用户名: 密码: 验证码:
高速永磁无刷直流电机电磁场理论以及无位置传感器技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁无刷直流电机,由于高功率密度,高效率以及控制简单等特点,是目前高速电机研究领域中的热点。其广泛应用于高速电主轴驱动系统和涡轮机械系统,在航空航天、车辆、机械加工以及电子制造等领域具有很高的应用价值。高速永磁无刷直流电机在高速运行中的关键问题主要体现在离心力和温升对永磁体材料机械性能和磁性能的冲击,位置传感器无法满足高速运行的要求以及接触性轴承极限转速的限制。针对以上问题,众多学者展开了方方面面的研究。研究方向主要有转子涡流损耗分析、转子动力学分析、转子应力分析、无位置传感器技术以及轴承支撑技术。
     本文针对高速永磁无刷直流电机关键问题中的电磁场理论和无位置传感器技术展开了研究,主要工作如下:
     首先,本文在现有文献的基础上,在似恒电磁场理论体系下进一步完善了高速永磁无刷直流电机空载磁场数学模型,电枢电磁场数学模型以及负载电磁场数学模型(以二二导通方式为例)。其中,考虑速度效应和涡流效应,以静止坐标系为参照,基于双重傅氏级数,在复数域内采用谐性分析方法,通过求解扩散方程解析出了电机内的瞬态电磁场,为转子涡流损耗的建模与分析奠定了理论基础。该数学模型与有限元分析结果进行了对比,证实了所建立的电磁场数学模型的合理性。
     其次,本文在所建立的电机电磁场数学模型和坡印亭定理的基础上建立了转子涡流损耗数学模型,并分析了电流各次谐波、材料特性、结构参数对转子涡流损耗以及转子涡流损耗分配规律的影响。提出了以减小转子涡流损耗为目标的高速永磁无刷直流电机的本体优化设计方案。该数学模型与有限元分析结果进行了对比,证实了所建立的转子涡流损耗数学模型的合理性。
     最后,本文研究并分析了现有的无位置传感器技术,针对传统无位置传感器技术的不足,和高速永磁无刷直流电机对无位置传感器技术的新要求,提出了一种基于坐标变换的无位置传感器技术。该技术与三次谐波法的无位置传感技术相比,具有信噪比高、不受电机本体结构影响等特点。此外,该技术由于利用正交坐标变换的连续性,可实时估算电机的转速信息,与传统转速计算方法相比具有较高的快速性。
     在以上理论分析的基础上,本文设计了一台额定转速60krpm,额定功率2.5kW的原理样机,并进行了空载和负载实验,对空载损耗、空载转矩、机械特性和工作特性进行了分析,并进行了本文所提出的无位置传感器技术的实验验证。
High speed motors become a key technology in many applications, and is the hot issue in thefield of high speed motors because of its high power density, high efficiency, simple control and so on.The high-speed BLDC motor drive system has been widely used in the spindle drive system and theturbine mechanical system, such as aerospace, automotive, mold, semiconductor processing,electronic manufacturing, turbocharger, turbo air compressor and gas turbine generator etc. The keyproblems of the high speed BLDC motor are reflected in that the centrifugal force and the temperatureraise impact the mechanical properties and magnetic properties, position sensor can’t meet therequirement of high speed running and the contact bearing limit the highest speed. In view of theabove problems, many scholars have launched the aspects of the research that are the rotor eddycurrent loss analysis, rotor dynamics analysis, rotor stress analysis, sensorless technology and bearingsupport technology.
     This paper does research about the rotor eddy current loss analysis and the sensorless technology.
     Firstly, this paper establishes the BLDC motor electromagnetic field mathematical modelsincludes no-load magnetic field model, the armature electromagnetic field mathematical model andthe load electromagnetic field mathematical model, on the base of the existing literature. Thereference of this electromagnetic field mathematical model is the static coordinate system. It’s aharmonic analysis method, based on double Fourier series in the complex domain and get theelectromagnetic field distribution by solve the diffusion equation derived from Maxwell equations.The proposed models are general that means they are applicable to different motor configurations.Analytically calculated field distributions from both models are compared with finite elementpredictions for a slotted motor having a radial magnetized rotor and overlapping stator windings.
