用户名: 密码: 验证码:
HESG-MC变速恒频分布式发电系统控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速恒频发电技术是微型燃气轮机发电、风力发电、小型水力发电等分布式发电系统的重要发展方向,发电机与功率变换器是其不可缺少的两个关键部件。混合励磁同步发电机兼具永磁电机的高效率和电励磁电机励磁可控的优点,具有较宽的转速适应范围,在变速恒频分布式发电系统中具有良好的应用前景。矩阵变换器没有中间直流储能环节,可同时实现正弦化的输入电流与输出电压,具有结构紧凑、功率密度高的优点。因此,混合励磁同步发电机与矩阵变换器两者的结合,有利于提高发电系统的功率密度与可靠性,是变速恒频分布式发电的一种优化组合。
     本文的研究内容主要围绕基于矩阵变换器与混合励磁同步发电机组合的变速恒频分布式发电系统的控制技术展开,采用理论分析、仿真研究和实验验证相结合方法,重点对矩阵变换器的调制策略、并网控制技术、有源阻尼控制技术以及发电系统运行的闭环控制方法进行研究。
     矩阵变换器的调制策略是保障其稳定运行的基础,本文深入研究了矩阵变换器瞬时值双线电压合成调制策略,针对矩阵变换器输入输出扇区组合数较多,控制实现复杂的特点,提出了一种新型扇区划分规则,通过引入表征输入参考相电压极性的变量,将输入扇区的划分规律与输出扇区的划分规律有机结合,使输出电压扇区由6个减少为3个,从而将扇区组合数由传统的36种减少为18种,简化了瞬时值双线电压合成策略的数字化实现过程。
     矩阵变换器的并网控制是实现变速恒频分布式发电系统并网运行的前提。本文将矩阵变换器的瞬时值双线电压合成调制策略与基于电网电压定向控制的并网电流控制方法相结合,研究了矩阵变换器交交直接并网控制方法。为解决矩阵变换器实际开关调制过程中存在的窄脉冲对换流安全性与并网电流质量都影响较大的问题,本文在分析正常脉冲状态与窄脉冲状态基础上,提出了一种基于双边斩波与单边斩波相结合的混合斩波方式的窄脉冲补偿方法,对于正常脉冲状态采用双边斩波方式,对于窄脉冲状态采用单边斩波方式,较大程度地减少了影响换流安全性的窄脉冲数量。对于单边斩波模式下仍不能够完成四步换流过程的窄脉冲,根据伏秒积分平衡原则,在屏蔽窄脉冲的同时对其它脉冲的作用时间进行修正,从而保证输出电压在一个开关周期内的平均值不变,有效地减小了并网电流的畸变。
     针对矩阵变换器的输入源为发电机的运行情况,本文研究了利用发电机电枢绕组电感与外接电容构成LC滤波器的方案,减小了滤波器的体积重量。通过建立矩阵变换器系统的小信号状态方程,利用李亚普诺夫稳定性理论对输入滤波器、矩阵变换器、感性负载中各参数的变化对系统稳定性的影响进行了分析。在此基础上,为提高系统的稳定运行区域,解决系统内在的不稳定原因所起的电枢电流震荡问题,提出了一种基于谐波电流比例微分前馈控制的有源阻尼控制策略,提高了系统的稳定性,降低了谐波震荡分量。
     在混合励磁同步发电机与矩阵变换器组合的发电系统中,具有励磁电流和矩阵变换器调制比两个系统控制变量。针对这一优势,本文提出了应用于该发电系统的两级式闭环控制策略,前级利用励磁电流对发电机端电压进行闭环控制,降低了原动机转速波动对矩阵变换器输入输出性能的影响。后级矩阵变换器的变调制比闭环控制可根据不同的运行情况选择不同的闭环控制方式,在独立发电运行时,后级矩阵变换器采用输出电压瞬时值闭环控制方式;在并网发电运行时,后级矩阵变换器采用输出电流瞬时值闭环控制方式。矩阵变换器快速的电压电流调节能力,提高了发电系统的动态性能。
     最后,本文设计并实现了以数字信号处理器和可编程逻辑控制器为核心的数字化变速恒频分布式发电系统的实验平台,利用该平台验证了本文方法的可行性和正确性,并为进一步研究提供了可靠的实验条件。
Variable speed constant frequency (VSCF) generation technology becomes a main trend indistributed generating application such as micro-turbines generation, wind energy conversion, smallhydroelectric generation etc. Generator and power converter are two indispensable componentsapplied in VSCF generation system. Hybrid Excitation Synchronous Generator (HESG) combinespermanent-magnet and electrical excitation sources, and possesses the merits of high efficiency andcontrollable air-gap magnetic field. Thereby, HESG is a preferred candidate in VSCF generationsystem for a wide-speed range operation. Matrix Converter (MC) is a kind of AC/AC converter withthe features such as the compact size, high power density and the absence of the intermediate DC linkfor energy storage. It achieves sinusoidal input and output waveforms simultaneously. As a result, theintegration of the HESG and the MC is a favorable choice for VSCF generation system.
