用户名: 密码: 验证码:
铁路减隔震桥梁地震反应分析及易损性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国高速铁路和客运专线建设迅速发展,一些新型的减隔震支座已逐渐应用在铁路高墩简支梁桥中。但目前采用新型减隔震支座的类似铁路桥梁还未得到强震充分检验,理论研究也不充分。本文结合我国在建的铁路客运专线上两座采用不同减隔震支座的32m简支梁桥为背景,对铁路减隔震桥梁的抗震设计理论、抗震性能以及地震易损性进行了系统的研究。论文的主要工作和取得的成果有:
     1、采用ABAQUS建立了E型钢阻尼支座阻尼元件的非线性实体模型,详细分析了E型钢阻尼器的屈服强度对其耗能特性的影响,在此基础上给出了该支座简化的三直线力学模型;采用纤维模型计算了钢轨横桥向变形的M-φ曲线,并提出了钢轨的双直线简化力学模型;针对铁路减隔震桥梁地震反应的特点,建立了考虑轨道约束的线桥一体化非线性有限元计算模型,探讨了轨道约束对结构动力特性的影响,并讨论了合理的非线性有限元计算模型;
     2、以高速铁路客运专线上两座采用不同减隔震装置的高墩简支桥梁为对象,通过数值模拟研究了轨道约束对铁路减隔震桥梁地震反应的影响,并进一步分析了道床阻力系数等参数对结构地震反应的影响规律;研究了地震作用下轨道横向弯曲与残余变形的特征,为铁路减隔震桥梁抗震设计时是否考虑轨道约束作用提供参考;
     3、以我国高速铁路客运专线上采用E型钢阻尼支座的高墩简支梁桥为对象,通过改变桥墩高度建立了40个不同动力性能的桥梁计算模型,并从PEER强震数据库中选取相似场地的20条历史地震动进行地震时程反应分析,探讨了结构动力特性的铁路减隔震简支梁桥地震反应规律,以及轨道约束对不同结构形式的桥梁地震反应的影响;
     4、结合近场地震作用的特点,采用三角函数模拟近场地震动的速度脉冲,并以此为地震动输入,研究了近场地震和不同脉冲参数对采用E型钢阻尼支座的铁路隔震简支梁桥的地震反应及减震效果的影响。用改进的碰撞分析模型模拟了摩擦摆式支座的限位装置在近场地震动作用下支座内壁的碰撞响应,讨论支座内壁碰撞效应对结构地震反应的影响,并提出支座内设置缓冲装置的方案来减小地震碰撞效应。
     5、以高速铁路客运专线上采用E型钢阻尼支座的高墩简支梁桥为对象,建立了考虑轨道约束的线桥一体化计算模型,根据桥梁场地类型从PEER强震数据库中选取100条类似场地地震动来模拟地震的不确定性,对结构进行非线性时程反应分析。通过定义各构件的极限破坏状态,采用传统可靠度概率的方法形成了减隔震支座以及桥墩顺桥向和横桥向的易损性曲线,在此基础上,对比分析各构件地震易损性并从地震易损性分析的角度评估铁路减隔震桥梁的抗震性能。
In recent years, with the rapid development of high-speed railway and passenger line construction in our country, some new-style cushion seats have been applied in railway high-pier simply-supported girder bridge. However most of railway bridges with new-style cushion seats have not been tested under strong earthquake, of which the seismic performance research are inadequate. Based on this background, a series of comprehensive studies on seismic design theory, seismic performance as well as seismic vulnerability of railway high-pier bridge with cushion seats are developed in this paper, combined with two32-span simply-supported beam bridges(the pier more than40m) of dedicated high-speed passenger railway lines installed with different cushion seats. The main work and the results achieved are as follows:
     1. A nonlinear solid FE model of E-steel damping bearing has been developed by ABAQUS. With this model:the influence of the yield strength of E-steel damping bearing on its attenuation property is discussed to get the simplified triple-line mechanical model of this kind of bearing; the railway's lateral-oriented M-φ curve is calculated to get its simplified double-line mechanical model; Considering the seismic behavior of the railway bridge with cushion seats, a rail-bridge integration nonlinear FE model has been established to research its dynamic characteristic, based on which the influence of railway constraints on structural dynamic is observed and a more rational nonlinear FE model has been discussed in detail.
     2. Based on the two high-pier simply-supported girder bridges with different cushion seats on the high-speed railway passenger line, the rail-bridge integration nonlinear FE models, relatively considering or non-considering the railway constraints, are developed. These two different models are helped to analyses the influence of the constraints and the road-bed damping factor on the seismic behavior of the rail-bridge with cushion seats by the seismic time history analysis. Meanwhile, the influential mechanism of rail's lateral bending to residual deformation is studied to develop a seismic design reference of rail-bridge with cushion seats.
     3. A further study of the rule of seismic behavior of railway simple-supported bridge with cushion seats of different parameters and the influence of rail-constraints on distinct kinds of bridges's seismic behavior has been made with the example of the high-pier simply-supported girder bridges on the high-speed railway passenger line. Based on these examples, this paper establishes40calculating model with different dynamic characteristics, which varying the pier heights, and chooses20earthquake line that suits for the II venue from the PEER SE database.
     4. This paper systematically studies the impact of the near-field earthquake and different pulse parameters on the seismic response of the cushioning railway simply-supported girder bridge with E-steel damping bearings. In this study, the near-field seismic action, as a seismic input, is been simulated by trigonometric functions and the near-field seismic characteristic has been fully considered. The improved collision analysis model is used to simulate the collision effect of the limit device of friction pendulum bearings under near-field earthquake. The influence of the collision effect on the structural seismic behavior is discussed and meanwhile, the cushioning device is set to minimize the collision effect.