     Secondly, this paper establishes the rotor eddy current loss analysis model based on theelectromagnetic field mathematical model and Poynting’s theorem. According to this model, theinfluence factors of the rotor eddy current loss, such as the material electromagnetic characteristics,the width of slot opening and the copper shielding layer thickness, are researched. The research resultslaid theoretical foundation for the optimal design in order to reduce the rotor eddy current loss. Theanalytically calculated results are compared with the finite element simulation results. The comparedresults verify the correctness of the mathematical model.
     At last, this paper presents a novel sensorless technology in high-speed BLDC motor control demand. Based on the characteristics of the back electromotive force (EMF), the rotor position signalswould be constructed. It is intended to construct these signals, which makes the phase differencebetween the constructed signals and the back EMFs be controllable. Then, the rotor position error canbe compensated by controlling the phase difference angle in real time, and the opening angle can becontrol according to the control demand. Furthermore, a new method was proposed in this paper forthe permanent magnet brushless dc (BLDC) motor speed estimation. Based on the orthogonalcoordinate transformation, two orthogonal sine and cosine waves can be constructed from thetrapezoidal back electromotive force (EMF). It brings the opportunity for the rotation speedestimation. The proposed speed estimation method does not need the timer to calculate the speed,which is necessary for the traditional speed calculation, and not to be based on the assumed conditionthat the rotation speed does not change significantly over a certain period of time.
     Based on the theoretical analysis, this paper design the high speed BLDC motor whose ratedspeed is60krpm and rated power is2.5kW. The prototype is tested by no-load experiment and loadexperiment. The mechanical properties and working properties of this prototype is obtained based onthe test data, and the proposed sensorless technology is verified.
引文
[1] I. Takahashi, T. Koganezawa, G. Su, and K. Ohyama.A super high speed PM motor drive systemby a quasi-current source inverter [J].IEEE trans. on Ind. Appl,1994,30(3):683-690.
    [2] D. E. Hesmondhalgh and D. Tipπng.Design high-speed permanent magnet motor[C].in Proc.IEE Colloq. Permanent MagnetMach.,1998.
    [3] I. Kolmanovsky and A. G. Stefanopoulou. Evaluation of turbocharger power assist system usingoptimal control techniques[C].Conference of SAE,2000.
    [4] I. Kolmanovsky and A. G. Stefanopoulou.Evaluation of turbocharger power assist system usingoptimal control techniques.The conference of SAE.2000.
    [5] P. Tsao, M. Senesky, and S. R. Sanders.An integrated flywheel energy storage system withhomopolar inductor motor/generator and high-frequency drive [J].IEEE Trans. Ind. Appl.,2003,39(6):1710-1725.
    [6] J. R. Bumpy, E. S. Spooner, J. Carter, H. Tennant, G. G. Mego, G. Dellora, W. Gstrein, H. Sutter,and J. Wagner.Electrical machines for use in electrically assisted turbochargers[C].IEEEconference of PEMD,2004.
    [7] J. R. Bumpy, E. S. Spooner, J. Carter, H. Tennant, G. G. Mego, G. Dellora, W. Gstrein, H. Sutter,and J. Wagner.Electrical machines for use in electrically assisted turbochargers.The IEEEconference of PEMD.2004.
    [8] J. R. Bumpy,E. S. Spooner,J. Carter, H. Tennant,G. G. Mego,G. Dellora,W. Gstrein,H. Sutterand J. Wagner.Electrical machines for use in electrically assisted turbochargers[C].in Proc.Power Electron.,Mach,Drives Conf.,2004.
    [9] A. Arkkio,T. Jokinen and E. Lantto.Induction and permanent-magnet synchronous machines forhigh-speed applications[C].The Conference of ICEMS.2005.
    [10]J. Oyama,T. Higuchi,T. Abe,K. Shigematsu and R. Moriguchi.The development of small sizeultra-high speed drive system.In Proc. Power Convers. Conf.,2007.
    [11]http://www.miti.cc/.
    [12]http://www.turbos.bwauto.com/products/eBooster.aspx.
    [13]http://www.westwind-airbearings.com/specialist/waferGrinding.html.
    [14]http://www.westwind-airbearings.com/pcb/overview.html.
    [15]http://www.circuitree.com.
    [16]http://www.sirona.com/ecomaXL/index.php.
    [17]http://www.miti.cc/.
    [18]http://www.calnetix.com/highspeed.cfm.
    [19]A. H. Epstein.Millimeter-scale,MEMS gas turbine engines.In Proc. ASME Turbo Expo.,2003.