     This paper focuses on the control technologies of HESG-MC based variable speed distributedgeneration system. Several methods, such as theoretical analysis, digital simulation and experimentverification, are adopted in a series of studies on MC modulation scheme, grid connected control,active damping control and closed-loop control method for the HESG-MC generation system.
     The modulation scheme is the core of MC control strategies. In this paper, the double line-to-linevoltage synthesis (DLLVS) modulation scheme which is based on the instantaneous value of the inputline-to-line voltage is fully studied. As there are various combinations of input and output sectors inMC, a novel sector division regular is proposed to simplify the digital realization of DLLVS method.By introducing a parameter which indicates the pole of input determinate phase voltage, the inputsector division is interrelated with output sector division. A novel output sector division regular isproposed to reduce the output sectors from6to3, and also reduce number of sector combinationsfrom36to18.
     The grid-connected control for matrix converter is the premise for distributed variable speedgeneration. This paper studies the DLLVS modulation strategy and grid voltage oriented currentcontrol method for operation of grid-connected matrix converter. The problem of narrow pulses inMC is unavoidable because of existing modulation algorithm performance. Narrow pulses may affectcommutation safety and cause non-linearity distortion especially when MCs are applied as gridconnected converters. The problem of narrow pulse was analyzed in this paper. Based on the normaolpulse state and narrow pulse state, a dual side and single side hybrid chopping pattern is explored to compensate the narrow pluses, depressing the distortion in grid connected current effectively. Thismethod chooses dual side chopping pattern for normal pulses, and single side chopping pattern fornarrow pluses, largely reduced the numbers of narrow pluses which may cause commutation problems.For narrow pluses which still can not fininsh a whole four step commutation, a compenstation methodis adopted. The compensation guarantee the average value of output voltage do not change by updatedduty ratio.
     To obtain a good performance of the MC, it is necessary to design an input LC filter to smooththe input currents. The supply source of MC is a generator in this proposed generation system, so thearmature windings of the generator are used as the filter inductors. In this way the volume and weightof LC filters can be reduced. Additionally, the stability of MC system is concerned, by establishing thesmall signal molde for LC filter, matrix converter and inductive loads, the Lyapunov stability theory isutilitized to analyze the relation of parameter variation and system stable region. Based on thestability analysis, an active damping control with proportion and derivative fed forward algorithm isalso investigated for better performance and stability.
     In HESG-MC variable speed generation system, excitation current and modulation ratio are twocontrollable variables. Based on these variables, a two-stage closed loop control scheme is proposed.The preceding stage is a generator terminal voltage closed loop control, which is realized byregulating excitation current, reduced the influence of speed fluctuation on MC performance. Thebackward stage is an instantaneous value closed loop control of MC, and MC can choose currentclosed loop control or voltage closed loop control, whch based on the operation state of distributedgeneration system. The backward control can achieve fast output voltage and current adjustment andgood dynamic performance of generation system.
