用户名: 密码: 验证码:
典型微藻生物油的制备及其摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统化石能源逐渐枯竭以及社会可持续发展形势的日益需求,开发新型可再生替代能源成为大势所趋。生物质能源是一种可再生的清洁能源,其中藻类生物质由于其生物量大,繁殖速度快,不占耕地等优势已成为近年生物质能源研究的重点对象。采用热化学转化技术将其转变成发动机代用燃料——生物油,已成为该研究领域的前沿和热点问题之一。然而,针对我国淡水湖泊中经常出现的两种典型生物质微藻——小球藻(俗称“绿藻”)和螺旋藻(俗称“蓝藻”)热液化制备微藻生物油的系统研究尚处于探索阶段,微藻生物油的性能改善方法与措施也有待进一步的研究。同时,生物油的摩擦学特性直接关系着发动机的润滑效率和使用寿命。因此,本文主要从小球藻和螺旋藻热液化制备微藻生物油与提质改性及其摩擦学特性等方面开展相关的研究,旨在为发展新一代发动机代用燃料,为微藻生物油在内燃机上的应用打下一定的基础。具体的研究内容包括以下几个方面:
     首先,对小球藻和螺旋藻进行了成分等基本物性分析,并通过稀土负载的HZSM-5催化剂对其进行了催化热解,掌握了其热解动力学行为。研究表明,与HZSM-5相比,除La(Ⅱ)/HZSM-5外,其余稀土负载后的催化剂(Ce(Ⅰ)/HZSM-5, Ce(Ⅱ)/HZSM-5, Pr-Nd/HZSM-5和La(Ⅰ)/HZSM-5)对小球藻和螺旋藻都有降低热解活化能的催化作用,其中Ce(Ⅰ)/HZSM-5对小球藻催化效果最佳,Ce(Ⅱ)/HZSM-5对螺旋藻催化效果最好。与HZSM-5相比,它们对热解活化能的降低幅度分别达到47.1%和43.1%,显示了良好的稀土改性催化效果,也为微藻的高效催化液化提供了参考。
     其次,系统探讨了小球藻催化液化制备生物油的影响规律及其液化机理。考察了催化剂、液化条件等因素对液化行为的影响,测试了生物油的基本物性及其燃烧性能,采用乳化技术对小球藻生物油进行提质改性研究,并应用发动机缸套-活塞环摩擦磨损实验方法探讨了生物油提质前后对缸套-活塞环摩擦学特性的影响,分析其摩擦磨损机理。结果表明,采用Ce(Ⅰ)/HZSM-5催化不仅可增加小球藻生物油产率,还可以改变液化产物的分子组成,特别是可以提高生物油H/C比,降低O/C比,增加碳氢化合物的含量。小球藻的优化液化反应条件为:采用5wt%的Ce(Ⅰ)/HZSM-5为催化剂,在300℃水热条件下催化液化20min,小球藻和溶剂水的料液比为1:10g·mL-1。此条件下生物油产率达39.87%,生物油热值达26.09MJ·kg-1。小球藻生物油的主要成分为醇类、酯类、环烷烃、烯烃、苯衍生物等,经过乳化提质改性后,生物油的基本物性有所改善,热值提高,腐蚀磨损性能得到改善。摩擦学特性的改善归因于油品中的有机物在摩擦过程中在摩擦副表面的吸附、挤压形成的润滑膜,以及腐蚀性成分被稀释所致。
     然后,研究了螺旋藻催化液化制备生物油的影响规律,分析了生物油的基本物性及其燃烧性能,以催化酯化技术对螺旋藻生物油进行提质改性研究,考察了油品对缸套-活塞环摩擦学特性的影响,分析了其摩擦磨损机理。结果表明,螺旋藻优化的液化催化剂为5wt%的Ce(Ⅱ)/HZSM-5,最高生物油产率达49.71%。螺旋藻生物油的主要成分为羧酸、酮、烯烃、酰胺、醚、酯以及部分环状含N化合物,其中其酸类成分较大,造成其酸值较高,达21.79mgKOH·g-1。经过催化酯化提质后,生物油中酸类成分及含量明显下降,酯类成分增多,生物油的基本物性有所改善,H/C比提高、O/C比降低,热值有较大提高,酯化后油品的摩擦学性能较酯化前明显好转,其中分别采用KF/Al2O3和KF/HZSM-5催化乙醇和甲醇酯化后的油品AEO、HEO、AMO和HMO的平均摩擦系数比反应前分别降低22.52%、9.91%、21.64%和11.41%,磨损量也有不同程度的降低。能谱分析(EDS)和X-射线光电子能谱(XPS)测试结果表明,油品中的有机物在摩擦副表面吸附、挤压形成润滑油膜,以及摩擦生成的Fe2O3化学反应膜,特别是酯化后生物油中的酯基(-COOR)、烷基等被沉积到摩擦面共同起到抗磨减摩作用。
     最后,分别采用水热液化以及超临界流体液化方法,研究了小球藻和螺旋藻共液化制备生物油的行为及其摩擦学特性。结果表明,水热环境下当小球藻和螺旋藻质量比较接近时共液化具有一定的协同效果,La203是一种相对较好的水热共液化催化剂;超/亚临界醇溶剂体系中微藻的共液化生物油产率有显著提高,在超临界甲醇和超临界乙醇体系中的共液化生物油产率达74.71%和64.43%,是水热环境下最高液化率的2-3倍;共液化生物油的主要成分为醇类、醚类、烃类、芳香族、酯、酮、酸、醛类以及部分含氮化合物等组成的复杂混合物;在超临界流体环境下,醇类不但起到了液化溶剂作用,还充当了反应原料,对产物有一定的酯化改质作用:和水溶剂无催化条件相比,采用La2O3催化或通过超/亚临界醇类体系制备的共液化生物油具有较高的H/C比和热值,同时O/C比和酸值下降,综合性能显著提升。四球摩擦磨损实验结果表明,在15W-40柴油机油中添加10wt%共液化生物油后,油品的摩擦系数及磨损量显著下降,最大降幅分别可达61.8%和32.2%,表明共液化生物油具有良好的润滑效果。分析表明,在摩擦过程中油品有机物中C-C, C-OH, C=O,-COOR等成分在摩擦副表面的吸附、挤压形成的润滑膜,摩擦生成的Fe203化学反应膜,并与部分含N化合物以C-NH2形式沉积到摩擦面以及摩擦形成FeN化学反应膜共同起到润滑作用,显示了良好的应用前景。
