用户名: 密码: 验证码:
小型断路器中电磁式油阻尼脱扣器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型断路器是终端电器的一种主要电器。带电磁式油阻尼脱扣器的小型断路器,利用油阻尼器来实现断路器的反时限特性,实现过载保护;当出现短路故障时,衔铁能够瞬时动作,实现短路保护。由于在油杯中采用了粘度稳定的甲基硅油,断路器的保护特性受环境温度影响较小,反时限特性较好。因此它应用的领域广,使用的数量比较多。基于此,提出了对小型断路器中电磁式油阻尼脱扣器性能的研究。
     本文在对小型断路器、粘滞流体阻尼器、计算流体仿真技术、电磁场有限元分析技术及多体动力学分析技术研究现状进行总结的基础上,结合实际课题,对电磁式油阻尼脱扣器的油阻尼力、静态特性、动态特性等方面进行了研究。首先根据流体理论公式推导得到电磁式油阻尼脱扣器阻尼力表达式,分析了油杯参数对阻尼力的影响。接着利用计算流体仿真软件FLUENT建立了阻尼器模型,并仿真得到油阻尼器压力、速度等场量以及不同粘度下的阻尼力数据表,且与理论推导公式得到的数据进行了比较。然后利用有限元分析软件ANSYS得到电磁式油阻尼脱扣器的静态特性,通过接口协同仿真技术,将静态数据嵌入到多体动力学软件ADAMS中,得到电磁式油阻尼脱扣器的动态特性,将断路器保护特性的仿真结果与实测结果进行了比较,基本吻合。分析了脱扣器各参数对其动态特性的影响。结果表明,研究成果对电磁式油阻尼脱扣器产品的分析、开发及优化具有重要的理论指导意义和实用价值。
Miniature circuit breaker is the main electrical appliance in the terminal apparatus. Theoil dashpot of the miniature circuit breaker is used to realize the inverse time characteristicsin order to achieve overload protection. When short circuit faults happen, the armature canbe tripped instantaneously to achieve short circuit protection. Because the viscosity of themethyl silicone adopted in the oil cup is stable, protection characteristics of circuit breakerare little influenced by environmental temperature, and it has a good inverse timecharacteristic, so it is used widely, and the used quantity is much more. Based on these, thestudy on the performance of electromagnetic release with oil dashpot in miniature circuitbreaker is put forward.
     In this paper, on the basis of analysis of miniature circuit breaker, viscous flow damper,computational fluid simulation technology, finite element analysis technology andmultibody dynamics simulation technology, combining with the actual project, the oildamping force, static characteristics and dynamic characteristics of electromagnetic releasewith oil dashpot were studied. First, expression of damping force was derived according tothe law of the fluid theory, and the influence of the parameters on the damping force wasanalyzed. Then with computational fluid simulation software FLUENT, field quantitiessuch as velocity and pressure, data table of damping force under different viscosity weregot. And the simulating data was compared with data obtained by theoretical derivationformula. Afterwards with the finite element software ANSYS, static characteristic ofelectromagnetic release with oil dashpot was obtained. Through the the interface simulationtechnology, static data was embedded into multi-body dynamics software ADAMS, and thedynamic characteristics of electromagnetic release with oil dashpot was got, and simulationresults and measured results of the protection characteristics were compared and their datawas essentially agreed.At last, the influence of the release parameters on its dynamiccharacteristics was discussed. It is shown that the research results have importanttheoretical guiding significance and practical value for analysis, development andoptimization of the electromagnetic release with oil dashpot.