    [20]C. Zwyssig,J. W. Kolar and S. D. Round.Megaspeed Drive Systems:Pushing Beyond1Millionr/min[J].IEEE/ASME Transactions on Mechatronics,2009,14(5):564-574.
    [21]张殿海.高速永磁电机流体场分析与温升计算[硕士学位论文].沈阳:沈阳工业大学.2009.
    [22]徐云龙.高速永磁电机损耗计算与热分析[硕士学位论文].沈阳:沈阳工业大学.2009.
    [23]梅磊.混合型磁悬浮轴承基础研究,[博士学位论文].南京:南京航空航天大学,2009.
    [24]孙晓光,王凤翔,徐云龙,邢军强.高速永磁电机铁耗的分析和计算[J].电机与控制学报.2010,14(9):26~30.
    [25]邢军强,王凤翔,张殿海,孙晓光.高速永磁电机转子空气摩擦损耗研究[J].中国电机工程学报.2010,30(27):14~19.
    [26]许实章.交流电机的绕组理论[M].北京:机械工业出版社,1985.
    [27]Z. Q. Zhu,D. Howe,E. Bolte and B. Ackermann.Instantaneous magnetic field distribution inbrushless permanent magnet DC motors. I. Open-circuit field. IEEE Transactions onMagnetics.1993,vol.29:124-135.
    [28]Z. Q. Zhu and D. Howe.Instantaneous magnetic field distribution in brushless permanent magnetDC motors. II. Armature-reaction field.IEEE Transactions on Magnetics,vol.29:136-142,1993.
    [29]Z. Q. Zhu and D. Howe.Instantaneous magnetic field distribution in brushless permanent magnetDC motors. III. Effect of stator slotting.IEEE Transactions on Magnetics,vol.29:(143-151),1993.
    [30]Z. Q. Zhu and D. Howe.Instantaneous magnetic field distribution in permanent magnet brushlessDC motors. IV. Magnetic field on load.IEEE Transactions on Magnetics,vol.29:152-158,1993.
    [31]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998.
    [32]Z. Q. Zhu,D. Howe and C. C. Chan.Improved analytical model for predicting the magnetic fielddistribution in brushless permanent-magnet machines.IEEE Transactions on Magnetics.vol.38:229-238,2002.
    [33]Atallah K,Howe D,Mellor P.H and Stone D A.Rotor loss in permanent magnet brushless ACmachines[J].IEEE Trans on Ind. Appl,2000,36(6):1612~1618.
    [34]H Polinder and M J Hoeijmakers.Effect of a shielding cylinder on the rotor losses in arectifier-loaded PM machine[C].The IEEE Meeting of IAS,2000.
    [35]Z. Q. Zhu,K. Ng, N. Schofield and D. Howe.Improved analytical modelling of rotor eddycurrent loss in brushless machines equipped with surface-mounted permanent magnets.IEEProceedings of Electric Power Applications.vol.151:641-650,2004.
    [36]H Toda,X Zhenπng,W Jiabin,K Atallah and D Howe.Rotor eddy-current loss in permanentmagnet brushless machines[J].IEEE Transactions on Magnetics,2004,40(4):2104~2106.
    [37]D. Ishak,Z. Q. Zhu and D. Howe.Eddy-current loss in the rotor magnets of permanent-magnetbrushless machines having a fractional number of slots per pole.IEEE Transactions onMagnetics.2005,vol.41:2462-2469.
    [38]D Ishak,Z Q Zhu and D Howe.Eddy-current loss in the rotor magnets of permanent-magnetbrushless machines having a fractional number of slots per pole[J].IEEE Transactions onMagnetics,2005,41(9):2462~2469.
    [39]M Nakano. H Kometani and M Kawamura.A study on eddy-current losses in rotors of surfacepermanent-magnet synchronous machines[J].IEEE Transactions on Industry Applications,2006,42(2):429~435.
    [40]Z. Fengzheng,S. Jianxin,F. Weizhong and L. Ruiguang.Study of Retaining Sleeve andConductive Shield and Their Influence on Rotor Loss in High-Speed PM BLDC Motors[J].IEEETransactions on Magnetics.2006,42:3398-3400.
    [41]M R Shah and L Sang Bin.Raπd analytical optimization of eddy-current shield thickness forassociated loss minimization in electrical Machines[J]. IEEE Transactions on IndustryApplications,2006,42(3):642~649.