     Finally, the experimental platform of the HESG-MC variable speed distributed generation systemis constructed, and the software control core is realized in digital signal processor (DSP) and complexprogrammable logic device (CPLD). The proposed VSCF generating system topology and itsfeasibility are verified on the prototype. The platform also provides a reliable basis for future research.
引文
[1]刘铁男.中国能源发展报告2011[M].北京:经济科学出版社,2011.
    [2]中华人民共和国国家发展改革委员会.可再生能源发展“十一五”规划[Z].北京2008.
    [3]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4.
    [4]张晋华,蒋卫平,印永华,等.特高压规划电网安全稳定性研究[J].中国电机工程学报,2008,28(22):64-68.
    [5] EPRI. Distributed Energy Resources: Current Landscape and a Roadmap for theFuture[R].EPRI,Palo Alto,CA:2004.1008415.
    [6] World Alliance of Decentralized Energy. World survey of decentralized energy2004[R].World Alliance of Decentralized Energy,2004.
    [7]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-76.
    [8]胡学浩.分布式发电(电源)技术及其并网问题[J].电工技术杂志,2004,10:1-5.
    [9]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75,88.
    [10]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容[J].电力系统自动化,2006,30(3):38-43.
    [11]庄幸.《可再生能源法》推动可再生能源电力发展[J].中国电力,2007,40(2):85-88.
    [12]谢少军.飞机交直交变速恒频电源系统的数字仿真[D],南京航空航天大学,1995.
    [13]宋海辉.风力发电技术及工程[M].北京:中国水利水电出版社,2009.
    [14] Juan Manuel Carrasco, Leopoldo Garcia Franquelo, Jan T. Bialasiewicz, etal.Power-Electronic Systems for the Grid Integration of Renewable Energy Sources:ASurvey,IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [15] Puttgen Hans B.,Macgregor Paul R.,Lambert Frank C.Distributed generation:Semantichype or the dawn of a new area?[J].IEEE Power and Energy Magazine,2003,1(1):22-29.
    [16] Kramer W.,Chakraborty S.,Kroposki B.,et al.Advanced Power Electronic Interfacesfor Distributed Energy Systems[R].Technical Report NREL/TP-581-42672,2008.
    [17] Blaabjerg,F.,Teodorescu,R.,Liserre,M.,et al.Overview of Control and GridSynchronization for Distributed Power Generation Systems. IEEE Transactions onIndustrial Electronics,,2006,53(5):1398-1409.
    [18] Monica Chinchilla,Santiago Arnaltes,Juan Carlos Burgos.Control of Permanent-MagnetGenerators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid[J].IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [19] Andreas Petersson, Torbjorn Thiringer, Lennart Harnefors, et al. Modeling andExperimental Verification of Grid Interaction of a DFIG Wind Turbine [J]. IEEETransactions on Energy Conversion,2005,20(4):878-886.
    [20] Tapia,J.A,Leonardi,F.Lipo,T.A.A Design Procedure for a PM Machine with extendedfield weakening capability.Industry Applications Conference,2002:1928-1935.
    [21] Scott,W.G.Micro-turbine generators for distribution systems.IEEE Industry ApplicationsMagazine,1998,4(3):57–62.
    [22] Standards Coordinating Committee21.1547IEEE standard for interconnecting distributedresources with electric power systems[S].2003.
    [23] Lasseter R H.Microgrids[C]. IEEE Power Engineering Social Transmission DistributionConference,2002.
    [24] Staunton H.R.,Ozpineci B.Microturbine Power Conversion Technology Review[M].U.S.DEPARTMENT OF ENERGY under contract No.DE-AC05-00OR227258,2003
    [25]赵豫,于尔铿.新型分散式发电装置——微型燃气轮机[J].电网技术,2004,28(4):47-50.
