用户名: 密码: 验证码:
环管型燃烧室点火及熄火特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气轮机燃烧室的点火设计点通常是一种富油状态,富油点火时燃烧室会排放大量的黑烟,为克服这一缺陷,人们希望尽量在贫油状态下点火,而燃烧室贫油点火极限是很窄的,因此应当尽量拓宽燃烧室的贫油点火极限。点火位置、点火能量、点火持续时间和火核半径等参数对点火性能有重要的影响,而且它们之间的相互影响目前尚未见报道,因此研究燃烧室的贫油点火特性,分析点火器特征参数对点火性能的影响,从而改善燃烧室的点火条件具有重要的应用价值。
     燃气轮机在实际运行中经常会偏离设计工况,而当燃气轮机在低工况下运行时容易发生贫油熄火的危险。人们希望在能准确预测燃烧室贫油熄火极限的同时,尽可能地拓宽燃烧室的贫油熄火边界。如果能准确预测燃烧室贫油熄火边界,或者找到熄火先兆,那么就可以在燃烧室熄火前做出相应的措施,避免熄火的发生,而且还可以通过结构改进或燃烧场组织技术来尽量拓宽燃烧室的贫油熄火极限,从而为燃烧室设计提供指导,因此研究燃气轮机燃烧室的贫油熄火特性对燃烧室的设计和改进具有重要的实用价值。
     本文以某型燃气轮机燃烧室为研究对象,建立描述燃烧场的基本控制方程和补充方程,采用数值模拟的方法深入系统地研究燃烧室的贫油点火和贫油熄火特性,为燃烧室的设计提供理论基础,主要内容如下:
     (1)对原环管型燃烧室在设计工况下的燃油流场进行数值计算,得到了燃烧场特性参数分布情况,并根据计算结果对燃烧室几何模型进行简化。
     (2)采用数值模拟的方法深入系统地研究了点火位置、点火能量、点火持续时间、点火功率以及火核半径对点火性能的影响,探讨了导致点火失败的原因,并分析了空气温度、燃油温度以及油滴喷射速度对点火边界的影响;得到了环管型燃烧室的最优点火位置、最低点火能量、最短点火持续时间和最小火核半径;研究结果为点火器的设计和布局提供了指导。
     (3)研究了环管型燃烧室的点火过程和火焰传播过程;分析了联焰管位置对联焰时间的影响以及联焰管在点火过程中的作用;找到了最佳联焰管位置,使燃烧室的联焰时间最短;得到了整个燃烧室的联焰时间以及湍流火焰传播速度。研究发现在整个点火过程中,二次回流区起到了非常重要的引燃作用、燃油蒸发导致了点火的延迟、联焰管的存在有效地提高了燃烧室的工作稳定性。
     (4)研究了环管型燃烧室在不同油气比时的燃烧场特性,分析了火焰前锋和火焰根部的变化特征,得到了熄火先兆现象,从而为燃烧室贫油熄火的控制提供了基础。根据熄火先兆的基本特征,提出了燃烧室贫油熄火极限的判断准则。应用该准则计算了某双旋流环形燃烧室的贫油熄火边界,计算结果与其实验数据吻合良好,表明了该方法的准确性。在此基础上,探讨了空气温度、燃油温度、油滴喷射速度和油滴直径等参数对环管型燃烧室贫油熄火极限的影响。
     本文创新点:
     (1)对点火位置、点火能量、点火功率、点火持续时间和火核半径进行了深入系统的研究,得到了环管型燃烧室点火能量、持续时间和火核半径三个关键参数的耦合作用对点火性能的影响规律,为点火器的设计和布局提供了指导。
     (2)对环管型燃烧室的点火过程过程进行了数值研究,得到了环管型燃烧室的火焰传播动态特征,为燃烧室的结构设计和联焰管的布置奠定了基础。
     (3)提出了“特征节点法”作为燃气轮机环管型燃烧室贫油熄火极限的判断准则。采用该方法分析了环管型燃烧室贫油熄火极限的影响因素,提高了熄火极限的判断精度,在燃烧室设计中为贫油熄火先兆的判断提供了依据。
Gas turbine is often working at the condition of rich fuel in ignition process and there islots of smoke at the combustor exit. To solve this problem, it is hoped that the ignition can besuccessfully achieved at lean condition. But the combustor lean ignition limit is extremelynarrow, so people try all their best to improve the ignition limit. The ignition location,ignition energy, ignition continuance, and flame core diameter play a very importantinfluence on ignition characteristic. So, the investigation on ignition property and itsinfluence take a very important role in combustor design and alteration.
