用户名: 密码: 验证码:
铜—水环路热管(LHP)强化蒸发与抑制热泄漏技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜-水LHP同时发挥了铜吸液芯的高效蒸发和水汽化潜热高的特性,是一种具有理想组合的高效两相被动式传热元件,在大功率电子芯片和LED的冷却领域具有重要的应用潜力。传统结构的铜吸液芯蒸发器因热泄漏较为严重,启动速率低,大幅度降低其传热性能,影响了LHP的推广应用。
     本文以抑制铜-水LHP的热泄漏与提高蒸发器的性能为目标,主要研究内容及创新成果如下:
     (1)采用吸液芯与蒸发器壳体一体化烧结方法,提出了无蒸汽回流圆柱形蒸发器,消除了接触热阻和高功率运行时蒸汽回流到储液槽的可能性。实验证明该新型蒸发器启动过热度低、响应速率快,运行时蒸汽不再回流至储液槽,系统的稳定性、可靠性显著提高。
     (2)采用全透明蒸发器实现了平板型铜-水LHP蒸发区域、吸液芯和储液槽的可视化。研究发现,低功率启动初期,在铜吸液芯上表面因热泄漏生成了气泡,启动较为缓慢;高功率运行时,储液槽内出现的内热管效应。
     (3)实验与数值模拟相结合,研究了铜粉平均颗粒直径对烧结型吸液芯蒸发器传热性能的影响。探讨了吸液芯平均孔径对蒸发器热泄漏和LHP启动特性的影响。分析了稳态运行时不同加热功率下铜粉平均颗粒直径对蒸发器内汽液两相分布、传热效率、蒸汽排出速度的影响规律,发现铜-水LHP的热泄漏对粉末平均颗粒直径的变化较为敏感。实验采用的三种不同铜粉颗粒中,当铜粉平均颗粒直径为139.2μm时,LHP低功率下启动速度较快、稳态运行时极限功率可达500W,同时具有良好的启动和运行特性。
     (4)研究了充液率对铜-水LHP综合传热特性的影响,采用高速摄影技术对平板型LHP蒸发器进行液体循环可视化实验研究。实验发现,铜-水LHP蒸发器在充液率较低时干涸和湿润交替出现,导致运行温度波动剧烈。高充液率对热泄漏有明显的抑制作用,能够提升启动速率和极限加热功率。充液率为69.6%至78.3%的圆柱形LHP的综合性能最佳。
     (5)为了减小铜-水LHP在低功率启动和高功率运行时出现的热泄漏,在吸液芯中引入导热系数较低的金属粉末材料,开发成功铜镍双层烧结型吸液芯蒸发器。优化获得了铜、镍层的最佳厚度比为3:2,该新型吸液芯同时具有高效蒸发和抑制热泄漏的优点。采用实验和数值模拟相结合的方法,研究了铜镍双层吸液芯对热泄漏的抑制效果及其机理。实验结果表明,铜镍双层吸液芯中的镍层能够避免启动初期吸液芯上表面气泡的生成,加快了启动速率,启动耗时减少37.7%;高加热功率运行时(120W),储液槽内部不再产生内热管效应,运行中蒸发器的壁面温度降低约10℃。
Copper-water LHP can simultaneously present the highly efficient evaporation of the copper wick and high latent heat of water vaporization. Therefore, it is an effective two-phase heat transfer device, which features a passive heat transport system without moving parts. LHP has promising prospects in applications such as the cooling of high-power electronic chips and Light-Emitting Diodes (LEDs). However, massive heat leak resulted from traditional evaporator with a copper wick leads to a slow start-up process, poor heat transfer performance, which limits the application in electronic thermal management.
     In this paper, researches on evaporation enhancement and heat leak alleviation in the copper-water LHP were carried out. Main works and results are as follows:
     (1) A cylindrical evaporator without vapor deprime, which characterizes the eliminations of the contact thermal resistance and the chance of vapor deprime, was proposed. It was experimentally testified that the cylindrical evaporator could achieve a fast start-up with a low superheat, avoid the appearance of vapor deprime at high heat load operation, and improve the stability and reliability of the LHP.