     5. Based on the high-pier simply-supported girder bridge with E-steel damping bearings on the passenger line,100history earthquake lines with the very venue the bridge belonging to, have been chosen from PEER to make a nonlinear time-history analysis. Defining the ultimate broken condition, the lateral and longitude pier-bearing vulnerability curves have been developed by means of the traditional reliability probability theory. Based on the study mentioned above, this paper makes a comparison analyses of the members'seismic vulnerability and evaluates the seismic behavior of rail-bridge with cushion seats from the perspective of seismic vulnerability analysis.
引文
[1]李龙安.地震灾害对铁路桥梁的影响及其抗震设计与减隔震控制研究[J].西南公路.2010(2):12-22.
    [2]铁路工程抗震设计规范(GB50111-2006)[S].2006.
    [3]Gulerce Z, Abrahamson N A. Vector-Valued Probabilistic Seismic Hazard Assessment for the Effects of Vertical Ground Motions on the Seismic Response of Highway Bridges[J]. EARTHQUAKE SPECTRA.2010,26(4):999-1016.
    [4]J. P Y, S. A A H, K. W Y. Damage-limiting aseismic design of buildings[J]. Earthquake spectra.1987,3(1):1-26.
    [5]Park Y J, Ang A. MECHANISTIC SEISMIC DAMAGE MODEL FOR REINFORCED-CONCRETE[J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE.1985, 111(4):722-739.
    [6]Preliminary Seismic Vulnerability Assessment of Existing Reinforced Concrete Buildings in Turkey Part Ⅰ:Statistical Model Based on Structural Characteristics[J].
    [7]Tondini N, Stojadinovic B. Probabilistic seismic demand model for curved reinforced concrete bridges[J]. BULLETIN OF EARTHQUAKE ENGINEERING.2012,10(5):1455-1479.
    [8]Han Y, Davidson R A. Probabilistic seismic hazard analysis for spatially distributed infrastructure[J]. Earthquake Engineering & Structural Dynamics.2012,41(15):2141-2158.
    [9]杨风利.铁路桥梁减隔震设计方法及设计参数研究[D].北京交通大学,2007.
    [10]丁剑霆,姜淑珍,包峰.唐山地震桥梁震害回顾[J].世界地震工程.2006(01): 68-71.
    [11]唐山—丰南地震六座铁路桥梁抗震抢修工作情况简介[J].桥梁建设.1976(06): 1-19.
    [12]朱颖,魏永幸.汶川地震铁路工程震害特征及工程抗震设计对策思考[J].岩石力学与工程学报.2010(S1):3378-3386.
    [13]武田寿一.构造物の免震防振制振[M].技报堂出版,1998.
    [14]Cardone D, Dolce M, Gesualdi G. Lateral force distributions for the linear static analysis of base-isolated buildings[J]. BULLETIN OF EARTHQUAKE ENGINEERING.2009,7(3): 801-834.
    [15]lemura H, Taghikhany T, Jain S K. Optimum design of resilient sliding isolation system for seismic protection of equipments[J]. BULLETIN OF EARTHQUAKE ENGINEERING.2007, 5(1):85-103.
    [16]Mostaghel N, Davis T. REPRESENTATIONS OF COULOMB FRICTION FOR DYNAMIC ANALYSIS[J]. Earthquake Engineering & Structural Dynamics.1997,26(5): 541-548.
    [17]Dolce M, Cardone D, Palermo G. Seismic isolation of bridges using isolation systems based on flat sliding bearings[J]. BULLETIN OF EARTHQUAKE ENGINEERING.2007,5(4): 491-509.
    [18]Zayas V A, Low S A, Mahin S A. The FPS Earthquake Resisting System Experimental Report[R]. Earthquake Engineering Research Center,1987.
    [19]黄艳,阎贵平,鞠彦忠.采用减隔震支座提高桥梁结构的安全性[J].中国安全科学学报.2002(5):75-79.
    [20]范立础.桥梁抗震[M].1.上海:同济大学出版社,1997: 312.
    [21]范立础.桥梁减隔震设计[M].1.北京:人民交通出版社,2001:203.
    [22]谢旭.桥梁结构地震响应分析与抗震设计[M].1.北京:人民交通出版社,2006.
    [23]范立础,王志强.我国桥梁隔震技术的应用[J].振动工程学报.1999(2): 26-34.
    [24]于芳.列车荷载及地震作用下隔震铁路桥梁的动力性能研究[D].哈尔滨工业大学,2011.
    [25]G B I, L M R. Seismic isolation history:application and performance-a world review[J]. Earthquake Spectra.1990.
    [26]J D, M J P. Experimental and Numerical Methods in Earthquake Engineering[M]. Kluwer Academic Publishers,1991:396.
    [27]M S, E M, G G. Effect of base isolation on the seismic response of multi column bridges[J]. Structural Engineer.1999.
    [28]B B, S E A. Refined force reduction factors for seismic design[J]. Engineering Structures. 2000.
    [29]张骏,阎贵平.减隔震支座对梁式桥抗震性能的影响[J].中国公路学报.2002(1): 41-46.
    [30]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D].铁道部科学研究院,2003.
    [31]韩学敏,钟铁毅,朱正国.铅芯橡胶支座在铁路桥梁抗震中的应用研究[J].石家庄铁道学院学报.2004(1):34-38.