     In practice, gas turbine will always deviate from the design point. While working at thelow operation condition, combustor is easy to be extinction. It is hoped that combustor LeanBlowout Limits (LBO) could be predicted exactly and improved greatly. If the combustorLBO or extinction portent could be predicted both in terms of experiment and theoreticaltreatment, on one hand, the corresponding operation may be carried out to avoid extinction,on the other hand, the combustor LBO could be improved by combustor structureoptimization and to provide a guideline for combustor design.
     The paper investigated a can annular gas turbine combustor, established the combustionconservation equations, and researched combustor ignition and extinction characteristic bynumerical simulation. And the conclustions provide a theoretical guideline for combustordesign. The main contents are as follows:
     (1) The numerical simulation on the antetype combustor working with oil fuel wascarried out at the combustor design condition. According to this numerical result, combustorgeometry model was simplified.
     (2) The numerical research on combustor ignition performance has been carried out inthe present work, including ignition location, ignition energy, ignition power, ignitioncontinuance and flame core diameter. The paper also analyzed the reason for unsuccessfulignition and the influence of air temperature, oil temperature and oil velocity on ingnitionproperty. The resuls show that, the optimal ignition location, the minimum ignition energy,the shortest ignition continuance, and the smallest flame core diameter can be found bynumerical simulation. The research can provide a guideline for igniter design and its layout.
     (3) The paper researched ignition process and flame propagation characteristic, analyzedthe influence of crossfirer location on propagation time and the role of crossfirer in ignitionphase. The numerical results show that, there will be an optimal crossfirer location which canminimize the flame propagation time. The whole ignition time and the turbulent flamepropagation velocity are abtained. The present work found that the second recirculation zonetakes a very important role in ignition process, oil evaporation delays the ignition process,and crossfirers can effectively improve the combustor stability.
     (4) The paper investigated the combustion flow field at different species, and analyzedthe characteristic of flame frontier and flame root. Extinction portent was gained bynumerical simulation. The conclution of the results provide a guideline for combustor controlto avoid extinction. According to extinction portent property, an extinction criterion named"Characteristic Point Method"(CPM) has been put forward in the end of the paper. Thismethod was used to predict one type of dual-swirls combustor, and the numerical results arein good agreement with the experiment data. The conclusion confirmed the precision of thismethod. The paper also analyzed the influence of air temperature, oil temperature, oil velocity,and oil droplet average-diameters on combustor LBO.
     Innovations of this dissertation are as follows:
     (1) A systematic study has been carried out on combustor ignition performance,including igniter location, energy, power, and continuance.The present work abtained theinfluence of igniter property on ignition characteristic. The conclusion would provide apractical guideline for igniter design and layout.
     (2) The numerical simulation on can-annular combustor ignition process has beencarried out in the paper. The flme propagation characteristic of can-annular combustor hasbeen summarized. The present work provides a guideline for combustor and crossfirer design.
     (3) A new extinction criterion named "Characteristic Point Method" has been putforward in the present work. And it has been used to investigate the influence of operationparameters on combustor Lean Blowout Limits. The criterion improves the prediction ofcombustor Lean Blowout Limits and it also provides an estimate for extinction portent.
引文
[1]穆勇.燃气轮机双燃料燃烧室流场及污染排放数值研究[D].哈尔滨工程大学博士学位论文,2010.