     (2) Within the evaporating zone, the wick and the compensation chamber of a flat LHP evaporator, visual observations of the flow were realized by a transparent evaporator cover. It was found that:1) some bubbles were accumulated on the upper surface of the wick during the incipient stage of the start-up process at low heat load, which resulted in a slow start-up process.2) Heat pipe effect was shown in the compensation chamber during the steady operation at high heat loads.
     (3) With the combination of experiment and numerical simulation, the effect of average particle diameter of the sintered copper wick on heat transfer was studied. The influences of average pore size on heat leak and start-up characteristics were also discussed. The effect of copper wick average particle diameter on the distribution of the two-phase in the evaporator, the efficiency of heat transfer and the velocity of the vapor flow were analyzed during the operation at different heat loads, which concluded that heat leak was sensitive to the average particle diameter of the powder. When the average particle diameter of the copper powder is139.2μm among three kinds powder, the LHP could reach a fast start-up, and the heat transfer capacity of500W was reached during the operation.
     (4) The effect of charging ratio on copper-water LHP heat transfer characteristics was investigated. Visualization research on working fluid circulation in flat LHP evaporator was also performed, taking advantage of high-speed camera. Due to low charging ratio, strong temperature oscillation resulted from the alternative appearance of dry up and wet in the flat evaporator was observed during operation. The experimental results demonstrated that obvious heat leak was alleviated by the high charging ratio, which generated in a fast start-up and a high heat transfer capacity. The optimal charging ratio for the cylindrical LHP ranged from69.6to78.3%.
     (5) In order to address massive heat leak in copper-water LHP during low heat load start-up and high heat load operation, nickel layer with low thermal conductivity was introduced to manufacture a new two-layer copper-nickel composite wick. When the thickness ratio of copper layer to nickel layer was3:2, efficient evaporation and low heat leak were achieved simultaneously at the same time. With the combination of experiment and numerical simulation, the mechanism of heat leak alleviation from the two-layer copper-nickel composite wick was also studied. It was found that nickel layer of the wick could prevent bubbles from creating on the upper surface of the wick during the incipient start-up process, speed up the start-up process and reduce the time for start-up process by37.7%. No heat pipe effect was shown in the compensation chamber during the operation at a high heat load of120W, and the evaporator wall temperature was about10℃lower than before.
引文
[1]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006.
    [2]Lu X Y, Hua T C, Liu M J, Cheng Y X. Thermal analysis of loop heat pipe used for high-power LED [J]. Thermo-chi-mica Acta,2009,493:25-29.
    [3]池勇,汤勇,万珍平,陈平.微电子芯片高热流密度相变冷却技术[J].流体机械,2007,35(4):50-55.
    [4]庄俊,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [5]Launay S, Sartre V, Bonjour J. Parametric analysis of loop heat pipe operation:a literature review [J]. International Journal of Thermal Science,2007,46:621-636.
    [6]Gerasimov Y F, Maydanik Y F, Shchogolev G T. Low-temperature heat pipes with separate channels for vapor and liquid [J]. Journal of Engineering Physics,1975, 28(6):957-960.
    [7]Maydanik Y F. Loop heat pipe review [J]. Applied Thermal Engineering,2005,25: 635-357.
    [8]T. Kaya, J. Goldak. Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe [J]. International Journal of Heat and Mass Transfer,2006,49: 3211-3220.
    [9]P.D. Dunn, D.A. Reay. Heat pipes [M]. Oxford:Pergamon Press,1976.
    [10]Yeh C C, Chen C N, Chen Y M. Heat transfer analysis of a loop heat pipe with biporous wicks [J]. International Journal of Heat and Mass Transfer,2009,52(19-20):4426-4434.
    [11]A. Ambirajan, A. A. Adoni, J. S. Vaidya, A. A. Rajendran, D. Kumar, P Dutta. Loop heat pipe:A review of fundamentals, operation and design [J]. Heat Transfer Engineering,2012, 33(4-5):387-405.
    [12]K. A. Goncharov et al., Loop heat pipes in thermal control systems for "Obzor" spacecraft, in:25th Int. Conference on Environmental Systems, San Diego, CA,1995, Paper 951555.
    [13]D. Douglas, J. Ku, T. Kaya, Testing of the Geoscience Laser Altimeter System Prototype Loop Heat Pipe [J]. AIAA Paper No.99-0473,1999.