    [26] Henk P,Frank F A van der Pijl,Gert-Jan de V,et al.Comparison of direct-drive and gearedgenerator concepts for wind turbines[J].IEEE Transactions on Energy Conversion,2006,21(3):725-733.
    [27] Walmir Freitas,Jose C.M.Vieira,Andre Morelato.Comparative Analysis BetweenSynchronous and Induction Machines for Distributed Generation Applications [J].IEEETransactions on Power System,2006,21(1):301-311.
    [28] Liuchen Chang, Quincy Wang. application of finite element method in design of a50kWdirect drive synchronous generator for variable speed wind turbines. IEEE CanadianConference on Electrical and Computer Engineering, Volume1,12-15May,2002,Page(s):106-111
    [29] Frederick B.McCarty.Hybrid excited generator with flux control of consequent-polerator.United States Patent:4656379.1985.
    [30]徐衍亮,唐任远.混合励磁同步电机的结构、原理及参数计算.微特电机,2000,28(1):16-18.
    [31]赵朝会,秦海鸿,严仰光.混合励磁同步电机发展现状及应用前景[J].电机与控制学报,2006,10(2):113-117.
    [32]朱孝勇,程明,赵文祥等.混合励磁电机技术综述与发展展望.电工技术学报,2008,23(1):30-39.
    [33]张卓然.新型混合励磁同步电机特性研究,[博士学位论文].南京:南京航空航天大学,2008.
    [34]赵朝会,秦海鸿,张卓然.混合励磁同步电机的结构及原理[M].北京:科学出版社,2011.
    [35]陈景.混合励磁同步电机及其起动技术研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [36]张卓然,严仰光,苏凯程.切向磁钢混合励磁同步电机空载磁路计算及三维场分析[J].中国电机工程学报,2008,30(28):84-89.
    [37] Zhe C,Josep M G,Frede B.A review of the state of the art of power electronics of windturbines[J].IEEE Transactions on power electronics,2009,24(8):1859-1875.
    [38] Hui L,Zhe C.Overview of different wind generator systems and their comparisons[J].IETRenewable Power Generation,2008,2(2):123-138.
    [39] Hansen L H,Helle L,Blaabjerg F,et al.Conceptual survey of generators and powerelectronics for wind turbines[R].Roskilde,Denmark:Risø National Labertory,2001.
    [40]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2002.
    [41]陈国呈,PWM逆变技术及其应用[M].北京:中国电力出版社,2007.
    [42] Seung-Ho S,Shin-il K,Nyeon-Kun H.Implementation and control of grid connectedAC-DC-AC power converter for variable speed wind energy conversion system[C].AppliedPower Electronics Conference and Exposition,IEEE Conference,2003,l(1):154-158.
    [43]李建林,高志刚,赵斌,等.直驱型风电系统大容量Boost PFC拓扑及控制方法[J].电工技术学报,2008,23(1):104-109.
    [44]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008.
    [45]许颇,张兴,张崇巍,等.基于BOOST变换器的小型风力机并网逆变控制系统设计[J].太阳能学报,2007,28(3):274-279.
    [46]何湘宁,陈阿莲.多电平变换器理论和应用技术[M].北京:机械工业出版社,2006.
    [47]康劲松,张烨.多电平变流器在风力发电系统中的应用[J].中国电机工程学报,2009,29(24):20-25.
    [48] Jih-Sheng L, Fang Zheng P. Multilevel converters-a new breed of powerconverters[J].IEEE Transactions on Industry Applications,1996,32(3):509-517.
    [49] S Alepuz,S Busquets-Monge,J Bordonau,et al.Interfacing renewable energy sources tothe utility grid using a three-level inverter[J].IEEE Transactions on Industrial Electronics,2006,53(5):1504-1511.
    [50] Gyugyi L,Pelly B.Static power frequency changers[M].New York:Wiley,1976.
    [51] M.Venturini.A New High Switching Rate Direct Frequency Converter,Italian Patent,1979,207:70-79.