    [2]张会生,苏明,翁史烈.基于回热循环的燃气轮机发电系统技术分析[J].热力透平.2004,33(3):137-162页.
    [3]焦树建.燃气轮机燃烧室[M].北京:机械工业出版社,1981:139-173页.
    [4]陈永辰.贫油预混燃烧火焰不稳定机理的研究综述[C].中国动力工程学会透平专业委员会2007年学术研讨会.中国湖北武汉,2007:301-306页.
    [5]李继保,刘大响.局部富油供油扩展燃烧室贫油点火熄火边界研究[J].航空动力学报.2003,18(2):221-224页.
    [6] Arash Ateshkadi, Vincent G.Mcdonell, G.S.Samuelsen. Lean Blowout Model for aSpray-Fired Swirl-Stabilized Combustor [J]. Proceedings of the Combustion Institute.2000, Vol.28, pp:1281-1288.
    [7]房爱兵.燃气轮机合成气燃烧室燃烧稳定性的实验研究[D].中国科学院研究生院博士学位论文.2007.
    [8]林宇震,许全宏,刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社,2008.
    [9] M.Stohr, I.Boxx, C.Carter, W.Meier. Dynamics of Lean Blowout of a Swirl-StabilizedFlame in a Gas Turbine Model Combustor [J]. Proceedings of the Combustion Institute.2011, Vol.33, pp:2953-2960.
    [10] Arthur H. Lefebvre and Dilip R. Ballal Lefebvre. Gas Turbine Combustion: AlternativeFuels and Emissions [M]. New York: CRC Press,2010.
    [11] S.K.Aggarwal. A review of spray ignition phenomena: present status and futureresearch [J]. Progress in Energy and Combustion Science.1998, Vol.24, Issue6, pp:565-600.
    [12] S.F.Ahmed, R.Balachandran, T.Marchione, E.Mastorakos. Spark ignition of turbulentnonpremixed bluff-body flames [J]. Combustion and Flame.2007, Vol.151, Issue1-2,pp:366-385.
    [13] S.F.Ahmed. Ignition of Turbulent Non-premixed Flame [D].A dissertation for thedegree of Doctor of Philosophy, University of Cambridge, UK,2006.
    [14] S.F.Ahmed, E.Mastorakos. Spark ignition of lifted turbulent jet flames [J]. Combustionand Flame.2006, Vol.146, Issue1-2, pp:215-231.
    [15] David W.Naegeli, Lee G.Dodge. Ignition Study in a Gas Turbine Combustor [J].Combustion Science and Technology.1991, Vol.80, Issue4-6, pp:165-184.
    [16] T.Marchione, S.F.Ahmed, E.Mastorakos. Ignition of turbulent swirling n-heptane sprayflames using single and multiple sparks [J]. Combustion and Flame.2009, Vol.156,Issue1, pp:166-180.
    [17] E.Mastorakos. Spark ignition of turbulent nonpremixed flames: experiments andsimulations [C]. Proceedings of the International Workshop.2009, Vol.1190, Issue1,pp:63-67.
    [18] Seongman Choi, Donghun Lee and Jeongbae Park. Ignition and combustioncharacteristics of the gas turbine slinger combustor [J]. Journal of Mechanical Scienceand Technology.2008, Vol.22, Issue3, pp:538-544.
    [19] N.K.Rizk, H.C.Mongia. Gas Turbine Combustor Design Methodology [J]. AIAAPaper86-1531,1986.
    [20] G.J.Sturgess.Combustor LBO Design Model Evaluation [R]. WL-TR-95-2089, USA:Technical Report distributed by Defense Technical Information Center,1995.
    [21] G.J.Sturgess, D.T.Shouse. A Hybrid Model for Calculatin Lean Blow-Outs in PracticalCombustors [J]. AIAA Paper96-3125,1996.