    [14]赵宇,张红,王志亮.蛇形环路热管在MTBE预反应器中的应用[J].石油化工设备,2004,33(5):58-59.
    [15]王志亮,张红,庄俊.回路热管反应器传热性能的研究及其工业应用[J].现代化 工,2007,27(7):45-49.
    [16]刘美静,鲁祥友,华泽钊.冷却照明用大功率LED的回路热管的测试[J].制冷学报,2008,29(5):39-43.
    [17]鲁祥友,华泽钊,方廷勇,王晏平,陈广洲.照明用大功率LED回路热管散热器的研究[J].低温与超导,2010,38(6):61-65.
    [18]莫冬传,丁楠,吕树申.平板型环路热管应用于LED的启动特性研究[J].工程热物理学报,2009,30(10):1759-1762.
    [19]刘阿龙.烧结型表面多孔管传热和结垢特性研究[D].上海:华东理工大学,2008.
    [20]孙岩.微/小通道内微多孔表面流动沸腾传热强化研究[D].上海:华东理工大学,2011.
    [21]Pastukhov V G, Maydanik Y F, Vershinin C V, Korukov M A. Miniature loop heat pipe for electronic cooling [J]. Applied Thermal Engineering,2003,23:1125-1135.
    [22]Singh R, Akbarzadeh A, Mochizuki M. Effect of wick characteristics on the thermal performance of the miniature loop heat pipe [J]. Journal of Heat Transfer-Transactions of the ASME,2009,131:No.082601.
    [23]Boo J H, Jung E G Bypass line assisted start-up of a loop heat pipe with a flat evaporator [J]. Journal of Mechanical Science and Technology,2009,23:1613-1619.
    [24]Celata G P, Cumo M, Furrer M. Experimental tests of a stainless steel loop heat pipe with flat evaporator [J]. Experimental Thermal and Fluid Science,2010,34:866-878.
    [25]Li J, Wang D, Peterson G P. A compact loop heat pipe with flat square evaporator for high power chip cooling [J]. IEEE Transactions on Components, Packing and Manufacturing Technology,2011,1(4):519-527.
    [26]Liou J H, Chang C W, Chao C, Wong S C. Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes [J]. International Journal of Heat and Mass Transfer,2010,53:1498-1506.
    [27]Li J, Wang D, Peterson G P. Experimental studies on a high performance compact loop heat pipe with a square flat evaporator [J]. Applied Thermal Engineering,2010,30: 741-752.
    [28]Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes [J]. Applied Thermal Engineering,2007,27:894-901.
    [29]Becker S, Vershinin S, Sartre V, Laurien E, Bonjour J, Maydanik Y F. Steady state operation of a copper-water LHP with a flat-oval evaporator [J]. Applied Thermal Engineering,2011,31:686-695.
    [30]Maydanik Y, Vershinin S, Chernysheva M, Yushakova S. Investigation of a compact copper-water loop heat pipe with a flat evaporator [J]. Applied Thermal Engineering, 2011,31:3533-3541.
    [31]龙延,魏进家.不同倾角下平板式环路热管的实验研究[J].西安交通大学学报,2013,47(5):38-43.
    [32]S.W. Chi. Heat Pipe Theory and Practice [M]. New York:McGraw-Hill,1976.
    [33]Fershtater Y G, Maydanik Y F. Analysis of the temperature field of the anti-gravitational heat pipe's capillary structure [J]. Journal of Engineering Physics,1986,51(2):203-207.
    [34]Maydanik Y F. Miniature loop heat pipes [C]. Proccedings of the 13th International Heat Pipe Conference,2004,24-37, Shanghai, China.
    [35]Joung W, Yu T, Lee J. Experimental study on the loop heat pipe with a planar bifacial wick structure [J]. International Journal of Heat and Mass Transfer,2008,51: 1573-1581.
    [36]Chernysheva M A, Maydanik Y, Ochterbeck J M. Heat transfer investigation in evaporator of loop heat pipe during startup [J]. Journal of Thermo Physics and Heat Transfer,2008,22(4):617-622.
    [37]Maydanik Y, Vershinin S, Korukov A. Miniature loop heat pipes- a promising means for electronics [C]. Proceeding of the 9th International Society Conference on Thermal and Thermo Mechanical Phenomena in Electronic Systems,2004, Las Vegas, NV.