引文
[1]陆俭国,何瑞华,陈德桂,等.中国电气工程大典(第11卷):配电工程[M].北京:中国电力出版社,2009.563
    [2]何瑞华.我国低压断路器现状与发展动向[J].电气技术,2009,(6):9-13
    [3]陈德桂.小型断路器[J].低压电器,1994,(3):8-15
    [4]骆燕燕,陆俭国.小型断路器可靠性试验及抽样方案的研究[J].机床电器,2000,(3):8-10
    [5]尹天文,周积刚.低压电器最新发展动向[J].低压电器.2007,(1):6-9
    [6]陈德桂.低压电器最新技术发展动态[J].电气制造,2005,(2):1-4
    [7]陈德桂.低压电器智能化的新技术[J].低压电器,2008,(1):1-6
    [8] http://www.elecfans.com/weiji/wiki/%E5%B0%8F%E5%9E%8B%E6%96%AD%E8%B7%AF%E5%99%A8[OL]
    [9] http://baike.baidu.com/view/1307479.htm[OL]
    [10]欧进萍,丁建华.油缸间隙式粘滞阻尼器理论与性能试验[J].地震工程与工程振动,1999,12(19):82-87
    [11]丁建华,欧进萍.油缸孔隙式粘滞阻尼器理论与性能试验[J].世界地震工程,2001,17(1):30-35
    [12]贾九红,黄修长,杜俭业,等.粘滞性阻尼器的设计方法研究[J].振动工程学报,2007,10(20):494-497
    [13]黄镇,李爱群.新型黏滞阻尼器原理与试验研究[J].土木工程学报,2009,42(6):61-65
    [14]梁沙河,李爱群,彭枫北.变阻尼粘滞阻尼器的减震原理和力学模型分析[J].特种结构,2009,6(23):49-53
    [15]李英,闫维明,纪金豹.变间隙粘滞阻尼器的性能分析[J].震灾防御技术,2006,6(1):153-162.
    [16]杨国华,李爱群,程文,叶正强.工程结构粘滞流体阻尼器的减振机制与控振分析[J].大东南学学报(自然科学版),2001,1(31):57-61.
    [17]杨国华,叶正强,李爱群.幂指关系粘滞流体阻尼器的力学性能研究[J].建筑结构,2008,8(38):94-97
    [18]张恒晟,葛继平.粘滞阻尼器在小行程条件下的力学性能试验研究[J].结构工程师,2008,12(24):106-110
    [19] Hrovat D, Barak P,Rabins M. Semi-active versus passive or active tuned mass dampers forstructural control[J]. J. Eng. Mech,1983,109(3):691-705
    [20] Inaudi J.A,Kelly J.M. Single-freedom nonlinear homogeneous systems[J]. J. Eng. Mech,1994,120(7):1543-1562
    [21] J.N. Yang, Wu J.C, Kawashima K, et al. Hybrid control of seismic-excited bridges structures[J].Earthquake Engineering and Structural Dynamics,1995,24:1437-1451
    [22] Symans M.D, Constantinou M.C, Taylor D.P, et al. Semi-active fluid viscous dampers for seismicresponse control[C]. Proceedings of First World Conference on Structural Control Los Angeles,1994,5:3-12
    [23] Symans M.D, Constantinou M.C. Development and experimental study of semi-active fluiddamping devices for seismic protection of structure[J]. National Center for Earthquake EngineeringResearch,1995,3:321-346
    [24]吴子牛.计算流体力学基本原理[M].北京:科学出版社.2001.20
    [25]陈材侃.计算流体力学[M].重庆:重庆出版社,1992.35
    [26]杨景芳.流体力学基础[M].大连:大连理工大学出版社.1994.7
    [27]任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社,2006.1
    [28]杜扬.流体力学[M].北京:中国石化出版社,2008.101
    [29]龙天渝,苏亚欣.计算流体力学[M].重庆:重庆大学出版社,2007.26
    [30]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.46
    [31]韩占忠,王敬. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.236
    [32]李勇,刘志友,安亦然.介绍流体力学通用软件—FLUENT[J].水动力学研究与进展,2001,16(2):254-258.