    [22] T.M.Muruganandam,S.Nair, R.Olsen, Y.Neumeier, A.Meyers, J.Jagoda, T.ieuwen,J.Seitzman and B.Zinn. Blowout Control in Turbine Engine Combustors [J]. AIAAPaper2004-637,2004.
    [23] T.M.Muruganandam, S.Nair, D.Scarborough, Y.Neumeier, J.Jagoda, T.Lieuwen,J.Seitzman, and B.Zinn. Active Control of Lean Blowout for Turbine EngineCombustors [J]. Journal of Propulsion and Power.2005, Vol.21, No.5, pp:807-814.
    [24] Mohan K.Bobba, Priya Gopalakrishan, Karthik Periagaram, Jerry M.Seitzman. FlameStructure and Stabilization Mechanisms in a Stagnation-Point Reverse-FlowCombustor [J]. Journal of Engineering for Gas Turbines and Power.2008,130:031501.
    [25] Yedidia Neumeier, Yoav Weksler, Ben Zinn, Jerry Seitzman, jeff Jagoda and JeremyKenny. Ultra Low Emissions Combustor with Non-Premixed Reactants Injcetion [J].Paper No. AIAA2005-3775,2005.
    [26] R.W.Schefer. Hydrogen Enrichment for Improved Lean Flame Stability [J].International Journal of Hydrogen Energy.2003,28, pp:1131-1141.
    [27] J.P.Frenillot, G.Cabot, M.Cazalens, B.Renou, M.A.Boukhalfa. Impact of H2Additionon Flame Stabiltty and Pollutant Emissions for an Atmospheric Kerosene-air SwirledFlame of Laboratory Scaled Gas Turbine [J]. International Journal of Hydrogen Energy.2009,34, pp:3930-3944.
    [28] Joseph Burguburu, Gilles Cabot, Bruno Renou, Abdelkrim M. Boukhalfa, MichelCazalens. Effects of H2enrichment on flame stability and pollutant emissions for akerosene/air swirled flame with an aeronautical fuel injector [J]. Proceedings of theCombustion Institute.2011, Vol.33, pp:2927-2935.
    [29] Eun-Seong Cho, Suk Ho Chung. Improvement of Flame Stability and NOx Reductionin Hydrogen Ultra Lean Premixed Combustion [J]. Journal of Mechanical Science andTechnology.2009,23, pp:650-658.
    [30] P.Griebel, E.Boschek, P.Jansohn. Lean Blowout Limits and NOx Emissions ofTurbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Falmes at High Pressure[J]. Journal of Engineering for Gas Turbines and Power.2007,129, pp:404-410.
    [31] M.R.Johnson, D.Littlejohn, W.A.Nazzer, K.O.Smith, R.K.Cheng. A comparison of theflowfields and emissions of high-swirl injectors and low-swirl injectors for leanpremixed gas turbines [J]. Proceedings of the Combustion Institute.2004, Vol.30, Issue2,2005, pp:2867-2874.
    [32] D.Littlejohn, R.K.Cheng. Fuel Effects on a Low-swirl Injector for Lean Premixed GasTurbine [J]. Proceedings of the Combustion Institute.2007, Vol.31, Issue2, pp:3155-3162.
    [33] K.Kumaran, U.S.P.Shet. Effect of swirl on lean flame limits of pilot-stabilized openpremixed turbulent flames [J]. Combustion and Flame.2007, Vol.151,pp:391-395.
    [34] A.Mansour, M.Benjiamin. D.L.Straub, G.A.Richards. Application of MacrolaminationTechnology to Lean Premixed Combustion [J]. Journal of Engineering for GasTurbines and Power.2001,123, pp:796-802.
    [35] D.Fritsche, M.furi, K.Boulouchos. An experimental investigation of thermoacousticinstabilities in a premixed swirl-stabilized flame [J]. Combustion and Flame.2007,151,pp:29-36.