With the gradual depletion of traditional fossil energy sources and the increasing demand for the sustainable development of society, the development of new, renewable, alternative energy sources has become a general trend. Biomass is a clean, renewable energy source. In recent years, algal biomass has become the focus of biomass energy for such advantages as large quantity, fast propagation, and lack of occupied farmland. The thermochemical conversion technology for the transformation of microalgae into bio-oil as an alternative fuel for engines has become a research frontier and is the focus of this study.
     Most freshwater lakes in China contain two kinds of typical microalgae biomass:Chlorella (commonly known as "green algae") and Spirulina (commonly known as "blue algae"). However, the systemic thermal liquefaction of these microalgae remains at the exploratory stage. In addition, the performance of microalgae bio-oil, including its tribological properties and upgrading methods, should be further explored because the lubricative efficiency and service life of engines are significantly affected by the tribological behavior of bio-oil.
     In this paper, related studies on the preparation, upgrading, and tribological properties of the bio-oil derived from Chlorella and Spirulina via thermochemical liquefaction are conducted. This study aims to establish an experimental basis for the development of a new generation of biomass liquid fuels and to promote the application of microalgae bio-oil in internal combustion engines. The specific research topics include the following aspects:
     First, the basic physical properties including the components of Chlorella and Spirulina were studied. The rare earth-loaded HZSM-5catalysts were prepared via catalytic pyrolysis of the microalgae, and the pyrolysis kinetic behavior was investigated. The results indicate that compared with HZSM-5, except for La(Ⅱ)/HZSM-5, the load of rare-earth catalysts such as Ce(I)/HZSM-5, Ce(Ⅱ)/HZSM-5, Pr-Nd/HZSM-5, and La(Ⅰ)/HZSM-5can lower the catalytic pyrolysis activation energy of Chlorella and Spirulina. Ce(Ⅰ)/HZSM-5has the best catalystic effect for Chlorella, whereas Ce(Ⅱ)/HZSM-5has the best catalytic effect for Spirulina. Pyrolysis activation energy decreased by47.1%and43.1%for Chlorella and Spirulina, respectively. The results show the efficiency of the rare-earth modified catalysts and provide a reference for algae biomass catalytic liquefaction.