    [33] Bouaziz M,Razafinimanana M,Gonzalez J J,et al.An experimental and theoretical study of theinfluence of copper vapor on a SF6arc plasma at atmospheric pressure[J].Applied Physics,1998,31(4):1570-1577
    [34] Karetta Frank, L indmayerManfred. Simulation of the Gasdynamic and Electromagnetic Processesin Low Voltage Switching Arcs[J]. IEEE Trans Comp Trans PackaManufact Technol. PartA,1998,21(1):92-102
    [35] Helene Rachard,Pierre Chevrier,Daniel Henry, et al.Numerical study of coupled electromagneticand aerothermodynamic phenomena in a circuit breaker electric arc[J]. Heat and MassTransfer,1999,5(42):1723-1734
    [36] F Lago, J J Gonzalez, P Freton,et al. A numerical modelling of an electric arc and its interactionwith the anode[J].Applied Physics,2004,2(37):883-888
    [37] B Swierczynski, J J Gonzalez, P Teulet, et al.Advances in low-voltage circuit breaker modeling[J].Applied Physics,2004,2(37):595-598
    [38] Nielsen T,Kaddani A,Zahrai S.Modeling evaporating metal droplets in ablation controlled electricarcs[J].Applied Physics,2004,34(1):2022-2031
    [39] J J Gonzalez,F Lago, P Freton, M Masquere, et al. The three-dimensional model—influence ofexternal forces on the arc column [J]. Applied Physics,2005,2(38):306-310
    [40] Maruzewski P,Martin A,Reggio M,et al.Simulation of arc-electrode interaction using sheathmodeling in SF6circuit breakers[J].Applied Physics,2005,35(2):891-899
    [41] Fulbert Baudoin, Jean-Jacques Gonzalez, et al.Study of the curvature of the electrical arc in lowvoltage breaking devices[J].Applied Physics,2005,(38):3778-3781
    [42] Kubicek, Bernhard. Modeling Moving Electric Arcs: Verification of a Coupled Fluid-DynamicsMagnetostaticApproach[J]. Magnetics, IEEE Transactions on.2008,6(44):790-793
    [43] Riccardo Bini, Nils T Basse,Martin Seeger.Arc-induced turbulent mixing in an SF6circuit breakermodel[J].Applied Physics,2011,1(44):67-71
    [44] D Eichhoff, A Kurz,R Kozakov, et al.Study of an ablation-dominated arc in a model circuitbreaker[J].Applied Physics,2012,8(45):1130-1135
    [45] Zhang Jinling,Yan Jiudun,Michael T C Fang,et al.Electrode evaporation and its effects on thermalarc behavior[J].IEEE Transactions on Plasma Science,2004,32(3):1352-1361
    [46] Zheng Shu, Liu Yue, Liu Jinyuan, et al. Two-Dimension Numerical Simulation on Evolution ofArc[J]. Plasma. Vacuum,2004,73(3):373-379
    [47]吴翊,,荣命哲,杨茜,等.低压空气电弧动态仿真及分析[J].中国电机工程学报,2005,25(21):143-148
    [48]王立军,贾申利,史宗谦,等.真空电弧磁流体动力学模型与仿真研究[J].中国电机工程学报,2005,2(25):113-118
    [49]林莘,刘克彬,狄谦.自能式SF6断路器压力特性理论计算与试验研究[J].中国电力,2007,(11):57-61
    [50]王连鹏,王尔智,刘海峰,等.SF6断路器空载介质恢复特性数值模拟中的耦合计算方法[J].电工技术学报,2007,6(22):59-63
    [51]马强,荣命哲,Anthony B,等.考虑器壁侵蚀影响的低压断路器电弧运动特性仿真及实验[J].电工技术学报,2009,1(29):115-120
    [52]周学,崔行磊,翟国富.直流电磁继电器触点分断小电流的电弧特性研究[C].第十四届全国等离子体科学技术会议暨中国电推进技术研讨会会议,2009:1220-1223
    [53]李兴文,陈德桂,汪倩.低压断路器电弧仿真试验和研究[J].低压电器,2010,(24):1-7
    [54]朱伯芳.有限单元法原理和应用[M],第2版.北京:中国水力电力出版社,1998.38
    [55] H.卡德斯图赛主编.朱德超,傅子智等译.有限元法手册[M].北京:科学出版社,1996.16
    [56]王勖成.有限单元法[M].北京:清华大学出版社,2008.12
    [57]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.34
    [58]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002.6
    [59] A Abri et al. Finite Element Analysis of Electromagnets and Contact Systems in Low VoltageCurrent Limiting Circuit Breakers[J]. IEEE Trans. on Magnetics,1990,3(26):960-963
    [60] Lombard P, Meunier G. A general purposed method for electric and magnetic combined problemsfor2D, axisymmetric and transient systems[J]. IEEE Transactions on Magnetics,1993,29(2):1737-1740
    [61] Lindmayer M, Stamberger H. Application of numerical field simulations for low voltage circuitbreaker [J].IEEE Transactions on Components, Packaging and Manufacturing Technology: Part A,1995,18(3):708-717
    [62] Ito, Shokichi.3-D finite element analysis of repulsion forces on contact systems in low voltagecircuit breakers[J].Magnetics, IEEE Transactions on,1996,5(32):1677-1680