    [36] Naoki Aida, Tomoki Nishijima, Shigeru Hayashi, Hideshi Yamada, TadashigeKawakami. Combustion of lean prevaporized fuel-air mixtures mixed with hot burnedgas for low-NOx emissions over an extended range of fuel-air ratios [J]. Proceedings ofthe Combustion Institude.2005,30, pp:2885-2892.
    [37] Hisato Arimura, Katsunore Tanaka, Shinji Akamatsu, and Masakazu Nose. AdvancedDry Low NOx Combustor for Mitsubishi G Class Gas Turbines [C]. Proceedings of theInternational Conference on Power Engineering-09(ICOPE-09), November16-20,2009,Kobe, Japan. B105.
    [38] W.Meier, X.R.Duan, P.Weigand. Investigations of Swirl Flames in a Gas TurbineModel Combustor II. Turbulence-Chemistry Interactions [J]. Combustion and Flame.2006, Vol.144,225-236P.
    [39] Cheol-Hong Hwang, Chang-Eon Lee and Jong-Hyun Kim. Flame Blowout Limits ofLaddfill Gas Mixed Fuels in a Swirling Nonpremixed Combustor [J]. Energy and Fuels.2008, Vol.22:2933-2940P.
    [40]邢菲,张帅,邹建锋,郑耀.基于驻涡燃烧室的贫油熄火经验关系式初探[J].航空学报,2010,31(10):1914-1918页.
    [41] Fei Xing, Peiyong Wang, Shuai Zhang, Jianfeng Zou, Yao Zheng, Rongchun Zhang,Weijun Fan. Experiment and simulation study on lean blow-out of trapped vortexcombustor with various aspect ratios [H]. Aerospace Science and Technology.2011,Vol.18, Issue1, pp:48-55.
    [42]邢菲,张荣春,樊未军,柳杨,闫永强.主流及掺混气温度对单涡/贫油驻涡燃烧室点火熄火性能影响实验[J].航空动力学报.2008,23(12):2280-2285页.
    [43]孔昭健,樊未军,易琪,刘玉英,杨茂林.采用蒸发管供油的驻涡燃烧室点火及熄火特性[J].航空动力学报.2007,22(7):1132-1137页.
    [44]张韬,宋双文,樊未军,张荣春.双涡/贫油驻涡燃烧室的贫油熄火特性实验[J].航空动力学报,2011,26(6),1328-1333页.
    [45]张弛,王建臣,覃清钦,杜鹏,姚翔,林宇震,许全宏.微型燃气轮机乙醇燃烧室点火与熄火实验[J].航空动力学报.2009,Vol24,No9,1930-1936页.
    [46]许全宏,林宇震,刘高恩,王志平.航空发动机高温升燃烧室贫油熄火及冒烟性能研究[J].航空动力学报.2005,20(4):636-640页.
    [47]刘百麟,林宇震,袁怡祥,刘高恩,胡正义,徐华胜.高温升燃烧室贫油熄火稳定性研究[J].推进技术.2003,24(5):456-459页.
    [48]袁怡祥,林宇震,刘高恩.旋流杯燃烧室头部流场域喷雾对贫油熄火的影响[J].航空动力学报.2004,19(3):332-337页.
    [49]林宇震,林阳,张弛,许全宏.先进燃烧室分级燃烧空气流量分配的探讨[J].航空动力学报.2010,25(9):1923-1930页.
    [50]林宇震,彭云晖,刘高恩.分级/预混合预蒸发贫油燃烧低污染方案NOx排放初步研究[J].航空动力学报.2003,18(4):492-497页.
    [51]袁怡祥,林宇震,刘高恩,胡国新,龚静.燃油周向分级对贫油熄火油气比的影响[J].航空动力学报.2003,18(5),639-644页.
    [52]徐浩鹏,王方,黄勇,张玉芳.头部气量分配对旋流杯结构燃烧室贫熄性能的影响[J].航空动力学报,2009,24(2):347-352页.
    [53]史家荣.短环燃烧室点火和燃烧稳定性能研究[C].探索创新交流-中国航空学会青年科技论坛文集.2004,07:268-273页.