     Second, the catalytic liquefaction preparation and mechanisms of bio-oil from Chlorella were studied systematically. The effects of the catalyst, liquefaction conditions, and other factors on the liquefaction behavior of the microalgae biomass were analyzed. The basic physical properties and combustion performance of bio-oil were tested. Emulsion technology was used to upgrade the Chlorella bio-oil. The piston ring-cylinder friction of the engine as well as wear experiments were used to simulate the changes of wear when fuel is injected into the cylinder wall in internal combustion engines and to analyze the mechanism of friction. The results show that the use of Ce(Ⅰ)/HZSM-5as a catalyst for liquefying Chlorella not only increases the liquefaction yield but also changes the molecular composition of the liquefied products. Moreover, the use of this catalyst can increase the hydrogen-to-carbon (H/C) ratio, reduce the oxygen-to-carbon (O/C) ratio, and increase the hydrocarbon content of the liquefied products. The optimal reaction conditions include: the selection of5wt%Ce(I)/HZSM-5as catalyst, Chlorella-to-solvent volume ratio of1:10g-mL"1, and reaction at300℃for20min. The maximum liquefaction yield reached39.87%, and the heating value of final bio-fuel reached26.09MJ-kg-1. The main components of the bio-fuel from Chlorella are alcohol, ester derivatives, and a number of hydrocarbons. The basic properties, calorific value, corrosion, and wear performance of Chlorella bio-oil improved after emulsion. A better lubricity of the upgrading bio-oil was attributed to organics during oil adsorption on the friction surface to form a lubricant film while the corrosion components in the oil were diluted.
     Third, the catalytic liquefaction regularity of bio-oil from Spirulina was investigated systematically. Moreover, the basic physiochemical properties and combustion performance of the Spirulina bio-oil were analyzed. Catalytic esterification technologies were used to upgrade the Spirulina bio-oil. The piston ring-cylinder friction of the engine as well as wear experiments were used to test the lubricant performance of the fuels, and the friction mechanism was also investigated. The results indicate that the optimal liquefaction catalyst for Spirulina is Ce(Ⅱ)/HZSM-5at5wt%. The maximum liquefaction yield can reach49.71%. The main components of Spirulina bio-oil are carboxylic acids, ketones, olefins, amides, ethers, esters, and a number of ring compounds that contain N. Spirulina bio-oil has a high acid value of approximately21.79mg KOH·g-1. The acid components of Spirulina bio-oil decreased, whereas the ester components increased evidently after catalytic esterification. Moreover, the basic physical properties of the bio-oil improved; the H/C ratio increased, the O/C ratio decreased, and the calorific value improved significantly. The lubricity of bio-oil after esterification significantly improved. The average coefficient of friction of the esterified fuel such as AEO, HEO, AMO, and HMO were decreased by22.52%,9.91%,21.64%, and11.41%, respectively, and the wear amount decreased as well. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy showed that the adsorption and extrusion of organics on the surface of the friction pairs to form a lubricant film and a tribochemical reaction film such as Fe2O3, especially the ester (-COOR) and alkyl groups of esterified bio-oil, were deposited onto the friction surface, all of which play an antifriction and wear reduction roles.
     Finally, hydrothermal liquefaction and supercritical fluid liquefaction methods were employed to study the behavior and performance of the co-liquefaction of bio-oil obtained from Chlorella and Spirulina. The studies show the synergistic effects of the co-liquefaction when the quality of Chlorella and Spirulina are close at the hydrothermal liquefaction process. La2—3is an efficient liquefaction catalyst of hydrothermal liquefaction. Super/sub-critical methanol and alcohol can remarkably enhance the co-liquefaction yield of microalgae up to approximately74.71%and64.43%, respectively. These values are approximately two to three times of the maximum yield of hydrothermal liquefaction. The main components of co-liquefaction bio-oil are complex mixtures including alcohols, ethers, hydrocarbons, aromatics, esters, ketones, acids, aldehydes, and a number of nitrogen-containing compounds. Alcohols not only serve as a liquefaction solvent but also act as a reactant and an esterification modifier in a supercritical fluid environment. Compared with the case wherein water is used as a solvent without La2O3as catalyst or the case wherein a super/sub-critical alcohol system is adopted for co-liquefaction of bio-oil from microalgae, the H/C ratio and calorific value of alcohol increased, whereas the O/C ratio and the acid value decreased. The comprehensive performance improved significantly. Four-ball tribometer results show that the co-liquefaction bio-oil has efficient tribological effects because of the reduction in the friction coefficient and wear volume, in which the maximum decreasing range is approximately61.8%and32.2%, respectively, when10wt%bio-oil is added to the15W-40diesel engine oil. The results show that organic groups such as C-C, C-OH, C=O, and-COOR are adsorbed on the friction surface and react with the Fe of the steel substrate to form the lubricant film that also contains Fe2O3. The N-containing compounds deposited on the friction surface in the form of C-NH2and FeN tribochemical reaction films altogether play a lubrication role, which shows good application potential.
引文
[1]U.S. Energy Information Administration, International Energy Outlook 2011 [R].2012. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf
    [2]International Energy Agency, World Energy Outlook 2011 [R].2012. http://www.worldenergyoutlook.org/
    [3]EIA's Renewable Energy Annual Report [R].2008. http://www.eia.gov/forecasts/archive/ieo08/index.html
    [4]Zou S, Wu Y, Yang M, et al. Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties [J]. Energy and Environmental Science.2010,3(8):1073-1078.