    [38]Maydanik Y, Vershinin S, Korukov A. Miniature loop heat pipes- a promising means for electronics [C]. Proceeding of the 9th International Society Conference on Thermal and Thermo Mechanical Phenomena in Electronic Systems,2004, Las Vegas, NV.
    [39]Wang S F, Zhang W B, Zhang X F, Chen J J. Study on start-up characteristics of loop heat pipe under low-power [J]. International Journal of Heat and Mass Transfer,2011, 54(4):1002-1007.
    [40]Wang S F, Huo J P, Zhang X F, Lin Z R. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator [J]. Applied Thermal Engineering,2012,40: 318-325.
    [41]Kaviany M. Principles of heat transfer in porous media [M]. New York:Spring Verlag, 1995.
    [42]Li J, Peterson G.3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick [J]. International Journal of Heat and Mass Transfer,2011,54:564-574.
    [43]M. L. Parker. Modeling of loop heat pipe with applications to spacecraft thermal control, faculty of mechanical engineering and applied mechanics [D]. United States:University of Pennsylvania,2000.
    [44]P. Cheng, C. T. Hsu. The effective stagnant thermal conductivity of porous media with periodic structures [J]. Journal of Porous Media,1999,2(1):19-38.
    [45]B. Yu, P. Cheng. Fractal Models for the effective thermal conductivity of bidispersed porous media [J]. Journal of Thermophysics and Heat Transfer,2002,16(1):22-29.
    [46]X. Huai, W. Wang, Z. Li. Analysis of the effective thermal conductivity of fractal porous media [J]. Applied Thermal Engineering,2007,27:2815-2821.
    [47]J.H. Boo, W.B. Chung. Thermal performance of a loop heat pipe having propylene wick in a flat evaporator [C]. Proceedings of the ASME Heat Transfer Conference,2005, San Francisco, CA.
    [48]R.R. Riehl, T. Dutra. Development of an Experimental loop heat pipe for application in future space missions [J]. Applied Thermal Engineering,2005,25(1):101-112.
    [49]T. Kobayashi, T. Ogushi, S. Haga, E. Ozaki, M. Fujii. Heat transfer performance of a flexible looped heat pipe using R 134a as a working fluid:Proposal for a method to predict the maximum heat transfer rate of FLHP [J]. Heat Transfer Asian Research,2003, 32 (4):306-318.
    [50]Singh R, Akbarzadeh A, Dixon C, Mochizuki M, Experimental determination of the physical properties of a porous plastic wick useful for capillary pump loop application [C]. Proceedings of the 13th International Heat Pipe Conference, Shanghai, China,2004.
    [51]Rassamakin B, Pismenny Y, Khayrnasov Y, Smirnov G. Research and development of aluminum loop heat pipe operation characteristics [C]. Proceedings of the 12th International Heat Pipe Conference,2002, Moscow, Russia.
    [52]Rhi S. Operation and characteristics of a loop heat pipe [C]. Proceedings of the 8th International Heat Pipe Symposium,2006, Kumamoto, Japan.
    [53]Santos P H D , Bazzo E, Becker S, Kulenovic R, Mertz R. Development of LHPs with ceramic wick [J]. Applied Thermal Engineering,2010,30(13):1784-1789.
    [54]Santos P H D, Bazzo E, Oliveira A, Thermal performance and capillary limit of a ceramic wick applied to LHP and CPL [J]. Applied Thermal Engineering,2012, 41:92-103.
    [55]Reimbrecht E, Fredel M, Bazoo E, Pereira F, Manufacturing and microstructual characterization of sintered nickel wicks for capillary pumps [J]. Material Research, 1999,2(3):225-229.
    [56]Li Q, Xuan Y, Development of high performance sintered wicks for CPLs [C]. Proceedings of the 7th International Heat Pipe Symposium,2003, Jeju, South Korea.
    [57]Maydanik Y, Fershtater Y, Pastukhov V. Development and investigation of two phase loops with high pressure capillary pumps for space applications [C]. Proceedings of the 8th International Heat Pipe Conference,1992, Beijing, China.
    [58]Kaya T, Ku J, Hoang T T, Cheung M K. Investigation of low power start-up characteristics of a loop heat pipe [C]. Space Technology and Applications International Forum,1999, America.