    [32]王丽,闫维明,阎贵平.铅芯橡胶支座参数对隔震桥梁动力响应的影响[J].北京工业大学学报.2004(3):304-308.
    [33]杨风利,钟铁毅,夏禾.铁路简支梁桥减隔震支座设计参数的优化研究[J].铁道学报.2006(3):128-132.
    [34]翟延峰.铅芯橡胶支座在不同墩高铁路桥梁中减隔震研究[D].北京交通大学,2009.
    [35]张骏,汤劲松.铁路简支梁桥支座的减震性能研究[J].石家庄铁道学院学报.2002(1):64-69
    [36]张骏,阎贵平,杨雨峰.桥梁减震性能研究[J].世界地震工程.2001(2): 33-38.
    [37]张利.采用减震支座的圆柱形桥墩的地震响应分析及程序设计[D].长安大学,2000.
    [38]郑晓龙,胡京涛,雷建胜.减隔震支座在铁路桥梁上的应用探索[J].铁道建筑技术 2010(S1):159-162.
    [39]Zayas V A, Low S S, Mahin S A. A Simple Pendulum Technique for Achieving Seismic Isolation[J]. Earthquake Spectra.1990,6(2):317-334.
    [40]龚健,周云.摩擦摆隔震技术研究和应用的回顾与前瞻(Ⅰ)——摩擦摆隔震支座的类型与性能[J].工程抗震与加固改造.2010(3): 1-10.
    [41]Fenz D M, Constantinou M C. Behaviour of the double concave Friction Pendulum bearing[J]. Earthquake Engineering & Structural Dynamics.2006,35(11):1403-1424.
    [42]Tsai C S, Chen W, Chiang T, et al. Component and shaking table tests for full-scale multiple friction pendulum system[J]. Earthquake Engineering & Structural Dynamics.2006,35(13): 1653-1675.
    [43]Jangid R S. Computational numerical models for seismic response of structures isolated by sliding systems[J]. Structural Control and Health Monitoring.2005,12(1):117-137.
    [44]彭大波,李建中,范立础.双曲面球型减隔震支座的开发及应用[J].同济大学学报(自然科学版).2007(2):176-180.
    [45]杨林,周锡元,苏幼坡,等.FPS摩擦摆隔震体系振动台试验研究与理论分析[J].特种结构.2005(4):43-46.
    [46]杨林,常永平,周锡元,等.FPS隔震体系振动台试验与有限元模型对比分析[J].建筑结构学报.2008(4):66-72.
    [47]李大望,王东炜,周锡元.FPS自治系统及其性态分析[J].振动与冲击.1999(1): 25-27.
    [48]Wang Y, Chung L, Liao W. Seismic response analysis of bridges isolated with friction pendulum bearings[J]. Earthquake Engineering & Structural Dynamics.1998,27(10):1069-1093.
    [49]Tsai C S. FINITE ELEMENT FORMULATIONS FOR FRICTION PENDULUM SEISMIC ISOLATION BEARINGS[J]. International Journal for Numerical Methods in Engineering.1997,40(1):29-49.
    [50]Tsopelas P, Constantinou M C, Kim Y S, et al. EXPERIMENTAL STUDY OF FPS SYSTEM IN BRIDGE SEISMIC ISOLATION[J]. Earthquake Engineering & Structural Dynamics.1996,25(1):65-78.
    [51]Ozbulut O E, Hurlebaus S. Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes[J]. Earthquake Engineering & Structural Dynamics.2011,40(3):273-291.
    [52]Makris N, Vassiliou M F. The existence of'complete similarities'in the response of seismic isolated structures subjected to pulse-like ground motions and their implications in analysis[J]. Earthquake Engineering & Structural Dynamics.2011,40(10):1103-1121.
    [53]焦驰宇,胡世德,管仲国.FPS抗震支座分析模型的比较研究[J].振动与冲击.2007(10):113-117.
    [54]Skinner R I, Kelly J M, Heine A J. Hysteretic dampers for earthquake-resistant structures[J]. Earthquake Engineering & Structural Dynamics.1974,3(3):287-296.
    [55]潘晋,吴成亮,仝强,等.E型钢阻尼器数值仿真及试验研究[J].振动与冲击.2009(7):192-195.
    [56]Foti D, Diaferio M, Nobile R. Dynamic behavior of new aluminum-steel energy dissipating devices[J]. Structural Control and Health Monitoring.2013:n/a-n/a.
    [57]Ozbulut O E, Hurlebaus S. Application of an SMA-based hybrid control device to 20-story nonlinear benchmark building[J]. Earthquake Engineering & Structural Dynamics.2012,41(13): 1831-1843.
    [58]Parulekar Y M, Reddy G R, Vaze K K, et al. Seismic response attenuation of structures using shape memory alloy dampers[J]. Structural Control and Health Monitoring.2012,19(1): 102-119.
    [59]Daghia F, Giammarruto A, Pascale G. Combined use of FBG sensors and SMA actuators for concrete beams repair[J]. Structural Control and Health Monitoring.2011,18(8):908-921.
    [60]Whittaker A S, Bertero V V, Thompson C L, et al. Seismic Testing of Steel Plate Energy Dissipation Devices [J]. Earthquake Spectra.1991,7(4):563-604.
    [61]Corbi O. Analysis of dynamics of structures including SMA members[J]. Journal of Structural Control.2001,8(2):189-201.
    [62]Han Y, Li Q S, Li A, et al. Structural vibration control by shape memory alloy damper[J]. Earthquake Engineering & Structural Dynamics.2003,32(3):483-494.