    [5]Vardon D R, Sharma B K, Blazina G V, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis [J]. Bioresource Technology. 2012,109:178-187.
    [6]蒋波,张晓东,李岩,等.基于元素分析的生物质化学组成快速分析方法[J].化工学报.2010,61(6):1506-1509.
    [7]王洪志,陈攀峰,刘朝,等.生物质热解研究进展[J].河北科技师范学院学报.2006,20(3):75-80.
    [8]张瑞芹.生物质衍生物的燃料和化学物质[M].郑州大学出版社.2004.
    [9]霍丽丽,侯书林,赵立欣,等.生物质固体成型燃料技术及设备研究进展[J].安全与环境学报.2009,9(6):27-31.
    [10]Esaki H, Satake T, Guo K. Research on the pelletization of biomass(partⅡ):Compressive characteristics on the forming of the pellet and wafer [J]. Journal of the Japanese Society of Agricultural Machinery.1986,48(1):83-90.
    [1l]肖宏儒,陈永生,宋卫东.秸秆成型燃料加工技术发展趋势[J].农业装备技术.2006,32(2):11-13.
    [12]Bank, Hama S, Nish izukak, et al. Repeated use of whole-cellbio-catalysts mi mobilized within biomass support particles for biodiesel fuel production [J]. Journal of Molecular Catalysis B:Enzymatic.2002,17:157-165.
    [13]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报.1999,20(1):55-58.
    [14]陈洪章,李佐虎.汽爆纤维素固态同步糖化发酵乙醇[J].无锡轻工业大学学报.1999,18(5):78-81.
    [15]McKendry P. Energy production from biomass (part2):conversion technologies [J]. Bioresource Technology.2002,83(1):47-54.
    [16]杨坤,冯飞,孟华剑,等.生物质气化技术的研究与应用[J].安徽农业科学.2012,40(3):1629-1632+1659.
    [17]Goransson K, Soderlind U, He J, et al. Review of syngas production via biomass DFBGs [J]. Renewable and Sustainable Energy Reviews.2011,15(1):482-492.
    [18]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J]. Energy Conversion and Management.2001,42(11):1357-1378.
    [19]Appell H R, Fu Y C, Friedman S, et al. Converting organic wastes to oil [R]. US Bereau of Mines. Report of Investigations.1971:7560.
    [20]Miller I J, Fellows S K. Liquefaction of biomass as a source of fuels or chemicals [J]. Nature. 1981,289(5796):398-399.
    [21]Lin L Z, Yoshioka M, Yao Y Q et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properites of the liquefied wood [J]. Journal of Applied Polymer Science.1994,52(11):1629-1636.
    [22]Maldas D, Shiraishi N. Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst [J]. Biomass and Bioenergy.1997,12(4):273-279.
    [23]王华常,王梦亮.秸秆纤维的催化液化及其产物的初步研究[J].山西大学学报(自然科学版).2004,27(1):48-53.
    [24]Song C, Hu H, Zhu S, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water [J]. Energy and Fuels.2004,18(1):90-96.
    [25]Karagoz S, Bhaskar T, Muto A, et al. Hydrothermal upgrading of biomass:Effect of K2CO3 concentration and biomass/water ratio on products distribution [J]. Bioresource Technology. 2006,97(1):90-98.
    [26]Karagoz S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:Analysis of liquid products [J]. Chemical Engineering Journal.2005,108(1-2): 127-137.
    [27]Minowa T, Zhen F,Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst [J]. Journal of Supercritical Fluids.1998,13(1-3):253-259.
    [28]Sinag A, Kruse A, Rathert J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor [J]. Industrial and Engineering Chemistry Research.2004,43(2):502-508.
    [29]Sinag A, Kruse A, Schwarzkopf V. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3 [J]. Industrial and Engineering Chemistry Research.2003,42(15):3516-3521.
    [30]Schmieder H, Abeln J, Boukis N, et al. Hydrothermal gasification of biomass and organic wastes [J]. The Journal of Supercritical Fluids.2000,17(2):145-153.
    [31]Watanabe M, Iida T, Inomata H. Decomposition of a long chain saturated fatty acid with, some additives in hot compressed water [J]. Energy Conversion and Management.2006, 47(18-19):3344-3350.
    [32]Watanabe M, Aizawa Y, Iida T, et al. Glucose reactions with acid and base catalysts in hot compressed water at 473 K [J]. Carbohydrate Research.2005,340(12):1925-1930.
    [33]Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water [J]. Renewable Energy.1999,16(1-4):1114-1117.
    [34]Elliott D C, Sealock J L J, Baker E G. Chemical processing in high-pressure aqueous environments.2:Development of catalysts for gasification [J]. Industrial and Engineering Chemistry Research.1993,32(8):1542-1548.