    [52] M.Venturini,A.Alesina.The Generalized Transformer,A New Bidirectional SinusoidalWaveform Converter with Continuously Adjustable Input Power Factor,Proceedings ofPESC conference Record,1980:242-252.
    [53] G. Kastner, J. Rodriguez. A forced commutated cycloconverter with control of the sourceand load currents[C]. Proc. EPE'85,1985:1141-1146.
    [54] P. D. Ziogas, S. I. Khan, M. H. Rashid. Analysis and design of forced commutatedcycloconverter structures with improved transfer characteristics [J]. IEEE Transactions onIndustrial Electronics,1986,33(3):271-280.
    [55] A. Alesina,M. G. B. Venturini.Analysis and design of optimum-amplitude nine-switchdirect AC-AC converters [J]. IEEE Transactions on Power Electronics,1989,4(1):101-112.
    [56] L. Huber,D. Borojevic.Space vector modulator for forced commutated cycloconverters [C].Proc. IEEE IAS'89,1989:871-876.
    [57] L. Huber, D. Borojevic, N. Burany. Voltage space vector based PWM control of forcedcommutated cycloconverters [C]. Proc. IEEE IECON '89,1989:106-111.
    [58] L. Huber, D. Borojevic. Space vector modulation with unity input power factor for forcedcommutated cycloconverters [C]. Proc. IEEE IAS '91,1991:1032-1041.
    [59] D. Casadei, G. Grandi, G. Serra, etc. Space vector control of matrix converters with unityinput power factor and sinusoidal input/output waveforms [C]. Proc. EPE '93,1993:170-175.
    [60] J. Oyama, T. Higuchi, E. Yamada, et al. New control strategy for matrix converter [C]. Proc.PESC '89,1989,360-367.
    [61] Ishiguro A, Furuhashi T, Okuma S. A novel control method for forced commutatedcycloconverters using instantaneous values of input line-to-line voltages[J]. IEEETransaction. on Industrial Electronics,1991,38(3):166-172.
    [62] J.Oyama, X. Xia, T. Higuchi, et al. Displacement angle control for matrix converter [C].Proc. PESC '97,1997,1033-1039.
    [63] J.K.Kang,T.Kume,H.Hara,et al.Common-mode voltage characteristics of matrixconverter-driven AC machines[C].Industry Applications Conference,2005,4:2382-2387.
    [64] Jun Kang,N.Takada,E.Yamamoto,E.Watanabe.High power matrix converter for windpower generation applications[C].International Conference on Power Electronics andECCE Asia,2011(1):1331-1336.
    [65] Jun Kang,Eiji Yamamoto,Masaki Ikeda,et al.Medium-Voltage Matrix Converter DesignUsing Cascaded Single-Phase Power Cell Modules[J]. IEEE Trans. on IndustrialElectronics,2011,58(11):5007-5013.
    [66] S. Muller, U. Ammann and S. Rees, New time-discrete modulation scheme for matrixconverters[J].IEEE Transactions on Industrial Electronics,2005,52(6):1607-1615.
    [67] N. Burany. Safe control of four-quadrant switches[C].Proc. IEEE IAS '89,1989:1190-1194.
    [68] L. Empringham, P. W. Wheeler, J. C. Clare. Intelligent commutation of matrix converterbi-directional switch cells using novel gate drive technique[C].Proc. IEEE PESC'98,1998:707-713.
    [69] K. Sun, D. Zhou, L. Huang, et al. A novel commutation method of matrix converter fedinduction motor drive using RB-IGBT[J].IEEE Transactions on Industry Application,2007,43(3):777-786.
    [70] M. Ziegler, W. Hofmann. Implementation of a two steps commutated matrix converter [C].IEEE PESC,1999:175-180.
    [71]张晓锋,何必,林桦,等.矩阵变换器的一种安全换流策略[J].中国电机工程学报,2008,28(18):12-17.
    [72]林桦,佘宏武,何必,等.矩阵变换器的电压型两步换流策略[J].中国电机工程学报,2009,29(3):36-41.