    [63]Andrawes B, Desroches R. Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures[J]. Structural Control and Health Monitoring. 2007,14(2):301-320.
    [64]Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys[J]. Earthquake Engineering & Structural Dynamics.2000,29(7): 945-968.
    [65]Dolce M, Cardone D, Ponzo F C, et al. Shaking table tests on reinforced concrete frames without and with passive control systems[J]. Earthquake Engineering & Structural Dynamics. 2005,34(14):1687-1717.
    [66]Dolce M, Cardone D, Ponzo F C. Shaking-table tests on reinforced concrete frames with different isolation systems[J]. Earthquake Engineering & Structural Dynamics.2007,36(5): 573-596.
    [67]Zhang Y, Hu X, Zhu S. Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device[J]. Structural Control and Health Monitoring.2009,16(6):668-685.
    [68]李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁隔震[R].天津大学建筑工程学院,2002.
    [69]洪静.设置E型钢阻尼装置的连续梁桥抗震性能研究[D].南京理工大学,2012.
    [70]王月钱,钟铁毅,顾正伟,等.E型钢支座对铁路简支梁桥隔震效果研究[J].铁道建筑. 2010(9):21-23.
    [71]杨广军.车辆—无碴轨道—桥梁系统竖向耦合振动特性的研究[D].上海交通大学,2007.
    [72]徐庆元,陈秀方,李树德.高速铁路桥上无缝线路纵向附加力研究[J].中国铁道科学.2006(3):8-12.
    [73]宣言.客运专线曲线线路车线耦合系统动力学性能与无碴轨道结构振动响应的仿真研究[D].铁道科学研究院中国铁道科学研究院,2005.
    [74]万家.高速列车—无碴轨道—桥梁耦合系统动力学性能仿真研究[D].铁道科学研究院中国铁道科学研究院,2005.
    [75]阴存欣.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D].铁道部科学研究院,2000.
    [76]中铁第四勘察设计院集团有限公司.铁路无缝线路设计规范报批终稿[M]. 2010.
    [77]罗学海,朱葳,谢逢萱.铁路实体桥墩动力分析的简化方法[J].地震工程与工程振动.1982,2(3):87-95.
    [78]Maragakis E M, Douglas B M, Chen Q B, et al. Full-scale tests of a railway bridge[J]. STRUCTURAL ANALYSIS AND DESIGN:BRIDGES, CULVERTS, AND PIPES.1998(1624): 140-147.
    [79]蒋金洲.桥上无缝线路钢轨附加纵向力及其对桥梁墩台的传递[J].中国铁道科学.1998(2):69-77.
    [80]杨梦蛟,邢建鑫.轨道结构与桥梁共同作用力学计算模型的研究[J].中国铁道科学.2001(3):60-65.
    [81]马坤全,陈文池.轨道交通高架桥合理抗震设计参数及抗震措施研究[J].中国铁道科学.2001,22(4):63-68.
    [82]黄艳,阎贵平,刘林.轨道约束对铁路桥梁纵向地震反应特性的影响[J].铁道学报.2002(5):124-128.
    [83]冯青松,宗德明,雷晓燕.无缝线路稳定性分析有限元模型[J].中国铁道科学.2005(1):8-15.
    [84]吴勇,马坤全,吴定俊,等.采用减隔震装置后轨道交通高架桥的抗震性能分析[J].城市轨道交通研究.2005(1):61-63.
    [85]马坤全,邵亮,李亮.采用减隔震装置的轨道交通槽形梁桥动力性能[J].城市轨道交通研究.2007(3):33-37.
    [86]张永亮,陈兴冲,李子奇.轨道约束系统对高速铁路多跨简支梁桥地震反应的影响[J].世界地震工程.2010(4):6-12.
    [87]Iwata S, lemura H, Ichikawa A, et al. Problem and View on Introduction of Isolation System in Railway Bridges[R]. Japan Railway Technological Union Symposium,1999.
    [88]Toyooka A, Ikeda M, Yanagawa H, et al. Effects of track structure on seismic behavior of isolation system bridges[R]. Railway Technical Research Institute,2005.
    [89]lemura H, Iwata S, Murata K. Shake Table Tests and Numerical Modeling of Seismically Isolated Railway Bridges[Z]. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan),2004:46.
    [90]Poisson F, Margiocchi F. The use of dynamic dampers on the rail to reduce the noise of steel railway bridges[J]. Journal of sound and vibration.2006,293(3):944-952.
    [91]周亚栋.桥墩高度对铅销橡胶支座减震效果影响研究[D].长安大学,2004.
    [92]毕玉琢.宜万铁路特殊结构桥梁动力特性及列车走行性分析[J].铁道科学与工程学报.2006(6):69-73.
    [93]梁智垚.非规则高墩桥梁抗震设计理论研究[D].同济大学,2007.
    [94]刘艳辉,赵世春,强士中.城市高架桥抗震性能水准的量化[J].西南交通大学学报.2010(1):54-58.
    [95]张永亮,陈兴冲.轨道约束对简支梁桥弹塑性地震反应的影响[J].西北地震学报.2012(2):121-125.
    [96]翟延峰.铅芯橡胶支座在不同墩高铁路桥梁中减隔震研究[D].北京交通大学,2009.
    [97]徐彩彩.地震作用下有砟轨道变形特性研究[D].南交通大学,2011.
    [98]徐彩彩,赵坪锐,刘学毅.地震对有砟轨道横向变形影响分析[J].铁道建筑.2010(6):108-110.