    [35]Elliott D C, Sealock J L, Baker E G. Chemical processing in high-pressure aqueous environments.3:Batch reactor process development experiments for organics destruction [J]. Industrial and Engineering Chemistry Research.1994,33(3):558-565.
    [36]Elliott D C, Phelps M R, Sealock J J L, et al. Chemical processing in high-pressure aqueous environments.4:Continuous-flow reactor process development experiments for organics destruction [J]. Industrial and Engineering Chemistry Research.1994,33(3):566-574.
    [37]张薇,吴虹,宗敏华.蛋白核小球藻发酵产油脂的研究[J].微生物学通报.2008,202(06):855-860.
    [38]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源.2003,(109):13-16.
    [39]Chisti Y. Biodiesel from microalgae beats bioethanol [J]. Trends in Biotechnology.2008, 26(3):126-131.
    [40]Lim S, Teong L K. Recent trends, opportunities and challenges of biodiesel in Malaysia:An overview [J]. Renewable and Sustainable Energy Reviews.2010,14(3):938-954.
    [41]Khan S A, Rashmi, Hussain M Z, et al. Prospects of biodiesel production from microalgae in India [J]. Renewable and Sustainable Energy Reviews.2009,13(9):2361-2372.
    [42]Chen Y H, Huang B Y, Chiang T H, et al. Fuel properties of microalgae (Chlorella protothecoid.es) oil biodiesel and its blends with petroleum diesel [J]. Fuel.2012,94: 270-273.
    [43]缪晓玲,吴庆余.微藻油脂制备生物柴油的研究[J].太阳能学报.2007,28(02):219-222.
    [44]Simon D, Helliwell S. Extraction and quantification of chlorophyll a from freshwater green algae [J]. Water Research.1998,32(7):2220-2223.
    [45]Onofrejova L, Vasickova J, Klejdus B, et al. Bioactive phenols in algae:The application of pressurized-liquid and solid-phase extraction techniques [J]. Journal of Pharmaceutical and Biomedical Analysis.2010,51(2):464-470.
    [46]刘圣臣,邹宁,孙杰,等.小球藻中海藻油的提取工艺研究[J].食品科学.2009,30(8):120-123.
    [47]吴庆蔡,丛威,马润宇.从微藻中提取多不饱和脂肪酸[J].北京化工大学学报(自然科学版).2004,31(4):5-8.
    [48]Minowa T, Yokoyama S Y, Kishimoto M, et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction [J]. Fuel.1995,74(12):1735-1738.
    [49]Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion and Management.2000,41(6):633-646.
    [50]Goheen D W. Lignin Structure and Reactions, Advances in Chemistry [M]. Washington, DC: American Chemical Society.1966.
    [51]Kruse A, Maniam P, Spieler F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass.2. Model compounds [J]. Industrial and Engineering Chemistry Research.2007,46(1):87-96.
    [52]Xiu S, Shahbazi A. Bio-oil production and upgrading research:A review [J]. Renewable and Sustainable Energy Reviews.2012,16(7):4406-4414.
    [53]Jayasinghe P, Hawboldt K. A review of bio-oils from waste biomass:Focus on fish processing waste [J]. Renewable and Sustainable Energy Reviews.2012,16(1):798-821.
    [54]Miao X, Wu Q,Yang C. Fast pyrolysis of microalgae to produce renewable fuels [J]. Journal of Analytical and Applied Pyrolysis.2004,71(2):855-863.
    [55]Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass [J]. Renewable and Sustainable Energy Reviews.2000,4(1):1-73.
    [56]Garcia P M, Wang X S, Shen J, et al. Fast pyrolysis of oil Mallee woody biomass:Effect of temperature on the yield and quality of pyrolysis products [J]. Industrial and Engineering Chemistry Research.2008,47(6):1846-1854.
    [57]Uzun B B, Apaydin V E, Ates F, et al. Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char [J]. Fuel.2010,89(1):176-184.
    [58]Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass [J]. Energy Conversion and Management.2000,41(15):1601-1607.
    [59]刘荣厚,鲁楠,曹玉瑞.旋转锥反应器生物质热裂解工艺过程及实验[J].沈阳农业大学学报,1997,28(4):307-311.
    [60]张会岩,肖睿,肖刚,等.玉米芯流化床快速热解制取生物油试验研究[J].工程热物理学报,2009,30(10):1779-1782.
    [61]王树荣,骆仲泱,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报.2004,20(2):246-249.
    [62]Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis oils [J]. Energy Conversion and Management.2009,50(5):1376-1383.
    [63]姬登祥,蔡腾跃,艾宁,等.熔盐热裂解生物质制生物油[J].生物工程学报.2011,27(3):475-481.
    [64]Matsui T, Nishihara A, Ueda C, et al. Liquefaction of micro-algae with iron catalyst[J]. Fuel. 1997,76(11):1043-1048.