    [73]王兴伟,林桦,佘宏武等.矩阵变换器电压型两步换流策略及实现[J].电工技术学报,2010,25(4):103-108.
    [74] D. Casadei, G. Serra, A. Tani and L. Zarri. Effects of input voltage measurement onstability of matrix converter drive system [J]. IEEE Proceedings Electric PowerApplications,2004,151(4):487-497.
    [75] D. Casadei, G. Serra, A. Tani,et al. Theoretical and experimental investigation on thestability of matrix converters[J].IEEE Transactions on Industry Application,2005,52(5):1409-1419.
    [76] F. R. Liu, C. Klumpner, F. Blaabjerg. Stability analysis and experimental evaluation of amatrix converter drive system.[C]. IECON2003(3):2059-2065.
    [77] C. A. J. Ruse, J. C. Clare, et al. Numerical approach for guaranteeing stable design ofpractical matrix converter drives systems. IECON2006(1):2630-2635.
    [78] Ikuya Sato, Jun-ichi Itoh, Hideki Ohguchi, et al. An Improvement Method of MatrixConverter Drives Under Input Voltage Disturbances [J]. IEEE Trans. on Power Electronics,2007,22(1):132-138.
    [79]粟梅,覃恒思,孙尧,等.矩阵变换器系统的稳定性分析[J].中国电机工程学报,2005,25(8):62-69.
    [80]粟梅,孙尧,覃恒思,等.一种改善矩阵变换器系统动态性能和稳定性的控制方法[J].电工技术学报,2005,20(12):18-23.
    [81] L.Zhang,C.Watthanasarn,W.Shepherd.Application of a matrix converter for the powercontrol of a variable-speed wind-turbine driving a doubly-fed inductiongenerator[C]. International Conference on Industrial Electronics, Control andInstrumentation,1997(2):906-911.
    [82] L.Zhang,C.Watthanasarn.A matrix converter excited doubly-fed induction machine asa wind power generator[C].International Conference on Power Electronics and VariableSpeed Drives,1998(1):532-537.
    [83] K.Ghedamsi,D.Aouzellag,E.M.Berkouk.Application of Matrix Converter for VariableSpeed Wind Turbine Driving a Doubly Fed Induction Generator[C]. InternationalSymposium on Power Electronics,Electrical Drives,Automation and Motion,2006(1):1201-1205.
    [84] D.Aouzellag,K.Ghedamsi,E.M.Berkouk.Network Power Flow Control of VariableSpeed Wind Turbine[C].Power Engineering,Energy and Electrical Drives,2007(1):435-439.
    [85] R.Cardenas,R.Pena,G.Tobar,et al.Analytical and experimental evaluation of a WECSbased on a Doubly Fed Induction Generator fed by a matrix converter[C].InternationalSymposium on Industrial Electronics,2008(1):2438-2443.
    [86] R.Cardenas,R.Pena,G.Tobar,et al.Stability Analysis of a Wind Energy ConversionSystem Based on a Doubly Fed Induction Generator Fed by a Matrix Converter[J].IEEETransactions on Industrial Electronics,2009,56(10):4194-4206.
    [87]黄科元,贺益康,卞松江,矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报,2002,22(11):100-105.
    [88]黄科元,矩阵式变换器的空间矢量调制及其应用研究[博士学位论文],杭州,浙江大学,2005.
    [89]汤宁平,方旭阳,恒频采样电流跟踪控制型矩阵变换器的设计及应用,福州大学学报,2000,1(28):38-43.
    [90]汤宁平,矩阵变换器供电的交流励磁风力发电系统研究[博士学位论文],福州,福州大学,2005.
    [91]李辉,阳春华,邓文浪,马学亮.矩阵变换器励磁的双馈型发电机软并网控制[J].中国电机工程学报,2010,30(15):75-79.
    [92]李辉,基于矩阵变换器励磁的双馈型风力发电机并网运行控制策略研究[博士学位论文],长沙,中南大学,2011.
