Solar Energy.1993,50(1):19-25.
    [154]Lipinski W, Steinfeld A. Annular compound parabolic concentrator[J]. Journal of solar energy engineering-Transactions Of The ASME.2006,128(1):121-124.
    [155]Jeter SM. The distribution of concentrated solar radiation in paraboloidal collectors[J]. Journal of solar energy engineering.1986,108(3):219-225.
    [156]Jeter SM. Analytical determination of the optical performance of practical parabolic trough collectors from design data[J], Solar energy.1987,39(1):11-21.
    [157]Sammouda H, Royere C, Belghith A, Maalej M. Reflected radiance distribution law for a 1000 kW thermal solar furnace system[J]. Renewable energy.1999,17(1):9-20.
    [158]赵建中,高崇杰.抛物柱面聚焦器焦平面上辐射通量分布的理论和实验研究[J].太阳能学报.1994,15(3):262-267.
    [159]Harris JA, Duff WS. Focal plane flux distributions produced by solar concentrating reflectors[J]. Solar Energy. 1981,27(5):403-411.
    [160]Jones PD, Wang L. Concentration distributions in cylindrical receiver/paraboloidal dish concentrator systems[J]. Solar energy.1995,54(2):115-123.
    [161]王志峰,杨军.带有平面反射板的全玻璃真空集热管表面能流分析[J].太阳能学报.2005,26(2):281-287.
    [162]Abdurakhmanov A, Akbarov RY, Kratenko MY. A technical vision system for routine monitoring of energetic characteristics of a big solar stove[J]. Geliotekhnika.1994,6(3):30-32.
    [163]成珂,张鹤飞.蒙特卡洛法模拟集热器入射面太阳辐射的算法研究[J].太阳能学报.2006,27(8):743-747.
    [164]杜胜华,夏新林,唐尧.太阳光不平行度对太阳能聚集性能影响的数值研究[J].太阳能学报.2006,27(4):388-393.
    [165]Zik O, Kami J, Kribus A. The TROF (tower reflector with optical fibers):a new degree of freedom for solar energy systems[J]. Solar energy.1999,67(1):13-22.
    [166]Feuermann D, Gordon JM, Ries H. High-flux solar concentration with imaging design[J]. Solar Energy.1999, 65(2):83-89.
    [167]丁毅.自由曲面光学器件的设计及其在照明系统中的应用[D].2009.
    [168]方丽,林峰,邱怡申.ASAP模拟变焦系统中鬼像的研究[J].应用光学YYGX.2009,(06):
    [169]郝俊勇.CPC太阳能集热器的性能研究及凝结水辅助加热系统的分析[D].2010.
    [170]陆巍.投影显示照明光学的理论和实验研究[D].浙江大学.2006.
    [171]孙健.基于TracePro软件的复合抛物面聚光器光学性能分析[J].能源技术LYJI.2010,(04):
    [172]王诩,王银河,姚春龙,宋光辉,李野,陈晓飞,曲颖彧.基于TracePro软件的组合反光镜设计与分析[J].灯与照明LAMP.2010, (03):
    [173]闫春光,檀柏梅,袁景玉,牛萍娟.基于ASAP软件的LED光学特性模拟[J].现代显示.2008,(9):58-61.
    [174]张军,陈哲,钟金钢ASAP软件在光学原理等课程教学中的应用[J].中国电力教育ZGDI.2009,(03):
    [175]张丽英.槽式聚焦太阳能集热器及其应用研究[D].2008.
    [176]张晓晨,帅永,谈和平.基于ZEMAX软件太阳能聚光镜优化设计.2008.
    [177]Andraka CE. Cost/Performance Tradeoffs for Reflectors Used in Solar Concentrating Dish Systems.2008.
    [178]许辉,张红,白穜,丁莉,庄骏.碟式太阳能热发电技术综述(一)[J].热力发电.2009,38(5):5-9.
    [179]Diver RB. Mirror alignment techniques for point-focus solar concentrators.1992.
    [180]Diver RB. Mirror alignment and focus of point-focus solar concentrators.1994.
    [181]Andraka CE, Diver RB, Rawlinson KS. Improved Alignment Technique for Dish Concentrators.2003.
    [182]Blackmon JB, Stone KW. Application of the digital image radiometer to optical measurement and alignment of space and terrestrial solar power systems.1993.563-570.
    [183]Shortis M, Johnston G. Photogrammetry:An available surface characterization tool for solar concentrators. Part 2:Assessment of surfaces[J]. Journal of solar energy engineering.1997,119(4):
    [184]Pottler K, Lu Pfert E, Johnston GHG, Shortis MR. Photogrammetry:A powerful tool for geometric analysis of solar concentrators and their components[J]. Journal of Solar Energy Engineering-Transactions Of The ASME. 2005,127(1):94-101.
    [185]Burgess G, Shortis M, Kearton A, Garzoli J. Photogrammetry for dish concentrator construction.2009.
    [186]Shortis MR, Johnston GH, Pottler K, Lilpfert E. Photogrammetric analysis of solar concentrators.2004.
    [187]Shortis MR, Johnston GHG, Pottler K, Lupfert E. Photogrammetric analysis of solar collectors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.2008. 81-88.
    [188]胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报.2002,
    [189]Ulmer S, Reinalter W, Heller P, Lupfert E, Martinez D. Beam characterization and improvement with a flux mapping system for dish concentrators[J]. Journal of solar energy engineering.2002,124(2):182-187.
    [190]Hamamatsu Photonics (China) Co., Ltd.
    [191]杨世铭,陶文铨.传热学[M].高等教育出版社,2006,
    [192]Stone KW, Drubka RE, Braun H. Impact of Stirling engine operational requirements on dish Stirling system life cycle costs[J]. SOLAR ENGINEERING.1994,529-529.
    [193]Washom B. Parabolic dish Stirling module development and test results.1984.
    [194]孙可,韩祯祥,曹一家.微型燃气轮机系统在分布式发电中的应用研究[J].机电工程.2005,
    [195]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景[J].热能动力工程.2003,
    [196]Fujita T, Bowyer JM, Gajanana BC. Comparison of advanced engines for parabolic dish solar thermal power plants[J]. Journal of Energy.1982,6(5):293-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700