    [65]Yang Y F, Feng C P, Inamori Y, et al. Analysis of energy conversion characteristics in liquefaction of algae [J]. Resources, Conservation and Recycling.2004,43(1):21-33.
    [66]Zhou D, Zhang L, Zhang S, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil [J]. Energy and Fuels.2010,24(7):4054-4061.
    [67]邹树平,吴玉龙,杨明德,等.微藻热化学催化液化及生物油特性研究[J].太阳能学报.2009,30(11):1571-1576.
    [68]Mortensen P M, Grunwaldt J D, Jensen P A, et al. A review of catalytic upgrading of bio-oil . to engine fuels [J]. Applied Catalysis A:General.2011,407(1-2):1-19.
    [69]Wildschut J, Mahfud F H, Venderbosch R H, et al. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts [J]. Industrial and Engineering Chemistry Research. 2009,48(23):10324-10334.
    [70]Hew K L, Tamidi A M, Yusup S, et al. Catalytic cracking of bio-oil to organic liquid product [J]. Bioresource Technology.2010,101(22):8855-8858.
    [71]郭晓亚,李庭琛,任铮伟,等.生物质裂解油催化裂解精制[J].过程工程学报.2003,3(1):91-95.
    [72]Srinivas S T, Dalai A K, Bakhshi N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system [J]. Canadian Journal of Chemical Engineering.2000,78(2): 343-354.
    [73]Piskorz J, Majerski P, Radlein D, et al. Conversion of lignins to hydrocarbon fuels [J]. Energy and Fuels.1989,3(6):723-726.
    [74]崔洪友,魏书芹,王景华,等.NiMoB/γ-Al2O3催化生物油加氢提质[J].可再生能源.2011,29(2):43-48.
    [75]Rioche C, Kulkarni S, Meunier F C, et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J]. Applied Catalysis B:Environmental. 2005,61(1-2):130-139.
    [76]Chen T, Wu C, Liu R. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production [J]. Bioresource Technology.2011,102(19):9236-9240.
    [77]杜谋涛,黄勇成,尚上,等.柴油-生物质油乳化燃料最佳HLB值及理化性质研究[J].燃料化学学报.2009,37(6):679-683.
    [78]Jiang X, Ellis N. Upgrading bio-oil through emulsification with biodiesel:Tthermal stability [J]. Energy and Fuels.2010,24(4):2699-2706.
    [79]Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel [J]. Biomass and Bioenergy.2003,24(3):221-232.
    [80]Diomidis N, Celis J P, Ponthiaux P, et al. Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion-wear components and effect of contact area [J]. Wear.2010, 269(1-2):93-103.
    [81]Lohitharn N, Shanks B H. Upgrading of bio-oil:Effect of light aldehydes on acetic acid removal via esterification [J]. Catalysis Communications.2009,11(2):96-99.
    [82]Wang J J, Chang J, Fan J. Upgrading of bio-oil by catalytic esterification and determination of acid number for evaluating esterification degree [J]. Energy and Fuels.2010,24(5): 3251-3255.
    [83]Tang Z, Lu Q, Zhang Y, et al. One step bio-oil upgrading through hydrotreatment, esterification, and cracking [J]. Industrial and Engineering Chemistry Research.2009,48(15): 6923-6929.
    [84]熊万明,傅尧,来大明,等.酸性离子交换树脂催化酯化改质生物油的研究[J].高等学校化学学报.2009,30(9):1754-1758.
    [85]Anastasakis K, Ross A B. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina:Effect of reaction conditions on product distribution and composition [J]. Bioresource Technology.2011,102(7):4876-4883.
    [86]Demirbas A. Use of algae as biofuel sources [J]. Energy Conversion and Management.2010, 51(12):2738-2749.
    [87]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业.2005,(8):40-41.
    [88]Xu C, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water [J]. Energy and Fuels.2007,22(1):635-642.
    [89]Idriss H, Barteau M A. Active sites on oxides:From single crystals to catalysts [J]. Advances in Catalysis.2000,45:261-331.
    [90]叶春波.钛硅分子筛TS-1的制备及催化性能研究[D],天津大学,2010.
    [91]陈登宇,张栋,朱锡锋.干燥前后稻壳的热解及其动力学特性[J].太阳能学报.2010(10):1230-1235.
    [92]杨海平.油棕废弃物热解的实验及机理研究[D].华中科技大学,2005.
    [93]Kok M V, Keskin C. Comparative combustion kinetics for in situ combustion process [J]. Thermochimica Acta.2001,369(1-2):143-147.
    [94]Torrente M C, Galan M A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) [J]. Fuel.2001,80(3):327-334.