    [99]杨艳丽.Ⅲ型混凝土轨枕有砟道床纵横向阻力设计参数试验研究[J].铁道工程学报.2010(10):49-51.
    [100]陈永祁.时程分析法中地震波的选择和可靠性分析[R].中国建筑科学研究院,1985.
    [101]杨红,曹晖,白绍良.地震波局部时频特性对结构非线性响应的影响[J].土木工程学报.2001(4):78-82.
    [102]瞿伟廉.结构特性和地震波特性对P-Delta效应的影响[J].武汉建材学院学报.1982(1):93-108.
    [103]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报.1991(2):51-60.
    [104]卢华喜.不同频谱特性地震动输入下的场地地震反应[J].华东交通大学学报.2007(1):22-26.
    [105]蔡元奇,韩芳,朱以文.场地卓越周期与结构基本周期关系研究[J].地震工程与工程振动.2004(4):70-74.
    [106]Como M, De Stefano M, Ramasco R. Effects of column axial force-bending moment interaction on inelastic seismic response of steel frames[J]. Earthquake Engineering & Structural Dynamics.2003,32(12):1833-1852.
    [107]Wu W, Wang J, Lin C. Systematic assessment of irregular building-soil interaction using efficient modal analysis[J]. Earthquake Engineering & Structural Dynamics.2001,30(4): 573-594.
    [108]olafsson S, Remseth S, Sigbjornsson R. Stochastic models for simulation of strong ground motion in Iceland[J]. Earthquake Engineering & Structural Dynamics.2001,30(9):1305-1331.
    [109]Shome N, Cornell C A, Bazzurro P, et al. Earthquakes, records, and nonlinear responses[J]. Earthquake Spectra.1998,14(3):469-500.
    [110]Fletcher J B, Spudich P. Rupture characteristics of the three M-4.7 (1992-1994) Parkfield earthquakes[J]. Journal of Geophysical Research:Solid Earth.1998,103(B1):835-854.
    [111]Loh C, Lee Z. SEISMIC MONITORING OF A BRIDGE:ASSESSING DYNAMIC CHARACTERISTICS FROM BOTH WEAK AND STRONG GROUND EXCITATIONS[J]. Earthquake Engineering & Structural Dynamics.1997,26(2):269-288.
    [112]Basu B, Gupta V K. Non-stationary seismic response of MDOF systems by wavelet transform[J]. Earthquake Engineering & Structural Dynamics.1997,26(12):1243-1258.
    [113]Zhang Y, Wang G, Su F, et al. THE THEORY OF RESPONSE ANALYSIS OF FUZZY STOCHASTIC DYNAMICAL SYSTEMS WITH A SINGLE DEGREE OF FREEDOM[J]. Earthquake Engineering & Structural Dynamics.1996,25(3):235-251.
    [114]Luco N, Bazzurro P. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?[J]. Earthquake Engineering & Structural Dynamics.2007, 36(13):1813-1835.
    [115]Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra[J]. Computer-Aided Civil and Infrastructure Engineering.2010,25(5):334-347.
    [116]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报.2000(6):33-37.
    [117]杨红,曹晖,白绍良.地震波局部时频特性对结构非线性响应的影响[J].土水工程学报.2001(4):78-82.
    [118]陈亮,李建中.强震地面运动频谱特性对RC桥墩结构非线性地震反应的影响[J].应用基础与工程科学学报.2011(5):749-757.
    [119]熊辉,李正良,晏致涛,等.地震反应谱、功率谱以及傅立叶谱关系探讨[J].四川建筑科学研究.2011(2):171-179.
    [120]Porter K, Mitrani-Reiser J, Beck J L. Near-real-time loss estimation for instrumented buildings[J]. The Structural Design of Tall and Special Buildings.2006,15(1):3-20.
    [121]Melgar D, Bock Y, Crowell B W. Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records[J]. Geophysical Journal International. 2012,188(2):703-718.
    [122]D Amico S, Akinci A, Malagnini L. Predictions of high-frequency ground-motion in Taiwan based on weak motion data[J]. Geophysical Journal International.2012,189(1):611-628.
    [123]Amiri G G, Abdolahi Rad A, Aghajari S, et al. Generation of Near-Field Artificial Ground Motions Compatible with Median-Predicted Spectra Using PSO-Based Neural Network and Wavelet Analysis[J]. Computer-Aided Civil and Infrastructure Engineering.2012,27(9):711-730.
    [124]陈亮,李建中,管仲国,等.强地面运动持时对钢筋混凝土桥墩地震需求的影响[J].振动与冲击.2008(11):154-159.
    [125]Iervolino I, Manfredi G, Cosenza E. Ground motion duration effects on nonlinear seismic response[J]. Earthquake engineering & structural dynamics.2006,35(1):21-38.
    [126]陈亮,李建中,管仲国,等.强地面运动持时对钢筋混凝土桥墩地震需求的影响[J].振动与冲击.2008(11):154-159.
    [127]王锋,陈清军.断层附近的地震波频谱特性与结构动力反应分析[J].结构工程师.2011(5):102-110.
    [128]Housner G W. Intensity of earthquake ground shaking near the causative fault[M]. Selected Earthquake Engineering Papers of George W. Housner, Boston, MA, USA:Publ by ASCE,1990, 476.
    [129]Hudson D E, Housner G W. An analysis of strong-motion accelerometer data from the San Francisco earthquake of March 22,1957[J]. Selected Earthquake Engineering Papers of George W. Housner.1990,48:267.
