用户名: 密码: 验证码:
电缆隧道火灾分析建模与线型感温火灾探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国现代化建设迅速推进,电力在工业中的应用越来越广泛,电力传输安全问题也引起人们高度重视。国内长距离输电主要靠电缆隧道,但电缆隧道火灾频繁发生,而且电缆隧道环境恶劣,火灾扑救困难、易复燃、扑救时间长、损失大。近几年,火灾探测技术不断进步,新技术层出不穷,特别是以光纤传感技术为基础的光纤喇曼火灾探测技术和光纤光栅感温火灾探测技术,以其突出的技术优势,已在石油石化等易燃易爆场所和公路隧道等恶劣环境替代传统技术,成为主流的火灾探测技术。但是,由于电缆隧道结构复杂,火灾成因多,现有光纤感温火灾探测技术难以直接用于电缆隧道火灾探测中。本文针对目前缺乏电缆隧道火灾初起阶段模型研究,光纤感温火灾探测系统缺乏设计依据的问题,以电缆隧道为应用环境,建立理论模型计算不同火灾场景的温度场分布,通过电缆隧道火灾模拟再现实验,研究不同线型感温火灾探测器的响应,并结合实验修正理论模型,指导建立探测器安装、使用和验收规范。
     本文首先研究现有光纤喇曼和光纤光栅感温火灾报警系统的基础理论、探测机理和产品技术指标,从环境因素、火灾探测影响因素等方面对这两种技术做出分析和比较。然后,统计分析现有火灾案例,将火灾分为电缆过热火灾、初起小规模火灾和大规模火灾,并分别制定了建立模拟火灾场景的方案。调查光纤感温火灾探测技术的电缆隧道应用环境,建立不同应用环境的传热模型,分析计算不同火灾场景的温度场分布及其动态趋势。根据传热模型对火灾温度场的预估和对现有火灾探测技术的了解,制定实验方案;搭建实验平台,恢复应用环境或者在实体工业环境中搭建实验平台。最后,分析火灾探测器在不同火灾场景模拟中的技术指标,比较实验中和理论模型中所得到温度场差异,分析其产生的原因,修正传热模型,优化实验方案和探测器的安装或设置参数。得到的结论为:电缆过热火灾只能影响过热电缆所在层的温度分布,而对相邻的上下层影响较小,相邻的电缆温度都会升高,只有采用直接接触方式进行敷设,才可能有效地探测到电缆的温度变化;初起小规模火灾的热释放速率及热辐射规模均较低,引起火灾发生位置温度的迅速上升然后逐步下降,但是影响范围很小,由于发生位置的不确定性,无论采用何种安装方式均存在探测盲点;大规模火灾的发生会引起隧道顶部的温度迅速上升,火灾发生位置正上方的温升达到30℃/min。线型火灾探测器可悬挂安装在隧道顶部,光纤光栅温度探测单元的间距设置不超过6m,适合采用差温报警功能,且升温速率的报警阈值可设置为5℃/min。
     本文的主要研究成果和创新点在于:1)在实体电缆隧道中,构建了电缆过热,初起小规模和大规模火灾等三种典型的电缆隧道火灾模拟场景和实验数据采集系统;2)基于有限元热传导分析方法,建立了电缆隧道不同火灾的温度模型,通过仿真和模拟实验,分级了基于光纤感温技术的模拟温度场和实验温度场的分布和变化规律,提出了光纤感温火灾检测系统在电缆隧道中的安装和使用设计规范;3)通过对三种典型电缆隧道火灾的模拟实验,建立了初起阶段火灾的传热模型,根据此模型能预估不同火灾场景中温度场的分布和变化规律。
With the rapid improvement of China's modernization, electrical power is applied in industry more and more widely and power transmission security issues aroused great attention. But the cable tunnel fire occurred frequently, which bear long-distance power transmission, and the harsh environment in cable tunnel causes difficult fire fighting, easy resurgence, long-time fighting and big loss.In recent years, fire detection technology continuously improve and new technologies come out one after the other, especially fiber Raman fiber grating fire detection technology and thermal fire detection technology that base on optical fiber sensing technology. Since their outstanding technical advantages, they have displaced traditional fire detection technologies in explosive areas including petroleum and petrochemical and harsh environment including road tunnels. However, due to the complex structure of the cable tunnel and fire causes, existing fiber thermal fire detection technology can not be used directly in the cable tunnel fire detection. Aiming at the issues of the lack of cable tunnel fire early stage model and the lack of design basis for new fire detection technologies in cable tunnel, this paper establish theoretical model for cable tunnel, calculate temperature distribution for different fire scenes, study the response of different linear heat detectors in different fire scenes reproduction experiments, fix theoretical models combining with experiment results to guide the standard establishment for the detector installation, application and acceptance check.