    [42]Z Fengzheng,S Jianxin,F Weizhong and L Ruiguang.Study of Retaining Sleeve and ConductiveShield and Their Influence on Rotor Loss in High-Speed PM BLDC Motors[J]. IEEETransactions on Magnetics,2006,42(10):3398~3400.
    [43]M. Markovic and Y. Perriard.An Analytical Determination of Eddy-Current Losses in aConfiguration With a Rotating Permanent Magnet.IEEE Transactions on Magnetics.2007,vol.43:3380-3386.
    [44]周凤争,沈建新,林瑞光.从电机设计的角度减小高速永磁电机转子涡流损耗[J].浙江大学学报工学版.2007,41(9):1587~1591.
    [45]周凤争,沈建新,王凯.转子结构对高速无刷电机转子涡流损耗的影响[J].浙江大学学报工学版.2008,42(9):1587~1590.
    [46]周凤争.高速永磁无刷直流电机转子涡流损耗的研究[博士学位论文].浙江:浙江大学,2008.
    [47]A M El-Refaie,M R Shah,Q Ronghai and J M Kern.Effect of Number of Phases on Losses inConducting Sleeves of Surface PM Machine Rotors Equipped With Fractional-Slot ConcentratedWindings[J].IEEE Transactions on Industry Applications,2008,44(5):1522~1532.
    [48]A M El-Refaie,M R Shah,Q Ronghai and J M Kern.Effect of Number of Phases on Losses inConducting Sleeves of Surface PM Machine Rotors Equipped With Fractional-Slot ConcentratedWindings[J].IEEE Transactions on Industry Applications,2008,44(5):1522~1532.
    [49]M Markovic and Y Perriard.Analytical Solution for Rotor Eddy-Current Losses in a SlotlessPermanent-Magnet Motor: The Case of Current Sheet Excitation[J].IEEE Transactions onMagnetics,2008,44(3):386-393.
    [50]P Jae-Do,C Kalev and H F Hofmann.Analysis and Reduction of Time Harmonic Rotor Loss inSolid-Rotor Synchronous Reluctance Drive[J].IEEE Transactions on Power Electronics,2008,23(2):985~992.
    [51]T Okitsu,D Matsuhashi and K Muramatsu.Method for Evaluating the Eddy Current Loss of aPermanent Magnet in a PM Motor Driven by an Inverter Power Supply Using Coupled2-D and3-D Finite Element Analyses[J].IEEE Transactions on Magnetics,2009,45(10):4574~4577.
    [52]M R Shah and A M El-Refaie.Eddy-Current Loss Minimization in Conducting Sleeves ofSurface PM Machine Rotors With Fractional-Slot Concentrated Armature Windings by OptimalAxial Segmentation and Copper Cladding[J].IEEE Transactions on Industry Applications,2009,45(2):720~728.
    [53]M R Shah and L Sang Bin.Optimization of Shield Thickness of Finite-Length Solid Rotors forEddy-Current Loss Minimization[J].IEEE Transactions on Industry Applications,2009,45(6):1947~1953.
    [54]K Yamazaki,M Shina,Y Kanou,M Miwa and J Hagiwara.Effect of Eddy Current LossReduction by Segmentation of Magnets in Synchronous Motors: Difference Between Interior andSurface Types[J].IEEE Transactions on Magnetics,2009,45(10):4756~4759.
    [55]N Bianchi,S Bolognani and E Fornasiero.An Overview of Rotor Losses Determination inThree-Phase Fractional-Slot PM Machines[J].IEEE Transactions on Industry Applications,2010,46(6):2338~2345.
    [56]W Jiabin,K Atallah,R Chin,W M Arshad and H Lendenmann.Rotor Eddy-Current Loss inPermanent-Magnet Brushless AC Machines[J].IEEE Transactions on Magnetics,2010,46(7):2701~2707.
    [57]K Yamazaki,Y Kanou,Y Fukushima,S Ohki,A Nezu,T Ikemi and R Mizokami.Reductionof Magnet Eddy-Current Loss in Interior Permanent-Magnet Motors With ConcentratedWindings[J].IEEE Transactions on Industry Applications,2010,46(6):2434~2441.
    [58]Y Amara,P Reghem and G Barakat.Analytical Prediction of Eddy-Current Loss in ArmatureWindings of Permanent Magnet Brushless AC Machines[J].IEEE Transactions on Magnetics,2010,46(8):3481~3484.