    [63] Atienza E, Perrault M, Wurtz F, et al. A methodology for the sizing and the optimization of anelectromagnetic release[J]. IEEE Transactions on Magnetics,2000,36(4):1659-1663
    [64] Kee-Joe Lim, Seong-Hwa Kang,Un-Yong Lee, et al.3-D Finite Element Analysis of MagneticForce on the Arc for Arc Chamber Design of Molded Case Circuit Breaker[J]. AppliedPhysics,2001,6(14):183-186
    [65] Onchi, Toshiyuki,Isozaki M, et al. Current limiting simulation for low voltage circuit breaker[C].In:The29th Annual Conference of the IEEE. Industrial Electronics Society,2003,11(1):631-636
    [66] Seung-Su Lee, Jae-Hun Yoon, Jun Heo, et al.3-D Finite Element Analysis for Contact SystemDesign in Molded Case Circuit Breakers[J]. Electrical Engineering,2009,1:1-6
    [67] Kim, Yu-Min,Chungbuk Nat. Univ, Cheongju, et al. Analysis on electromagnetic repulsion force inMolded Case Circuit Breaker Electric[J]. Powerpment-Switching Technology,2011,1(10):379–382
    [68]李兴文,陈德桂,向洪岗,等.低压塑壳断路器中电动斥力的三维有限元非线性分析与实验研究[J].中国电机工程学报,2004,2(24):150-155
    [69]刘刚,陈德桂.塑壳断路器触头区域电场的仿真分析[J].低压电器,2004,(6):3-5
    [70]张敬菽,陈德桂,刘洪武,等.计及电动斥力效应的低压塑壳断路器机构动力学仿真[J].西安交通大学学报,2004,4(38):343-347
    [71]杜凤山,郭振宇,李量.低压断路器脱扣性能的有限元仿真[J].电子元件与材料,2004,8(23):30-32
    [72]向洪岗,陈德桂,李兴文,等.应用有限元方法分析塑壳断路器脱扣器的动作特性[J].西安交通大学学报.2005,8:890-895
    [73]蒋昌华,吉卫喜.塑料外壳式断路器操作机构的动态仿真与参数化设计[J].低压电器,2008,3:13-16
    [74]季良,陈德桂,刘颖异,等.利用电弧动态数学模型的低压断路器开断过程仿真分析[J].中国电机工程学报,2009,7(29):107-113
    [75]俞国勇.塑壳断路器瞬时脱扣器动静特性仿真及优化[J].电工电气,2009,(1):42-49
    [76]童争光,陈德桂.塑壳断路器不同结构触头灭弧系统吹弧磁场的分析[J].低压电器,2007,(17):1-4
    [77]于永站,谭昌柏,张金泉,等.塑壳断路器热脱扣特性的仿真与试验分析[J].低压电器,2012,(7):5-18
    [78] HAUG E.Computer aided analysis and optimization of mechanical system dynamics[M].Berlin:Berlin Press,1990.
    [79]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1996.12
    [80] SUNADA W,Dubouwky S.The application of finite element methods to the dynamics analysis offlexible spatial land CO-Planar linage systems[J]. Meehanical Design,1971,(103):643-651
    [81] WINFFY R. Dynamics analysis of elastic link mechanisms by reduetion of coordinates[J].ASMEJournal of Engineering for Industry,1972,(94):577-582
    [82] SINGH R,VANDER R,LIKINS P. Dynamics of flexible bodies in tree topology a computer-orientedapproach[J].Joumal of Guidanee,Control,and Dynamies,1985,(8):584-590
    [83] KIM S W,MISRAAK,MODI V J,et al. Modelling of contact dynamics two fiexible multi一bodysystems[J].ActaAstronautica,1999,45(11):669-677
    [84] HWANG Yunn-Lin.Recursive Newton-Euler formulation for flexible dynamic manufacturinganalysis of open-loop robotic systems[J].Advaneed Manufacturing Technology,2006,(29):598-604
    [85] BHATTlM.Vertical and Lateral Dynamic Response of Railway Bridge due to Nonlinear Vehiclesand Track Irregularities[D],Chicago: Illnois Institute of Technology,1982
    [86] SCHIEHLEN W. Multibody system handbook[M].Berlin:SPringer一Veflag,1990
    [87]朱浩.基于多体动力学理论的车辆主动悬挂的控制策略研究[D].长沙:中南大学,2006
    [88] ERDMAN A,SANDOR G,OAKBERG R.A general method for kineto-elastodynamic analysis andsynthesis of mechanisms[J]. Engineering for Industry,1972,94(4):1193-1205
    [89] BOLAND P,SAMIN C,WILLEMS P. Stability analysis of interconnected deformable bodies withclosed-loop configuration[J].AIAA,1975,13(7):864-867
    [90] ANTOUN R,HACKERT P,et al. Simulating vehicle dynamic handling[J].AutomotiveEngineering,1986,94(10):72-76
    [91]洪嘉振.多体系统动力学理论、计算方法和应用[M].上海:上海交大出版社,1992.12
    [92]张敬菽,陈德桂,刘洪武.低压断路器操作机构的动态仿真与优化设计[J].中国电机工程学报,2004,(3):102-106
    [93]张敬菽,陈德桂,刘洪武,等.基于虚拟样机技术的低压塑壳断路器仿真研究[J].系统仿真学报,2004,(9):2118-2121
    [94]李兴文,陈德桂,汪倩,等.低压塑壳断路器三相短路开断特性的仿真分析[J].电工技术学报,2005,3(7):76-87
    [95]纽春萍,陈德桂,张敬菽,等.电动斥力作用下低压断路器分断特性的研究析[J].电工技术学报,2005,10(20):34-38
    [96]王东亚,陈德桂.塑壳断路器滑扣现象的仿真分析[J].低压电器,2006,(5):3-8
    [97]张波,陈德桂.旋转双断点塑壳断路器机构的动态仿真与优化[J].低压电器,2007.(13):5-8.