    [130]Bertero V V, Mahin S A, Herrera R A. ASEISMIC DESIGN IMPLICATIONS OF NEAR-FAULT SAN-FERNANDO EARTHQUAKE RECORDS[J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS.1978,6(1):31-42.
    [131]Heaton T H, Hall J F, Wald D J, et al. RESPONSE OF HIGHRISE AND BASE-ISOLATED BUILDINGS TO A HYPOTHETICAL M(W)7.0 BLIND THRUST EARTHQUAKE[J]. SCIENCE.1995,267(5195):206-211.
    [132]Hall J F, Heaton T H, Hailing M W, et al. Near-source ground motion and its effects on flexible building[J]. Earthquake Spectra.1995:569-605.
    [133]Bozzo L, Barbat A H. Nonlinear response of structures with sliding base isolation[J]. Journal of Structural Control.1995,2(2):59-77.
    [134]Malhotra P K. Response of buildings to near-field pulse-like ground motions[J]. Earthquake engineering & structural dynamics.1999,28(11):1309-1326.
    [135]倪永军,朱晞.近断层地震的加速度峰值比和反应谱分析[J].北方交通大学学报.2004(4):1-5.
    [136]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报.2006(6):629-637.
    [137]贾俊峰,欧进萍.近断层竖向与水平向加速度反应谱比值特征[J].地震学报.2010(1):41-50.
    [138]Makris N, Chang S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures[J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS.2000(1).
    [139]Alavi B, Krawinkler H. Consideration of Near-Fault Ground Motion Effects in Seismic Design[Z]. New Zealand:20002665.
    [140]Charles M, Qiang F. An Analytical Model for Near-Fault Ground Motion and the Response of SDOF Systems[Z]. Boston:2002.
    [141]Alavi B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics.2004,6(33): 687-706.
    [142]邬鑫,朱晞.近场地震的速度脉冲效应及简化冲击回归公式的检验[J].北方交通大学学报.2003(1):36-39.
    [143]李新乐,朱晞.近断层地震速度脉冲效应对桥墩地震反应的影响[J].北方交通大学学报.2004(1):11-16.
    [144]李新乐,朱稀.近断层地震动等效速度脉冲研究[J].地震学报.2004(6):634-643.
    [145]江辉,朱晞.脉冲型地震动模拟与隔震桥墩性能的能量分析[J].北方交通大学学报.2004(4):6-11.
    [146]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法[J].地震学报.2007(1):77-84.
    [147]樊剑,涂家祥,吕超,等.采用时频滤波技术的近断层脉冲地震人工模拟[J].华中科技大学学报(自然科学版).2008(11):116-119.
    [148]胡进军.近断层地震动方向性效应及超剪切破裂研究[J].国际地震动态.2010(1):40-42.
    [149]Phan V, Saiidi M S, Anderson J, et al. Near-fault ground motion effects on reinforced concrete bridge columns[J]. Journal of structural engineering.2007,133(7):982-989.
    [150]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区[J].中国铁道科学.2003(6):28-31.
    [15]唐玉红,张敏政,戴君武.钢筋混凝土结构在近场脉冲型地震作用下的试验分析[J].世界地震工程.2007(3):41-46.
    [152]Marovic V H, Marovic P, Nikolic Z. Designing aspects of bridges placed in active seismic areas[J]. Earthquake Resistant Engineering Structures VI.2007,93:43-52.
    [153]Marano G C, Sgobba S. Stochastic energy analysis of seismic isolated bridges[J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING.2007,27(8):759-773.
    [154]Dicleli M. Performance of seismic-isolated bridges with and without elastic-gap devices in near-fault zones[J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS.2008, 37(6):935-954.
    [155]Khaloo A R, Khosravi H. Multi-mode response of shear and flexural buildings to pulse-type ground motions in near-field earthquakes[J]. JOURNAL OF EARTHQUAKE ENGINEERING. 2008,12(4):616-630.
    [156]Nagarajaiah S, Narasimhan S, Johnson E. Structural control benchmark problem:Phase Ⅱ-nonlinear smart base isolated building subject to near fault earthquakes[J]. STRUCTURAL CONTROL & HEALTH MONITORING.2008,15(5):653-656.
    [157]Dicleli M. Supplemental elastic stiffness to reduce isolator displacements for seismic-isolated bridges in near-fault zones[J]. ENGINEERING STRUCTURES.2007,29(5): 763-775.
    [158]Dicleli M, Buddaram S. Comprehensive evaluation of equivalent linear analysis method for seismic-isolated structures represented by sdof systems[J]. ENGINEERING STRUCTURES.2007, 29(8):1653-1663.
    [159]Loh C H, Lee Z K, Wu T C, et al. Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999[J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. 2000,29(6):867-897.
    [160]廖文义,罗俊雄,万绚.隔震桥梁承受近断层地震之反应分析[J].地震工程与工程振动.2001(S1):102-108.
    [161]Liao W I, Loh C H, Lee B H. Comparison of dynamic response of isolated and non-isolated continuous girder bridges subjected to near-fault ground motions[J]. ENGINEERING STRUCTURES.2004,26(14):2173-2183.
    [162]樊剑,刘铁,魏俊杰.近断层地震下摩擦型隔震结构与限位装置碰撞反应及防护研究[J].土木工程学报.2007(5):10-16.
    [163]叶昆,李黎.LRB基础隔震结构在近断层脉冲型地震作用下的动力响应研究[J]. 工程抗震与加固改造.2009,31(2):32-38,42.