    [59]Nagano H, Nagai H, Fukuyoshi F, Ogawa H. Study on thermal performance of a small loop heat pipe [J]. Journal of Thermal Science and Technology,2008,3(2):355-367.
    [60]张红星,苗建印,绍兴国.双储液器环路热管的设计与实验研究[J].中国空间科学技术,2009,5:8-14.
    [61]Bai L, Lin G, Wen D, Feng J. Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory [J]. Applied Thermal Engineering,2009,29:1447-1456.
    [62]Feng J, Lin G, Bai L. Experimental investigation on operating instability of a dual compensation chamber loop heat pipe [J]. Science in China Series E:Technology Sciences,2009,52(8):2316-2322.
    [63]Huang B, Huang H, Liang T. System dynamics model and startup behavior of loop heat pipe [J]. Applied Thermal Engineering,2009,29:2999-3005.
    [64]Vasiliev L, Lossouarn D, Romestant C, Alexandre A, Bertin Y, Piatsiushyk T, Romanenkov V, Loop Heat Pipe for Cooling of High-Power Electronic Components [J]. International Journal of Heat and Mass Transfer,2009,52 (1-2):301-308.
    [65]Pastukhov V, Maydanik Y, Chernyshova M. Development and investigation of miniature loop heat pipes [C]. Proceedings of the 29th International Conference on Environmental Systems,1999, Denver, Paper No.1999-01-1983.
    [66]Maydanik Y, Vershinin S, Korukov M, Ochterbeck M. Miniature loop heat pipes- A promising means for cooling electronics [J]. IEEE Transactions on Components and Packing Technologies,2005,28(2):290-296.
    [67]Joung W, Yu T, Lee J. Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe [J]. International Journal of Heat and Mass Transfer, 2010,53:276-285.
    [68]Xin G M, Cui K H, Zou Y, Cheng L. Development of sinter Ni-Cu wicks for loop heat pipes [J]. Science in China Series E:Technology Sciences,2009,52(6):1607-1612.
    [69]Xin G M, Cui K H, Zou Y, Cheng L. Reduction of effective thermal conductivity for sintered LHP wicks [J]. International Journal of Heat and Mass Transfer,2010,53: 2932-2934.
    [70]李金旺,邹勇,程林.环路热管毛细芯热物性实验研究[J].中国电机工程学报,2010,30(17):57-61.
    [71]崔可航,辛公明,程林,邹勇.环路热管毛细芯有效导热系数的实验研究[J].工程热物理学报,2010,31(9):1543-1546.
    [72]Vityaz P A, Konev S V, Medvedev V B, Sheleg V K. Heat pipe with bidispersed capillary structures [C]. Proceedings of the 5th International Heat Pipe Conference,1984, 127-135,Japan.
    [73]Konev S V, Polasek F, Horvat L. Investigation of boiling in capillary structure [J]. Heat Transfer Soviet Research,1987,19(1):14-17.
    [74]Rosenfeld J H, North M T. Porous media heat exchangers for cooling of high-power optical components [J].1995, Optical Engineering,34(2):335-341.
    [75]North M T, Rosenfeld J H, Shaubach R M. Liquid film evaporation from bidispersed capillary wicks in heat pipe evaporators [C]. Proceedings of the 9th International Heat Pipe Conference,1995,143-147, Albuquerque, NM.
    [76]North M T, Sarraf D B, Rosenfeld J H, Maidanik Y, Vershinin S. High heat flux loop heat pipes [C]. Proceeding of the 6th European Symposium on Space Environmental Control Systems,1997,371-376, Noordwijk, The Netherlands.
    [77]Rasor N S, Desplat J L. K-max:a material with exceptional heat transfer properties [C]. Proceeding of the 24th Intersociety of Energy Conversion Engineering Conference,1989, 6:2847-2852, Washington DC.
    [78]Wang J, Carton I. Vaporization heat transfer in biporous wicks of heat pipe evaporators [C]. Proceedings of the 13th International Heat Pipe Conference,2004,2:76-86, Shanghai, China.
    [79]Merilo E G, Semenic T, Catton I. Experimental investigation of boiling heat transfer in bidispersed media [C]. Proceedings of the 13th International Heat Pipe Conference,2004, 2:87-93, Shanghai, China.