    [98]张波,陈德桂.低压断路器操作机构的应力分析[J].低压电器,2007,(7):1-4.
    [99]赵柳,陈德桂,李兴文,等.一种基于多体动力学分析微脱扣器动态特性的方法[J].低压电器,2008,(9):210-215
    [100]刘金鹿.塑壳断路器的脱扣器电磁机构仿真与优化[D].天津:河北工业大学,2011
    [101]段育明,唐丰田,蔡清河.旋转式双断点塑壳断路器的设计[J].机床电器,2012,(2):41-41
    [102]林莘,宋立峰,等.真空断路器新型电机操动机构的多体动力学仿真[J].电网技术,2012,36(3):22-25
    [103]崔彦彬,高志,曹云鹏.基于ADAMS的高压断路器操动机构动力学仿真研究[J].机械设计与制造,2006,(4):66-67
    [104]王恪典,徐海波.虚拟样机实验仿真技术及其在真空断路器操动机构中的应用[J].高压电器,2003,39(6):1-3
    [105]屠凯,周忆,张力.基于Pro/E和ADAMS的高压断路器机构仿真分析[J].机械研究与应用,2009,3:46-48
    [106]吴冬青,李莉敏,唐文献.基于ADAMS断路器动态仿真系统的应用研究[J].制造业自动化,2003,(25):101-104
    [107]季良,陈德桂,刘颖异,等.连杆转换位置对MCCB操作机构的影响及其优化[J].电工技术学报,2010,(9):87-91
    [108]陈轲娜,宋浩永,李兴文,等.微型断路器开断过程的数学建模与仿真分析[J].低压电器,2011,8(16):1-5109Yoshihiro Kawase,Tomohiro Ota,Makoto Yoshida,et al.Dynamic analysis of oil dashpot forelectromagnetic release in low voltage circuit breakers using finite element method[J]. Computation andMathematics in Electrical and Electronic Engineering,2000,19(2):718-723110Satoshi Suzuki, Yoshihiro Kawase, TadashiYamaguchi, et al. Dynamic Analysis of Circuit Breakerwith Oil Dashpot Using Multimesh Modification Method[J]. IEEE TRANSACTIONS ONMAGNETICS,2011,47(5):1002-1005
    111沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989.5
    112盛敬超.液压流体力学[M].北京:机械工业出版社,1981.10
    113http://baike.baidu.com/view/127441.htm
    114章宏甲,黄谊.液压传动[M].北京:机械工业出版社,1993.56
    115李寿刚.液压传动[M].北京:北京理工大学出版社,1994.3
    116郭会娟,苏秀苹,杨怡君.电磁式脱扣器粘滞流体阻尼力研究[J].低压电器,2011,(3):5-7
    117张冠生.电器理论基础[M].北京:机械工业出版社.1989.5
    118http://baike.baidu.com/view/70776.htm[OL].
    119费鸿俊,张冠生编.电磁机构动态特性分析与计算[M].北京:机械工业出版社,1993.1
    120张益滔.油阻尼脱扣器过载特性的动态仿真研究[D].天津:河北工业大学,2012.
    121谭雪松,王金,钟廷志编著. Pro ENGINEER Wildfire4.0中文版模具设计[M].北京:人民邮电出版社,2009.28
    122http://baike.baidu.com/view/109193.htm[OL].
    123郑建容.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.11
    124王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700