    [95]Burkiewicz K, Burkiewicz R. Biological activity of the media after algal cultures can result from extracellular carbohydrates [J]. Journal of Plant Physiology.1996,148(6):662-666.
    [96]Scragg A H, Morrison J, Shales S W. The use of a fuel containing Chlorella vulgaris in a diesel engine [J]. Enzyme and Microbial Technology.2003,33(7):884-889.
    [97]Valle B, Gayubo A G, Alonso A, et al. Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons [J]. Applied Catalysis B:Environmental. 2010,100(1-2):318-327.
    [98]Valle B, Gayubo A G, Aguayo A T, et al. Selective production of aromatics by crude bio-oil valorization with a Nickel-modified HZSM-5 zeolite catalyst [J]. Energy and Fuels.2010, 24(3):2060-2070.
    [99]Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I:Conversion over various catalysts [J]. Fuel Processing Technology. 1995,45(3):161-183.
    [100]Chumpoo J, Prasassarakich P. Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol [J]. Energy and Fuels.2010,24(3):2071-2077.
    [101]周丽丽.生物质油/柴油均相体系的制备工艺与性能表征[D].合肥工业大学,2010.
    [102]王琼杰.热解液化生物质油的改性及其润滑性能研究[D].合肥工业大学,2009.
    [103]Chen Y C, Pan Y N, Hsieh K H. Process optimization of fast pyrolysis reactor for converting forestry wastes into bio-oil with the Taguchi method [J]. Procedia Environmental Sciences. 2011,10:1719-1725.
    [104]Jiang L Q, Fang Z, Guo F, et al. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca [J]. Bioresource Technology.2012,107:405-410.
    [105]Zhong C, Wei X. A comparative experimental study on the liquefaction of wood [J]. Energy. 2004,29(11):1731-1741.
    [106]Akhtar J, Amin N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews.2011, 15(3):1615-1624.
    [107]Bi J, Liu M, Song C, et al. C2-C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts [J]. Applied Catalysis B:Environmental.2011, 107(1-2):68-76.
    [108]Liu S, Wang L, Ohnishi R, et al. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects [J]. Journal of Catalysis.1999,181(2):175-188.
    [109]谢勇涛,尹静波,赵长稳,等.聚谷氨酸苄酯脱保护制备聚L-谷氨酸的正交实验研究[J].高等学校化学学报.2008,29(1):197-200.
    [110]霍书豪,陈玉碧,刘宇鹏,等.添加沼液的BG11营养液微藻培养试验[J].农业工程学报.2012,28(8):241-246.
    [111]Foner H A, Adan N. The characterization of papers by X-ray diffraction (XRD): measurement of cellulose crystallinity and determination of mineral composition [J]. Journal of the Forensic Science Society.1983,23(4):313-321.
    [112]梁凌云.秸秆热化学液化工艺和机理的研究[D].中国农业大学,2005.
    [113]Yin S, Li D. A new phenomenon observed in determining the wear-corrosion synergy during a corrosive sliding wear test [J]. Tribology Letters.2008,29(1):45-52.
    [114]于济业,彭艳丽,李燕飞,等.生物油/柴油乳化燃油稳定性试验[J].山东理工大学学报(自然科学版).2007,21(5):101-103.
    [115]Casaban J L, Igual M A. Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids [J]. Tribology International.2011, 44(3):318-329.
    [116]张博,徐滨士,许一,等.润滑剂中微纳米润滑材料的研究现状[J].摩擦学学报.2011,31(2):194-204.
    [117]扈艳红,刘维民.两种含羟基化合物的共轭结构对铝-钢摩擦副磨损性能的影响[J].摩擦学学报.1998,18(3):30-34.
    [118]Xu Y F, Wang Q J, Hu X G, et al. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig [J]. Energy.2010,35(1):283-287.
    [119]Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chemistry of Materials.1990,2(2):186-191.
    [120]欧阳平,陈国需,李华峰,等.新型无硫磷含氮杂环化合物的制备及其摩擦学特性[J].摩擦学学报.2009,29(3):221-226.
    [121]孟春晓,高政权.微藻开发生物质能研究[J].安徽农业科学.2007,35(31):9998-10000.
    [122]Biller P, Ross A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J]. Bioresource Technology.2011,102(1): 215-225.
    [123]Van D Z M, Hamersma P J, Poels E K, et al. Gas-solid adhesion and solid-solid agglomeration of carbon supported catalysts in three phase slurry reactors [J]. Catalysis Today.1999,48(1-4):131-138.
    [124]Arjunan V, Balamourougane P S, Mythili C V, et al. Experimental spectroscopic (FTIR, FT-Raman, FT-NMR, UV-Visible) and DFT studies of 2-amino-5-chlorobenzoxazole [J]. Journal of Molecular Structure.2011,1003(1-3):92-102.