    [80]Semenic T, Catton I. Boiling and capillary limit enhancement of a heat pipe wick using biporous wick capillary structure [C]. Annals of the Assemble for International Heat Transfer Conference 13,2006, PRT-18, Sydney, Australia.
    [81]Cao X L, Cheng P, Zhao T S. Experimental study of evaporative heat transfer in sintered copper bidispersed wick structures [J]. Journal of Thermophysics and Heat Transfer, 2002,16(4):547-552.
    [82]Lin F C, Liu B H, Juan C C, Chen Y M. Effect of pore size distribution in bidispersed wick on heat transfer in a loop heat pipe [J]. Heat Mass Transfer,2011,47:933-940.
    [83]Lin F C, Liu B H, Huang C T, Chen Y M. Evaporative heat transfer model of a loop heat pipe with bidispersed wick structure [J]. International Journal of Heat and Mass Transfer, 2011,54:4621-4629.
    [84]Xu J Y, Zou Y, Fan M X, Cheng L. Effect of pore parameters on thermal conductivity of sintered LHP wicks [J]. International Journal of Heat and Mass Transfer,2012,55: 2702-2706.
    [85]Li H, Liu Z C, Chen B B, Liu W, Li C, Yang J G. Development of biporous wicks for flat-plate loop heat pipe [J]. Experimental Thermal and Fluid Science,2012,37:91-97.
    [86]Chen B B, Liu Z C, Liu W, Yang J G, Li H, Wang D D. Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator [J]. International Journal of Heat and Mass Transfer,2012,55:2204-2207.
    [87]Chen B B, Liu W, Liu Z C, Li H, Yang J G. Experimental investigation of loop heat pipe with flat evaporator using biporous wick [J]. Applied Thermal Engineering,2012,42: 34-40.
    [88]Liu Z C, Li H, Chen B B, Yang J G, Liu W. Operational characteristics of flat type loop heat pipe with biporous wick [J]. International Journal of Thermal Sciences,2012,58: 180-185.
    [89]V. Dupont, J.L. Joly, V. Platel, Capillary Pumped loop startup:effects of the wick fit on boiling incipience [J]. Journal of Thermophysics and Heat Transfer,2003,17(2): 138-144.
    [90]R. Singh, A. Akbarzadeh, M. Mochizuki. Operational characteristics of the miniature loop heat pipe with non-condensable gases [J]. International Journal of Heat and Mass Transfer,2010,53:3471-3482.
    [91]Ku J, Swanson T D, Herold K, Kolos K. Flow visualization within a capillary evaporator [C]. Proceeding of SAE International Conference,1993,1424-1432, Warrendale, PA.
    [92]Kolos K R, Herold K. E, Kroliczek E J, Swanson T D. Flow visualization in capillary pumped loop systems [C]. American Institute of Physics Conference Proceeding,1996, 361:731-738.
    [93]Cimbala J M, Brenizer J S, Chuang A P, Hanna S, Conroy C T, Ganayni E, Riley D R. Study of a loop heat pipe using neutron radiography [J]. Applied Radiation and Isotopes, 2004,61:701-705.
    [94]Entremont B P, Ochterbeck J M. Investigation of loop heat pipe startup using liquid core visualization [C]. Proceedings of the 2008 ASME Summer Heat Transfer Conference, 2008,1-7, Florida USA.
    [95]Suh J, Cytrynowicz D, Medis P, Gerner F M, Henderson H T. Flow visualization within the evaporator of planar loop heat pipe [C]. Space Technology and Applications International Forum,2005,192-202.
    [96]Wang G, Nikanpour D. Visual observations of flow and phase phenomena in loop heat pipes [C]. AIP Conference Proceeding,2007,914:291-298.
    [97]Bartuli E, Vershinin S, Maydanik Y. Visual and instrumental investigation of a copper-water loop heat pipe [J]. International Journal of Heat and MasSjTransfer,2013, 61:35-40.
    [98]J.R. Thome. Enhanced Boiling Heat Transfer [M]. New York:Hemisphere,1990.
    [99]奚正平,汤慧萍.烧结金属多孔材料[M].北京:冶金工业出版社,2009.