     Firstly, the theoretical basis, detection mechanism and product specifications of existing fiber Raman and FBG temperature fire alarm systems are studied, which are analyzed and compared in terms of environmental factors and fire detection factors. Then, statistical analyzing existing fire cases, the fire is divided into cable over-heating fire, small-scale fire and large-scale fires and fire scenes reproduction programs are developed. Investigating cable tunnel application environment for fiber temperature sensing fire detection technology, application environments transfer model is established to calculate and analyze the temperature distribution and dynamic trend for different fire scenes. According fire temperature field prediction from heat transfer model and understanding of existing fire detection technologies, experimental program is developed and experimental platform is established in real or rebuild industrial environment. Finally, technical indicators of fire detectors in different fire scenarios simulation are analyzed, comparing temperature field differences between experimental and theoretical models are compared and their causes are analyzed to modified heat transfer model and optimize the experimental program and detector installation or setup parameters. The conclusions are following:1) overheating cable only affects its layer where neighboring cable temperature will rise, but effects to adjacent lower and upper layers is little. Only detector that lay on layer and contact directly could detect the temperature change of the cable and give alarm signal effectively.2) Since heat release rate and thermal radiation of small-scale fire are low, the temperature at fire location increases rapidly and then decreases gradually. Because its affected area is small and occurrence location is uncertain, every installation method has detection blind spots.3) Large-scale fire will cause temperature rapid increasing in the top of tunnel and the increasing rate will reach30℃/min just above the pool fire location. Linear fire detectors can be suspended under the tunnel ceiling. The distance setting between two FBG temperature detection units does not exceed6m, differential temperature alarm function is suitable and heating rate alarm thresholds can be set to5℃/min.
     The main research results and innovation of this paper is to:1) three typical cable tunnel fire simulation scenarios including cable overheating fire, small-scale fire and large-scale fire and experimental data acquisition system are established in a physical cable tunnel;2) Based on finite element heat conduction analysis, cable tunnel different fires temperature model are established, through simulation and modeling experiments, temperature field distribution and variation of simulation and experimental results are analyzed and installation and using design specifications for optical fiber temperature sensing fire detection system in cable tunnel are proposed;3) through three typical cable tunnel fire simulations establishing a heat transfer model of the early stages fire, according to this model, it can estimate different fire scenarios in the temperature field distribution and variation.
引文
[1]Han Z, Cao Y. Power system security and its prevention[J]. Power system technology,2004, 28(9):1-6.
    [2]张霄,刘凯.浅析地下电缆隧道火灾的扑救[J].广西民族大学学报(自然科学版).2006(S1)
    [3]公安部消防局编.《中国火灾统计年鉴》,中国人事出版社.
    [4]公安部消防局编.《中国消防统计年鉴》,中国人事出版社.
    [5]周彪,徐幼平,张腾.工业电缆隧道火灾探究[J].隧道建设.2008(03)
    [6]The handbook of tunnel fire safety[M]. Thomas Telford,2005.
    [7]Giallorenzi T G, Bucaro J A, Dandridge Jr A, et al. Optical fiber sensor technology[J]. Microwave Theory and Techniques, IEEE Transactions on,1982,30(4):472-511.
    [8]Handbook of optical fibre sensing technology[M]. Chichester:Wiley,2002.
    [9]Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003,9(2):57-79.
    [10]Kashyap R. Fiber bragg gratings[M], Academic Press,2009.
    [11]Dakin J P, Pratt D J, Bibby G W, et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics Letters,1985,21(13): 569-570.
    [12]Jiang D, Zhou C, Yang M, et al. Research on Optic Fiber Sensing Engineering Technology[C]//OFS2012 22nd International Conference on Optical Fiber Sensor. International Society for Optics and Photonics,2012:84210J-84210J-9.
    [13]GB/T21197-2007线型光纤感温火灾探测器[S].北京:中国标准出版社,2007.
    [14]GB16280-2005线型感温火灾探测器[S].北京:中国标准出版社,2005.
    [15]GB50414-2007钢铁冶金企业设计防火规范[S].北京:中国计划出版社,2007.
    [16]GB50229-2006火力发电厂与变电站设计防火规范[S].北京:中国计划出版社,2007.
    [17]吴龙标,袁宏永.火灾探测与控制工程[M].安徽:中国科学技术大学出版社1999
    [18]李丽娜.火灾探测器浅析[J].信息技术,2003,27(7):67-69
    [19]彭辉,燕科.常用隧道火灾探测器的比较[J].公路交通科技,2003,20(1):10-11
    [20]陈飚,范典,王立新,姜德生.基于光纤光栅传感器的隧道火灾报警监测系统[J].公路交通科技.2006(07)
    [21]Elliott B, Approvals F M. Video image detection—no longer a supplemental system[C]//Suppression, detection and signaling, research and applications:a technical working conference, Orlando, FL, USA.2010.