    [125]Karpenko A, Leppelt R, Cai J, et al. Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation:A combined TEM, XRD, XPS, DRIFTS, and activity study [J]. Journal of Catalysis.2007,250(1):139-150.
    [126]Miller I J,Saunders E R. Reactions of possible cellulose liquefaction intermediates under high pressure liquefaction conditions [J]. Fuel.1987,66(1):123-129.
    [127]熊万明,傅尧,陆强,等.生物质裂解油老化行为与机理研究[J].科学通报.2009,54(15):2188-2195.
    [128]Solgala A, Kalita M, Zukowska G Z. Study of neutral species coordination by macrocyclic anion receptors using FTIR spectroscopy [J]. Electrochimica Acta.2007,53(4):1541-1547.
    [129]徐玉福,胡献国,李川,等.固体超强碱催化乙醇酯化生物油[J].太阳能学报.2011,32(9):1361-1364.
    [130]Sakakibara M, Saito N, Nishihara H, et al. Corrosion of iron in anhydrous methanol [J]. Corrosion Science.1993,34(3):391-402.
    [131]Duffo G S, Farina S B. Diffusional control in the intergranular corrosion of some hcp metals in iodine alcoholic solutions [J]. Corrosion Science.2005,47(6):1459-1470.
    [132]Kong H, Yoon E-S, Kwon O K. Self-formation of protective oxide films at dry sliding mild steel surfaces under a medium vacuum [J]. Wear.1995,181-183:325-333.
    [133]Sivakumar P, Jung H, Tierney J W, et al. Liquefaction of lignocellulosic and plastic wastes with coal using carbon monoxide and aqueous alkali [J]. Fuel Processing Technology.1996, 49(1-3):219-232.
    [134]Lugang B, Tingchen L, Yang W, et al. Comparison of effect of ferric sulfide catalyst and nickel sulfide on coliquefaction of coal and biomass [J]. Fuel Processing Technology.2002, 75(3):165-171.
    [135]郑志锋,潘晶,黄元波,等.壳类生物质与煤共液化的研究[J].太阳能学报.2011,32(4):446-450.
    [136]Wen D, Jiang H, Zhang K. Supercritical fluids technology for clean biofuel production [J]. Progress in Natural Science.2009,19(3):273-284.
    [137]Demirbas A. Liquefaction of olive husk by supercritical fluid extraction [J]. Energy Conversion and Management 2000,41(17):1875-1883.
    [138]Aysu T, Turhan M, Kucuk M M. Liquefaction of Typha latifolia by supercritical fluid extraction [J]. Bioresource Technology.2012,107(5):464-470.
    [139]汪向阳,陈金思,徐玉福,等.棉籽油生物柴油和柴油混合燃料的润滑特性[J].农业工程学报.2010,26(3):272-276.
    [140]Shen D K, Gu S, Luo K H, et al. The pyrolytic degradation of wood-derived lignin from pulping process [J]. Bioresource Technology.2010,101(15):6136-6146.
    [141]Lai J, Song L, Liu D, et al. A frequency response study of thiophene adsorption on HZSM-5 [J]. Applied Surface Science.2011,257(8):3187-3191.
    [142]陆强.生物质选择性热解液化的研究[D].中国科学技术大学,2010.
    [143]Xiao W, Han L, Zhao Y. Comparative study of conventional and microwave-assisted liquefaction of corn stover in ethylene glycol [J]. Industrial Crops and Products.2011,34(3): 1602-1606.
    [144]Zhang J, Liu W, Xue Q. The tribological properties of the heterocyclic compound containing S, N, O, and B as additive in liquid paraffin [J]. Wear.1999,224(1):68-72.
    [145]Ikushima Y. Supercritical fluids:an interesting medium for chemical and biochemical processes [J]. Advances in Colloid and Interface Science.1997,71-72:259-280.
    [146]Kurth T L, Byars J A, Cermak S C, et al. Non-linear adsorption modeling of fatty esters and oleic estolide esters via boundary lubrication coefficient of friction measurements [J]. Wear. 2007,262(5-6):536-544.
    [147]Le Roux S, Boher C, Penazzi L, et al. A methodology and new criteria to quantify the adhesive and abrasive wear damage on a die radius using white light profilometry [J]. Tribology International.2012,52:40-49.
    [148]Kim W, Kang H J, Noh S K, et al. Magnetic and structural properties of Fe ion-implanted GaN [J]. Journal of Magnetism and Magnetic Materials.2007,316(2):199-202.
    [149]Gong C Z, Zhu Z T, Shi J W, et al. Plasma immersion ion implantation of cylindrical bore using self-excited radio-frequency glow discharge [J]. Surface and Coatings Technology. 2010,204(18-19):2996-2998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700