    [93] K.K.Mohapatra,Philip Jose,Abhishek Drolia,et al.A Novel Carrier-Based PWM Schemefor Matrix Converters that is Easy to Implement[C]. Power Electronics SpecialistsConference,2005(1):2410-2414.
    [94] S.Thuta,K.K Mohapatra,N.Mohan,Matrix converter over-modulation using carrier-basedcontrol: Maximizing the voltage transfer ratio[C]. Power Electronics SpecialistsConference,2008(1):1727-1733
    [95] S.Thuta,K.K Mohapatra,N.Mohan.Speed Sensor-less Direct Power Control of a MatrixConverter Fed Induction Generator for Variable Speed Wind Turbines[C].InternationalConference on Power Electronics, Drives and Energy Systems,2006(1):1-6.
    [96] S.M.Barakati,M.Kazerani, X.Chen.A new wind turbine generation system basedon matrix converter[C].Power Engineering Society General Meeting,2005(3):2083-2089.
    [97] S.M.Barakati,M.Kazerani,J.D.Aplevich.Maximum Power Tracking Control fora Wind Turbine System Including a Matrix Converter[J].IEEE Transactions on EnergyConversion,2009,24(3),705-713.
    [98] R.Cardenas,R.Pena,Patrick Wheeler,et al.Control of the Reactive Power Suppliedby a WECS Based on an Induction Generator Fed by a Matrix Converter[J] IEEETransactions on Industrial Electronics,2009,56(2):429-438.
    [99] R.Cardenas,R.Pena,J.Clare,et al.Control of the Reactive Power Supplied by a MatrixConverter[J].IEEE Transactions on Energy Conversion,2009,24(1):301-303.
    [100] R.Cardenas,R.Pena,J.Clare,et al.Analytical and Experimental Evaluation ofa WECS Based on a Cage Induction Generator Fed by a Matrix Converter [J]. IEEETransactions Energy Conversion,2011,26(1):204-215.
    [101] V.Kumar,R.R.Joshi,R.C.Bansal.Optimal Control of Matrix-Converter-BasedWECS for Performance Enhancement and Efficiency Optimization[J].IEEE Transactionson Energy Conversion,2009,24(1):264-273.
    [102]罗伟斌,矩阵变换器在变速恒频异步风力发电中应用研究[硕士学位论文],湘潭,湘潭大学,2006.
    [103] Jun Kang,Noriyuki Takada,Eiji Yamamoto,et al.High Power Matrix Converter forWind Power Generation Applications[C].International Conference on Power Electronics-ECCE Asia,2011(1):1331-1331
    [104]关英,采用矩阵变换器的直驱式永磁风力发电机运行控制研究与实现[硕士学位论文],天津,天津大学,2008.
    [105]孙尧,矩阵变换器若干关键问题研究[博士学位论文],长沙,中南大学,2010.
    [106] D.Katsis,P.Zanchetta,P.W.Wheeler,et al.A Three-Phase Utility Power SupplyBased on the Matrix Converter[C].IEEE Industrial Application Society Annual Meeting,2004(3):1447-1451.
    [107] P.Zanchetta,J.C.Clare,P.W.Wheeler,et al.Control Design of a Three-PhaseMatrix Converter Mobile AC Power Supply Using Genetic Algorithms[C]. PowerElectronics Specialists Conference,2005(1):2370-2375.
    [108] P.W.Wheeler,P.Zanchetta,J.C.Clare,et al.A Utility Power Supply Basedon a Four-Output Leg Matrix Converter[J].IEEE Transactions on Industry Applications,2008,44(1):174-186.
    [109] Jie Chang,Anhua Wang.Experimental Development and Evaluations of VF-InputHigh-Frequency AC–AC Converter Supporting Distributed Power Generation[J].IEEETrans. on Power Electronics,2004,19(5):1214-1225.