    [164]王统宁,刘健新,于泳波.近断层地震动作用下减隔震桥梁空间动力分析[J].交通运输工程学报.2009(5):20-25.
    [165]谷音,钟华,卓卫东.基于性能的矮塔斜拉桥结构地震易损性分析[J].土木工程学报.2012:218-222.
    [166]焦驰宇.基于性能的大跨斜拉桥地震易损性分析[D].同济大学,2008.
    [167]石飞停.高速公路钢筋混凝土桥梁地震易损性曲线建立方法[J].四川建筑科学研究.2008(6):130-133.
    [168]Kaplan S, Perla H F, Bley D C. A Methodology for Seismic Risk Analysis of Nuclear Power Plants[J]. Risk Analysis.1983,3(3):169-180.
    [169]Dimova S L, Hirata K. Simplified seismic fragility analysis of structures with two types of friction devices[J]. Earthquake Engineering & Structural Dynamics.2000,29(8):1153-1175.
    [170]Mosleh A, Apostolakis G. The Assessment of Probability Distributions from Expert Opinions with an Application to Seismic Fragility Curves[J]. Risk Analysis.1986,6(4):447-461.
    [171]Park Y J, Ang A H S, Wen Y K. seismic damage analysis of reinforeed concrete building[J]. Journal of Structural Engineering.1985,111(4):740-757.
    [172]栗光华,朱晞.抗震结构破坏准则的历史沿革和发展趋势[J].地震工程与工程振动. 2006(3):67-69.
    [173]于红梅,许建东,张素灵,等.基于集集地震的建筑物易损性统计分析[J].防灾科技学院学报.2006(4): 17-20.
    [174]吕大刚,于浇辉,陈志恒.钢筋混凝土框架结构侧向倒塌地震易损性分析[J].哈尔滨工业大学学报.2011(6):1-5.
    [175]李磊,郑山锁,李谦.基于IDA的型钢混凝土框架的地震易损性分析[J].广西大学学报(自然科学版).2011(4):535-541.
    [176]周奎,李伟,余金鑫.地震易损性分析方法研究综述[J].地震工程与工程振动.2011(1):106-113.
    [177]于刚,孙智,孙利民.基于塑性极限状态的结构易损性分析[J].哈尔滨工业大学学报.2010(12):1953-1957.
    [178]刘如山,胡少卿,邬玉斌,等.基于地震动参数的结构易损性表达方法研究[J].地震工程与工程振动.2009(6): 102-107.
    [179]刘阳冰,刘晶波.钢—混凝土组合框架结构易损性分析[Z].中国湖北武汉:2008380-384.
    [180]昌大刚,于晓辉,王光远.结构地震易损性理论及其在全寿命优化设计中的应用[Z].中国北京:2007281.
    [181]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报.2006(2):107-114.
    [182]吕大刚,李晓鹏,张鹏,等.土木工程结构地震易损性分析的有限元可靠度方法[Z].中国四川成都:2006264-272.
    [183]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报.2006(4):157-162.
    [184]陈力波,郑凯锋,庄卫林,等.汶川地震桥梁易损性分析[J].西南交通大学学报.2012(4):558-566.
    [185]Basoz N, Kiremidjian A S. Risk assessment of bridges and highway systems from the Northridge earthquake[C].1997.
    [186]Kiremidjian A A, Basoz N. Evaluation of Bridge Damage Data from Recent Earthquakes[J]. NCEER Bulletin.1997,11(2).
    [187]Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics.2000,126(12):1224-1231.
    [188]Yamazaki F, Motomura H, Hamada T. Damage assessment of expressway networks in Japan based on seismic monitoring[C].2000.
    [189]Shinozuka M, Feng M Q, Kim H, et al. Nonlinear static procedure for fragility curve development[J]. Journal of Engineering Mechanics.2000,126(12):1287-1295.
    [190]吴子燕,王其昂,韩晖,等.基于响应面法的桥梁地震易损性分析研究[J].西北工业 大学学报.2011(1):103-107.
    [191]Fukushima S, Kai Y, Yashiro K. Study on the fragility of system-Part 1:Structure with brittle elements in its stories[C]. Pergamon, Elsevier Science Oxford, UK,1996.
    [192]Kai Y, Fukushima S. Study on the fragility of system-Part 2:System with ductile elements in its stories[C]. Pergamon, Elsevier Science Oxford, UK,1996.
    [193]姜锐,苏小卒.铁路桥梁震害预测及损失估计方法的研究与应用[J].铁道学报.2006(3):133-136.
    [194]张凯,朱晞,倪永军,等.桥梁结构基于性能的地震经济风险评估[J].中国铁道科学.2011(1):68-74.
    [195]Karim K R, Yamazaki F. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation[J]. Earthquake engineering & structural dynamics.2001,30(12):1839-1856.
    [196]Karim K R, Yamazaki F. A simplified method of constructing fragility curves for highway bridges[J]. Earthquake engineering & structural dynamics.2003,32(10):1603-1626.
    [197]Singhal A, Kiremidjian A S. Bayesian updating of fragilities with application to RC frames[J]. Journal of structural Engineering.1998,124(8):922-929.
    [198]Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics.2002,128(10):1024-1038.
    [199]Choi E, Desroches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures.2004,26(2):187-199.
    [200]Nielson B G, Desroches R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering & Structural Dynamics.2007,36(6): 823-839.
    [201]Hwang H, Liu J B, Chiu Y. Seismic Fragiliy analysis of highway bridges[R]. Center for Earthquake Research and Information The University of Memphis,2001.