    [59]Z. J. Liu, S. X. Chen, and Q. D. Zhang.Design of brushless DC sπndle motors for high speedHDD recording [J].IEEE Transactions on Magnetics,1998,34:483-485.
    [60]方瑞明.高速变频电机设计与电机智能设计方法的研究[博士学位论文].南京:东南大学.2002.
    [61]李冰,邓智泉,严仰光.高速异步电机设计的关键技术.微特电机.2002.
    [62]J D Ede,Z Q Zhu and D Howe.Rotor resonances of high-speed permanent-magnet brushlessmachines[J].IEEE Transactions on Industry Applications,2002,38(6):1542~1548.
    [63]王继强,王凤翔,鲍文博,关恩录.高速永磁电机转子设计与强度分析[J].中国电机工程学报.2005,,25(15):140~145.
    [64]范冬,杨艳,邓智泉,王晓琳.无轴承高速开关磁阻电机设计中的关键问题.电机与控制学报.2006,10(6):547~552.
    [65]唐任远.现代永磁电机[M].北京:机械工业出版社,2006.
    [66]王凤翔.高速电机的设计特点及相关技术研究[J].沈阳工业大学学报.2006.
    [67]黄允凯,余莉,胡虔生.高速永磁电动机设计的关键问题.微电机.2006,39(8):6~9.
    [68]王继强.高速永磁电机的机械和电磁特性研究[博士学位论文].沈阳:沈阳工业大学,2006.
    [69]王继强,王凤翔,宗鸣.高速电机磁力轴承-转子系统临界转速的计算[J].中国电机工程学报.2007,27(27):94-98.
    [70]K. Wang, J. Shen, F. Zhou, and W. Fei.Design aspects of a high-speed sensorless brushless dcmotor using third harmonic back-emf for sensorless control [J].Journal of Applied Physics,2008.
    [71]王继强,王凤翔,孙晓光.高速永磁发电机的设计与电磁性能分析[J].中国电机工程学报.2008,28(30):105~110.
    [72]刘闯,朱旭勇,卿湘文.开关磁阻电机转子动力学建模与分析.中国电机工程学报.2008,28(3):83~89.
    [73]Z Kolondzovski,P Sallinen,A Belahcen and A Arkkio.Rotordynamic analysis of different rotorstructures for high-speed permanent-magnet electrical machines[J].IET Transactions on ElectricPower Applications,2009,4(7):516~524.
    [74]H Do-Kwan,W Byung-Chul and K Dae-Hyun.Rotordynamics of120000r/min15kW UltraHigh Speed Motor[J].IEEE Transactions on Magnetics,2009,45(6):2831~2834.
    [75]周强.高速开关磁阻电机的关键技术研究与实践[博士学位论文].南京:南京航空航天大学,2009.
    [76]周强,刘闯,朱学忠,刘迪吉.超高速开关磁阻电动机设计.中国电机工程学报.2009,29(9):87~92.
    [77]王天煜.高速永磁电机转子综合设计方法及动力学特性的研究[博士学位论文].沈阳:沈阳工业大学,2010.
    [78]K. Wang,M. J. Jin,J. X. Shen and H. Hao.Study on rotor structure with different magnetassembly in high-speed sensorless brushless DC motors [J]. Journal of Electric PowerApplications,2010,4(4):241-248.
    [79]S. Ogasawara and H. Akagi.An approach to position sensorless drive for brushless DCmotors.IEEE Transactions on Industry Applications,1991,vol.27:928-933.
    [80]J. X. Shen and Y. B. Liu.Microcomputer based position-sensorless drive for brushless dcmotor.in Proc. Int. Power Electron. Motion control Conf.,1994,402-407.
    [81]J. Doo-Hee and H. In-Joong.Low-cost sensorless control of brushless DC motors using afrequency-independent phase shifter.IEEE Transactions on Power Electronics,vol.15:744-752,2000.
    [82]夏长亮,文德,范娟,等.基于RBF神经网络的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(3):26-29.
    [83]C. Kuang-Yao and T. Ying-Yu.Design of a sensorless commutation IC for BLDC motors.IEEETransactions on Power Electronics,2003,vol.18:1365-1375.
    [84]Jianwen. Shao, Dennis. Nolan, Maxime. Teissier and David. Swanson. A novelmicrocontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuelpumps.IEEE Trans on Industry Applications,November/December2003,vol.39:1734-1740.