    [54]谢法,黄勇,苗辉,陈海刚.气量分配对双轴向旋流器燃烧室贫熄性能影响[J].北京航空航天大学学报.2011,37(11):1456-1460页.
    [55]谢法,黄勇,苗辉,胡斌.气量分配对轴径向旋流杯燃烧室贫熄边界的影响[J].航空动力学报.2011,26(8):1756-1760页.
    [56]张均勇,张宝诚.航空发动机燃烧室工作稳定性的研究[J].航空发动机.2001,第1期:31-39页.
    [57]党新宪.单头部双旋流器环形燃烧室性能试验研究和数值模拟[D].南京:南京航空航天大学硕士学位论文,2005.
    [58]党新宪.双旋流环形燃烧室试验研究与数值模拟[D].南京:南京航空航天大学博士学位论文,2009.
    [59]党新宪,赵坚行,刘勇,颜应文,徐榕,张欣.模型燃烧室油雾特性试验[J].南京航空航天大学学报.2010,42(5):596-600页.
    [60]党新宪,赵坚行,吉洪湖.试验研究双旋流器头部燃烧室几何参数对燃烧性能影响[J].航空动力学报.2007,22(10):1639-1645页.
    [61]党新宪,赵坚行,徐榕,颜应文,刘勇.试验研究旋流数对燃烧室气动性能的影响[J].航空动力学报.2011,26(1):21-27页.
    [62]张哲巅.湿空气扩散火焰的实验和数值研究[D].中国科学院研究生院博士学位论文.2006.
    [63]雷宇,房爱兵,徐纲,聂超群,黄伟光.燃气轮机合成气燃烧室燃料气加湿实验研究[J].工程热物理学报.2008,29(1):161-164页.
    [64]徐纲,俞镔,雷宇,宋权斌,房爱兵,聂超群,黄伟光.合成气燃气轮机燃烧室的实验研究[J].中国电机工程学报.2006.9,26(17):100-105页.
    [65]田颖,徐纲,宋权斌,崔玉峰,房爱兵,聂超群.贫燃料预混燃烧的回火特性研究[J].工程热物理学报.2006,27(5):871-874页.
    [66]范海琳.旋流杯燃烧室主燃区回流结构及其贫熄相关初步分析[D].北京:中国科学研究生院硕士学位论文.2011.
    [67] Yei-Chin Chao, Yong-Li Chang, Chih-Yung Wu and Tsarng-Sheng Cheng. AnExperimental Investigation of the Blowout Process of a Jet Flame [J]. Proceedings ofthe Combustion Institute.2000, Vol.28:335-342P.
    [68]刘瑞同.双燃料燃气轮机的燃料切换与混烧[J].燃气轮机技术.2001.3,14(1):54-55页.
    [69]冀光,张文平,穆勇.燃气轮机等离子点火系统实验研究[J].燃气轮机技术.2006,Vol.19,No.2,49-52页.
    [70]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004:120-130页.
    [71] Alexandre Neophytou, E.Mastorakos, R.S.Cant. DNS of spark ignition and dege flamepropagation in turbulent droplet-laden mixing layers [J]. Combustion and Flame.2010,Vol.157, Issue6, pp:1071-1086.
    [72] Alexandre Neophytou, E.Mastorakos, R.S.Cant. DNS of Spark Ignition in TurbulentDroplet-laden Mixing Layers [C].4th European Combustion Meeting, Vienna, Austria,14-17, April,2009.
    [73] Alexandre Neophytou. Spark Ignition and Flame Propagation in Sprays [D].Dissertation for the Degree of Doctor of Philosophy. University of Cambridge, UK,2010.
    [74] Alexandre Neophytou, E.SRichardson, E.Mastorakos. Spark ignition of turbulentrecirculating non-premixed gas and spray flames: a model forpredicting ignitionprobability [J]. Combustion and Flame.2012, Vol.159, Issue4, pp:1503-1522.