    [202]Hwang H, Liu J B, Chiu Y. Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state[J]. Earthquake Engineering and Engineering Vibration. 2012(2):185-193.
    [203]李立峰,吴文朋,黄仕梅,等.板式橡胶支座地震易损性分析[J].湖南大学学报(自然科学版).2011(11):1-6.
    [204]王建民,王国亮,聂建国,等.基于概率的桥梁结构地震危害性分析[J].土木工程学报.2010,43(11):86-93.
    [205]谷音,黄怡程,卓卫东.高墩大跨连续刚构桥梁地震易损性分析[J].地震工程与工程振动.2011(2):91-97.
    [206]郑成龙,龙晓鸿,彭元诚,等.大跨斜腿刚构桥地震易损性分析[J].土木工程与管理 学报.2011(3):391-394.
    [207]吴文朋,李立峰,王连华,等.基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动.2012(3):117-123.
    [208]焦驰宇,李建中,龙佩恒.纵向地震激励下倒Y形主塔斜拉桥的地震易损性分析[J].石家庄铁道大学学报(自然科学版).2012(3): 17-23.
    [209]王天威,杨春环.铁路桥梁的震害预测和抗震加固[J].铁道建筑.1991(8): 4-9.
    [210]徐龙军,章倩.铁路桥梁地震震害预测[J].山东建筑工程学院学报.2003(1): 27-31.
    [211]洪静.设置E型钢阻尼装置的连续梁桥抗震性能研究[D].南京理工大学,2012.
    [212]Arcangeli M, Ciampi V, Paolacci F, et al. Shaking table tests of a two story frame equipped with dissipative bracings[J]. Proc. of the XI WCEE.1996.
    [213]潘晋,吴成亮,仝强,等.E型钢阻尼器数值仿真及试验研究[J].振动与冲击.2009(07):192-195.
    [214]公路桥梁抗震设计细则(JTGTB02-01-2008)[M]人民交通出版社,2008:103.
    [215]樊剑,唐家祥.滑移隔震结构的动力特性及地震反应[J].土木工程学报.2000(4): 11-16.
    [216]Constantinou M, Mokha A, Reinhorn A. Teflon bearings in base isolation 11. Modeling[J]. Journal of structural engineering New York, N.Y.1990,116(2):455-474.
    [217]中华人民共和国铁道部.铁路无缝线路设计规范报批终稿[S]. 2010.
    [218]赵国堂.高速铁路无碴轨道结构[M].1.北京:中国铁道出版社,2006:276.
    [219]郭俊,温泽峰,金学松,等.钢轨三维弹塑性滚动接触应力[J].西南交通大学学报.2007(3):262-268.
    [220]丁发兴,张鹏,余志武,等.圆钢管混凝土截面轴力-弯矩-曲率关系实用计算方法[J].哈尔滨工业大学学报.2009(12):133-137.
    [221]Housner G W. Intensity of earthquake ground shaking near the causative fault[J].1965.
    [223]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报.2007(1): 102-111.
    [224]Dicleli M, Buddaram S. Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect[J]. Engineering Structures.2007, 29(1):21-32.
    [225]Park S W, Ghasemi H, Shen J, et al. Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics.2004,33(13):1249-1270.
    [227]Iwan W D, Moser M A, Peng C Y. SOME OBSERVATIONS ON STRONG-MOTION EARTHQUAKE MEASUREMENT USING A DIGITAL ACCELEROGRAPH[J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA.1985,75(5):1225-1246.
    [228]Boore D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA.2001,91(5):1199-1211.
    [229]Boore D M, Akkar S. Effect of causal and acausal filters on elastic and inelastic response spectra[J]. Earthquake Engineering & Structural Dynamics.2003,32(11):1729-1748.
    [230]Loh C H, Wan S U, Liao W I. Effects of hysteretic model on seismic demands: Consideration of near-fault ground motions[J]. STRUCTURAL DESIGN OF TALL BUILDINGS. 2002,11(3):155-169.
    [23]李立峰,吴文朋,黄仕梅,等.地震作用下中等跨径RC连续梁桥系统易损性研究[J].土木工程学报.2012(10):152-160.
    [232]朱健,谭平,周福霖.土木工程动力易损性分析研究现状与展望[J].建筑科学.2011(5):106-110.
    [233]Hwang H.,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报.2004,37(6):47-51.
    [234]Sakai J, Kawashima K, Shoji G. A Stress-Strain Model for Unloading and Reloading of Concrete Confined by Tie Reinforcement[J]. Journal of Structural Mechanics and Earthquake Engineering.2000,654/1-52:297-316.
    [235]Sakai J, Kawashima K. Modification of the Giuffre, Menegotto and Pinto model for unloading and reloading paths with small strain variations[J]. Journal of Structural Mechanics and Earthquake Engineering.2003,738/I-64:159-169.
    [236]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报.2000(6):33-37.
    [237]卢华喜.不同频谱特性地震动输入下的场地地震反应[J].华东交通大学学报.2007(1):22-26.
    [238]Kowalsky M J. Deformation limit states for circular reinforced concrete bridge columns[J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE.2000,126(8):869-878.
    [239]Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics.2000,126(12):1224-1231.
    [240]Tavares D H, Padgett J E, Paultre P. Fragility curves of typical as-built highway bridges in eastern Canada[J]. Engineering Structures.2012,40(0):107-118.
    [241]刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报.2010(2): 39-47.
    [242]HAZUS(?)99 Estimated Annualized Earthquake Losses for the United States[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700