    [85]K. Tae-Hyung and M. Ehsani.An error analysis of the sensorless position estimation for BLDCmotors.38th IAS Annual Meeting in Industry Applications Conference,2003,vol.1:611-617.
    [86]J. X. Shen and K. J. Tseng.Analyses and compensation of rotor position detection error insensorless PM brushless DC motor drives.IEEE transactions on Energy conversion,2003,vol.18:87-93.
    [87]S. Gui-Jia and J. W. McKeever.Low-cost sensorless control of brushless DC motors withimproved speed range.IEEE Transactions on Power Electronics,2004,vol.19:296-302.
    [88]韦鲲,任军军,张仲超.三次谐波检测无刷直流电机转子位置的研究[J].中国电机工程学报,2004,24(5):163-167.
    [89]Tae-Hyung. Kim and Mehrdad. Ehsani.Sensorless control of the BLDC motors from near-zero tohigh speeds.IEEE Trans on Power Electronics,November2004,vol.19:1635-1645.
    [90]K. Tae-Hyung,L. Hyung-Woo and E. Mehrdad.State of the art and future trends in positionsensorless brushless DC motor/generator drives.IECON in Industrial Electronics Society,2005.
    [91]L. Seung-Jun,Y. Yong-Ho and W. Chung-Yuen.Precise speed control of the PM brushless DCmotor for sensorless drives.ICEMS2005,2005,Vol.1:290-295.
    [92]J. X. Shen and S. Iwasaki.Sensorless control of ultrahigh-speed PM brushless motor using PLLand third harmonic back EMF.IEEE Trans on Industrial Electronics,April2006,vol.53:421-428.
    [93]Jianwen. Shao.An improved microcontroller-based sensorless brushless DC (BLDC) motor drivefor automotive applications.IEEE Trans on Inductry Applications,September/October2006,vol.42:1216-1221.
    [94]G. H. Jang and M. G. Kim.Optimal commutation of a BLDC motor by utilizing the symmetricterminal voltage.IEEE Trans on Magnetics,October2006,vol.42:3473-3475.
    [95]张磊,瞿文龙,陆海峰,等.一种新颖的无刷直流电机无位置传感器控制系统[J].电工技术学报,2006,21(10):26-30.
    [96]C. Wei and X. Changliang.Sensorless Control of Brushless DC Motor Based on FuzzyLogic.WCICA2006,2006,6298-6302.
    [97] P. Byoung-Gun,K. Tae-Sung,R. Ji-Su and H. Dong-Seok.Fuzzy back EMF observer forimproving performance of sensorless brushless DC motor drive.APEC '06,Twenty-FirstAnnual IEEE in Applied Power Electronics Conference and Exposition,2006.
    [98] K. Tae-Sung,R. Ji-Su and H. Dong-Seok.Unknown input observer for a novel sensorless driveof brushless DC motors.Twenty-First Annual IEEE in Applied Power Electronics Conferenceand Exposition,APEC '06,2006.
    [99] Y. Yong-Ho,L. Tae-Won,P. Sang-Hun,L. Byoung-Kuk and W. Chung-Yuen.New Approachto Rotor Position Detection and Precision Speed Control of the BLDC Motor.IECON2006-32nd Annual Conference on,2006.
    [100] Jang G H,Kim M G.Optimal commutation of a BLDC motor by utilizing the symmetricterminal voltage [J].IEEE Trans. on Magnetics,2006,42(10):3473-3475.
    [101] L. Dong-Myung and L. Woo-Cheol.Analysis of Relationship Between Abnormal Current andPosition Detection Error in Sensorless Controller for Interior Permanent-Magnet Brushless DCMotors.IEEE Transactions on Magnetics,2008,vol.44:2074-2081.
    [102] L. Zicheng,C. Shanmei,Q. Yi, and C. Kai.A novel line-to-line back EMF calculation forsensorless brushless DC motor drives.ICEMS2008,International Conference on,2008.
    [103]史婷娜,吴曙光,方攸同,等.无位置传感器永磁无刷直流电机的起动控制研究[J].中国电机工程学报,2009,29(6):111-116.
    [104] Wu Yuanyuan,Deng Zhiquan,Wang Xiaolin,et al.Position sensorless control based oncoordinate transformation for brushless DC motor drives[J].IEEE Transactions on PowerElectronics,2010,25(9):2365-2371.
    [105]王凯.三次谐波法无传感器控制的高速永磁无刷直流电机的研究[博士学位论文].浙江:浙江大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700