    [100]Kline S J, McClintock F A. Describing Uncertainties in Single-Sample Experiments [J]. Mechanical Engineering,1953,75:3-8.
    [101]J. Ku. Operating characteristics of loop heat pipes [C]. International Conference on environmental systems.1999, July 12-15, Denver, USA.
    [102]A. S. Demidov, E.S. Yatsenko. Investigation of heat and mass transfer in the evaporation zone of a heat pipe operating by the'inverted meniscus' principle [J]. International Journal of Heat and Mass Transfer,1994,37(14):2155-2163.
    [103]C. Figus, S. Bories, M. Prat. Investigation and analysis of a porous evaporator for a capillary pump loop [C]. Proceedings of the Engineering Systems Design and Analysis Conference,1996,6:99-106.
    [104]C. Figus, Y. Bray, S. Bories, M. Prat. Heat and mass transfer with phase change in a porous structure partially heated:continuum model and pore network simulations [J]. International Journal of Heat and Mass Transfer,1999,42:2557-2569.
    [105]M. Prat. Isothermal drying of non-hygroscopic capillary-porous materials as an invasion percolation process [J]. International Journal of Multiphase Flow,1995,21(5): 875-892.
    [106]C. Satik, Y. C. Yortsos. A pore-network study of bubble growth in porous media driven by heat transfer [J]. Journal of Heat Transfer Transition of ASME,1999,118:455-461.
    [107]C. Louriou, M. Prat. Pore network study of bubble growth by vaporization in a porous medium heated laterally [J]. International Journal of Thermal Sciences,2012,52:8-21.
    [108]M. A. Chernysheva, S. V. Vershinin, Y. F. Maydanik. Operating temperature and distribution of a working fluid in LHP [J]. International Journal of Heat and Mass Transfer,2007,50:2704-2713.
    [109]M. A. Chernysheva, Y. F. Maydanik. Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe [J]. International Journal of Heat and Mass Transfer,2008,51:4204-4215.
    [110]M. A. Chernysheva, Y. F. Maydanik. Simulation of thermal processes in a flat evaporator of a copper-water loop heat pipe under uniform and concentrated heating [J]. International Journal of Heat and Mass Transfer,2012,55:7385-7397.
    [111]J. L, G. P. Peterson.3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick [J]. International Journal of Heat and Mass Transfer,2011,54:564-574.
    [112]X. Zhang, X. Li, S Wang. Three-dimensional simulation on heat transfer in the flat evaporator of miniature loop heat pipe [J]. International Journal of Thermal Sciences, 2012,54:188-198.
    [113]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].上海:科技出版社,2006.
    [114]W.H. Lee, K.W. Lee, K.H. Park, K.J. Lee. Study on working fluid characteristics of loop heat pipe using a sintered metal wick [C].13th International Heat Pipe Conference, 2004, Shanghai, China,265-269.
    [115]J.H. Boo, W.B. Chung. Thermal performance of a small-scale loop heat pipe with PP wick [C].13th International Heat Pipe Conference,2004, Shanghai, China,259-264.
    [116]K.H. Cheung, T. Hoang, J. Ku, T. Kaya. Thermal performance and operational characteristics of loop heat pipe [C]. International Conference on Environmental Systems,1998, July, Danvers, SAE Paper 981813.
    [117]张红星,林贵平,丁汀,绍兴国.环路热管温度波动现象的实验分析[J].北京航空航天大学学报,2005,31(2):116-120.
    [118]盖东兴,刘伟,刘志春,黄素逸.环路热管系统温度波动的机理研究[J].西安交通大学学报,2010,44(3):26-31.
    [119]盖东兴,刘志春,刘伟,杨金国.平板型小型环路热管的温度波动特性[J].化工 学报,2009,60(6):1390-1397.
    [120]陈彬彬,刘志春,刘伟,杨金国,李欢.平板式mLHP实验的稳定性分析[J].工程热物理学报,2011,32(4):675-678.
    [121]李强,周海迎,宣益民.复合结构毛细蒸发器传热特性研究[J].工程热物理学报,2008,29(1):148-150.
    [122]柏立战,林贵平.环路热管复合吸液芯传热与流动特性分析[J].北京航空航天大学学报,2009,35(12):1446-1450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700