    [75] A.Eyssartier, G.Hannebique, D.Barre, L.Y.M.Gicquel, B.Cuenot. Ignition predictionsfrom non-reacting LES: application and assessment on complex configuration[J].C.R.Mecanique,2011, Vol.333, pp:1-12.
    [76] A.Eyssartier, B.Cuenot, L.Y.M.Gicquel and T.Poinsot. Using LES to predict ignitionsequences and ignition probability of turbulent two-Phase flames [J]. Combustion andFlame.2011.
    [77] V.Subramanian, P.Domingo, L.Vervisch. Large eddy simulation of forced ignition ofan annular bluff-body burner [J].Combustion and Flame.2010, Vol.157, Issue3, pp:579-601.
    [78] William P.Jones, Artur Tyliszczak. Largeeddy simulation of spark ignition in a gasturbine combustor [J].2010, Vol.85, Issue3-4, pp:711-734.
    [79] M.Boileau, G.Staffelbach, B.Cuenot, T.Poinsot, C.Berat. LES of an ignition sequencein a gas turbine engine [J]. Combustion and Flame.2008, Vol.154, Issues1-2, pp:2-22.
    [80] M.Boileau, J.B.Mossa, B.Cuenot, T.Poinsot, D. Bissieres and C. Berat. Toward LES ofan ignition sequence in a full helicopter combustor [R]. Report No. TR/CFD/05/72.
    [81] B.Cuenot, M.Boileau, S.Pascaud, J.B.Mossa, E.Riber, T.Poinsot. Large eddysimulation of two-phase reacting flows [C]. European Conference on ComputationalFluid Dynamics ECCOMAS CFD2006, Netherlands.
    [82] L.Y.M.Gicquel, G.Staffelbach, M.Sanjose and M.Boileau. Prediction of the IgnitionPhases in Aeronautical and Laboratory Burners using Large Eddy Simulations [C]. AIPConference Proceedings, Czestochowa, Poland,20-21, November,2008, Vol.1190, pp:3-12.
    [83] Stefano Tiribuzi. Very Rough Grid Approach for CFD Modelling of ThermoacousticOscillations inside and Annular Premixed Combustor [C]. ASME: GT2006-90055,2-8P.
    [84] K.Sudhakar Reddy. CFD Analysis of Fuel Distribution in Concentric Swirling Flows ina Reverse Flow Gas Turbine Combustor [C]. ASME GT2006-91216,2-10P.
    [85] Christophe Duwig, Laszlo Fuchs. Study of Flame Stabilization in a SwirlingCombustor Using a New Flamelet Formulation [J]. Combustion Science andTechnology.177(2005):1485-1510.
    [86] W.P.Jones and V.N.Prasad. Large Eddy Simulation of the Sandia Flame Series (D-F)Using the Eulerian Stochastic Field Method [J]. Combustion and Flame,2010, Vol.157:1621-1636P.
    [87] Ying Huang, Vigor Yang. Dynamics and stability of lean-premixed swirl-stabilizedcombustion [J]. Progress in Energy and Combustion Science.2009, Vol.35, pp:293-364.
    [88] Francesca Rebosil, Axel Widenhorn, Berthold Noll, Manfred Aigner. NumericalSimulation of a Gas Turbine Model Combustor Operated Near the Lean ExtinctionLimit [C]. ASME Turbo Expo2010: Power for Land, Sea and Air (GT2010).2010,GT2010-22751, pp:603-612.
    [89] Mark G. Turner, John A. Reed, Robert Ryder, Jospeh P. Veres. Multi-FidelitySimulation of Turbofan Engine with Results Zoomed into Mini-Maps for a Zero-DCycle Simulation [C]. ASME Turbo Expo2004, Vinenna, Austria, June14-17,2004,GT2004-53956.
    [90]周力行.离散型多相湍流和湍流燃烧的基础研究和数值模拟[J].中国科技奖励.2008,(5):27页.