    [110] H.Nikkhajoei,M.R.Iravani.A matrix converter based micro-turbine distributedgeneration system[J].IEEE Transactions on Power Delivery,2005,20(3):2182-2192.
    [111] H.Nikkhajoei,A.Tabesh,R.Iravani.Dynamic model of a matrix converter forcontroller design and system studies[J].IEEE Transactions on Power Delivery,2006,21(2):744-754.
    [112] Fang Gao,M.R.Iravani.Dynamic Model of a Space Vector Modulated MatrixConverter[J].IEEE Transactions on Power Delivery,2007,22(3):1696-1705.
    [113] Fang Gao,M.R.Iravani.Modeling and Control Design of a Micro-Turbine GeneratorUnit[C].Power Engineering Society General Meeting,2007(1):1-8.
    [114] H.Nikkhajoei,M.R.Iravani.Steady-State Model and Power Flow Analysis ofElectronically-Coupled Distributed Resource Units[J]. IEEE Transactions on PowerDelivery,2007,22(1):721-728.
    [115]穆新华,庄心复.交-交型矩阵变换器的双电压控制原理及波形合成.南京航空航天大学学报.1997,29(2):151-157
    [116]陈希有,丛树久,陈学允.双电压合成矩阵变换器特性与电压扇区的关系分析[J].中国电机工程学报,2001,21(9):63-67.
    [117]穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析.电工技术学报.1998,13(1):46-50
    [118]郭有贵.矩阵变换器双电压合成定理及其自动调节能力研究[J].中国电机工程学报,2006,26(21):71-75.
    [119]王毅,陈希有,徐殿国.双电压合成矩阵变换器闭环控制的研究[J].中国电机工程学报,2002,22(1):74-79.
    [120]仇红奎,周波,史明明.矩阵变换器双电压简化控制策略[J].中国电机工程学报,2008,28(36):23-27.
    [121] Hidenori Hara, Eiji Yamamoto, Jun-Koo Kang, Tsuneo Kume, Improvement of OutputVoltage Control Performancefor Low-Speed Operation of Matrix Converter[J]. IEEE Trans.on Power Electronics,2005,20(6):1372-1378.
    [122]何必,林桦,佘宏武,等.矩阵变换器在窄脉冲作用下的性能改善.[J].电工技术学报,2009,29(27):42-47.
    [123]何必,林桦,佘宏武,等.矩阵变换器输出波形畸变分析及改善方法[J].电工技术学报,2010,30(12):28-35.
    [124]孙尧,粟梅,王辉,等.双级矩阵变换器的非线性分析及其补偿策略[J].电工技术学报,2010,30(12):20-27.
    [125]马星河,谭国俊,汪旭冬等.一种改进的矩阵变换器双电压合成控制策略[J].电工技术学报,2009,24(4):126-132,138.
    [126]佘宏武,林桦,王兴伟等.矩阵变换器的阻尼输入滤波器设计[J].电源学报,2011,1(33):19-25.
    [127] She Hongwu,Lin Hua, Wang Xingwei, et al. Damped Input Filter Design of MatrixConverter[C]. International Conference on Power Electronics and Drive Systems (PEDS),2009,672-677.
    [128]孙凯,周大宁,梅杨.矩阵式变换器技术及其应用[M].北京:机械工业出版社,2007.
    [129]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1999.
    [130] Fang Zheng Peng; Jih-Sheng Lai. Generalized instantaneous reactive power theory forthree-phase power systems [J]. IEEE Transactions on Instrumentation and Measurement,1996:293-297.
    [131]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-11.
    [132]胡寿松.自动控制原理.北京:科学出版社,2007.
    [133]陈瑶.直驱型风力发电系统全功率并网变流技术的研究,[博士学位论文].北京:北京交通大学,2008.
    [134] J. K. Steinke, Use of an LC Filter to Achieve a Motor-friendly Performance of thePWM Voltage Source Inverter[J]. IEEE Trans. on Energy Conversion,1999,14(3):649-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700