    [91]崔玉峰,徐纲,聂超群,黄伟光.数值模拟在合成气燃气轮机燃烧室设计中的应用[J].中国电机工程学报.2006.8,26(16):109-115页.
    [92]穆勇.等离子点火器三维燃烧场数值模拟[D].哈尔滨:哈尔滨工程大学硕士学位论文.2005.
    [93]穆勇,郑洪涛,李智明,杨家龙.燃气轮机双燃料燃烧室流场对比数值研究[J].航空动力学报.2009,24(9):1937-1944页.
    [94]穆勇,郑洪涛,谭智勇,李智明.燃气轮机燃油燃烧室改用双燃料流场数值分析[J].燃气轮机技术.2009,22(3):49-54页.
    [95] Mu Yong, Zheng Hongtao, Li Zhiming. Application of Eddy Dissipation ConceptModel in Simulation of Gas Turbine [C]. Asia-Pacific Power and Energy EngineeringConference. March28-31,2009Wuhan, China.
    [96] Zheng Hongtao, Mu Yong, He Hongjuan. Numerical Simulation of Combustion Flowsin Dual-fuel Combustor [C]. Asia-Pacific Power and Energy Engineering Conference.March28-31,2010Chengdu, China.
    [97]贺红娟.双燃料燃烧室燃烧流场数值模拟[D].哈尔滨:哈尔滨工程大学硕士学位论文.2009.
    [98]杨洪磊.双燃料喷嘴设计与燃烧流场数值模拟[D].哈尔滨:哈尔滨工程大学硕士学位论文.2010.
    [99]李金英.燃料裂解气燃烧技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文.2008.
    [100]何悟.燃烧室内液体燃料燃烧流场的数值预测技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文.2012.
    [101]冀春俊,任建新.燃气轮机回流式燃烧室内两相流动数值模拟及分析[J].热科学与技术.2009,7(4):349-353页.
    [102]张宝诚,纪友哲,王平.航空发动机燃烧室熄火特性的研究[J].沈阳航空工业学院学报.2004,21(3):1-3页.
    [103]李武奇,张均勇,张宝诚,韩力.航空发动机住燃烧室稳定工作范围研究[J].航空发动机,2006,32(2):38-42页.
    [104]席文雄,王振国.突扩燃烧室在准稳态假设下的熄火过程对比分析[J].火箭推进.2009,35(2):25-29页.
    [105]蔡文祥,赵坚行,胡好生,党新宪,武晓松.燃烧室贫油熄火极限数值预测[J].航空动力学报,2010,25(7):1478-1484页.
    [106]胡斌,黄勇,王方,谢法.基于冷态数值模拟的航空发动机燃烧室贫油熄火预测[J].推进技术.2002,33(2):232-238页.
    [107] Ansys Fluent12.0. Theory Guide.
    [108]岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002:114-136页.
    [109] S.V.Pantankar著.张政译.传热与流体流动的数值计算[M].北京:科学出版社,1992.
    [110] Byung-il Choi, Yong-shik Han, Myung-bae Kim, Cheol-hong Hwang, Chang Bo Oh.Experimental and Numerical Studies of Mixing and Flame Stability in a Micro-cycloneCombustor [J]. Chemical Engineering Science.2009, Vol.64, No.9, pp:5276-5286.
    [111] A.G.Chen, Daniel J.Maloney, William H.Day. Humid Air NOx Reduction Effect onLiquid Fuel Combustion [J]. Journal of Engineering for Gas Turbines and Power.2004,Vol.126, pp:69-74.
    [112] M.D.Durbin, M.D.Vangsness, D.R.Ballal, V.R.Katta. Study of flame stability in a stepswirl combustor [J]. Journal of Engineering for Gas Turbines and Power.1996,Vol.118, Issue2, pp:308-315.
    [113] D.Andreadis.李子志译.高空点火和贫油减速熄火极限[J].AIAA paper1985-1287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700