    [22]Fire Detection and Fire Alarm Systems-Part 22:Line Type Heat Detectors (EN 54-22:2007)
    [23]National Fire Protection Association. Technical Committee on Road Tunnel and Highway Fire Protection. NFPA 502, Standard for Road Tunnels, Bridges, and Other Limited Access Highways[M]. NFPA,2010.
    [24]Lacroix D. The new PIARC report on fire and smoke control in road tunnels[C]//Safety in road and rail tunnels. International conference.1998:185-197.
    [25]Egilsrud P E. Prevention and control of highway tunnel fires[R].1984.
    [26]QIN W, LI F. Tunnel fire and its prevention[J]. Fire Science and Technology,2004,1:014.
    [27]Miclea P C, Chow W K, Shen-Wen C, et al. International tunnel fire-safety design practices[J]. ASHRAE Journal,2007,49(8):50-60.
    [28]Cigada A, Ruggieri D, Zappa E. Road and railway tunnel fire hazard:a new measurement method for risk assessment and improvement of transit safety[C]//Measurement Systems for Homeland Security, Contraband Detection and Personal Safety Workshop,2005.(IMS 2005) Proceedings of the 2005 IEEE International Workshop on. IEEE,2005:89-94.
    [29]Mashimo H. State of the road tunnel safety technology in Japan[J]. Tunnelling and Underground Space Technology,2002,17(2):145-152.
    [30]Magerle R. Fire protection systems for traffic tunnels under test[J]. Proceedings AUBE,2001, 1.
    [31]Jevtic R B, Blagojevic M D. Linear fire detection with distance determination using coaxial cables[C]//Telecommunications Forum (TELFOR),201119th. IEEE,2011:856-859.
    [32]Harrington B P. Digital linear heat detector with thermocouple heat confirmation:European Patent EP 2226775[P].2012-5-16.
    [33]罗放明,石强招.开关量线型感温电缆的应用研究[J].城市轨道交通研究.2011(05)
    [34]李卫红.缆式线型感温探测器在电缆隧道中的应用[J].安防科技.2009(05)
    [35]赵旭,宋立荣.FTLD线形测温电缆在电厂电缆沟火灾报警系统中的应用[J].宁夏电力.2007(S2)
    [36]黄鑫,陈伟,董政.数字感温线缆在隧道火灾探测中的应用[J].消防科学与技术.2008(02)
    [37]罗友权.线型感温探测器比较[J].科技创新导报.2008(12)
    [38]周晓生.模拟式线型感温电缆及其应用[J].安装.2003(03)
    [39]李宝庆,张峰.线型感温探测器在发电厂中的应用[J].山西电力.2004(02)
    [40]Farahani M A, Gogolla T. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing[J]. Journal of Lightwave Technology,1999,17(8):1379.
    [41]Hwang D, Yoon D J, Kwon I B, et al. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering[J]. Opt. Express, 2010,18(10):9747-9754.
    [42]Van de Giesen N, Steele-Dunne S C, Jansen J, et al. Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data[J]. Sensors,2012,12(5):5471-5485.
    [43]Tyler S W, Selker J S, Hausner M B, et al. Environmental temperature sensing using Raman spectra DTS fiber-optic methods[J]. Water Resources Research,2009,45(4).
    [44]Zhang L, Feng X, Zhang W, et al. Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm[J]. Chinese Optics Letters,2009,7(7): 560-563.
    [45]Hausner M B, Suarez F, Glander K E, et al. Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data[J]. Sensors,2011,11(11):10859-10879.
    [46]ZHANG L, Xue F, ZHANG W. Fiber Raman distributed temperature sensor based on the light source with adjustable pulse width[J]. Acta Photonica Sinica,2009,10(38):2584-2586.
    [47]Kersey A D, Davis M A, Patrick H J, et al. Fiber grating sensors[J]. Lightwave Technology, Journal of,1997,15(8):1442-1463.
    [48]Rao Y J. Recent progress in applications of in-fibre Bragg grating sensors[J]. Optics and lasers in Engineering,1999,31(4):297-324.
    [49]Hirayama N, Sano Y. Fiber Bragg grating temperature sensor for practical use[J]. ISA transactions,2000,39(2):169-173.
    [50]David N A, Wild P M, Hu J, et al. In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources,2009, 192(2):376-380.
    [51]Xiao G Z, Zhao P, Sun F G, et al. Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings[J]. Optics letters,2004, 29(19):2222-2224.
    [52]朱军,范典.光纤光栅隧道火灾探测器的设计研究[J].武汉理工大学学报,2007,29(4):107-109.
    [53]Xiang X, Tu P, Zhao J. Application of fiber Bragg grating sensor in temperature monitoring of power cable joints[C]//Electronics, Communications and Control (ICECC),2011 International Conference on. IEEE,2011:755-757.
    [54]FU H, CAI L. Application in the Coal Mine Fire Monitoring of Fiber Bragg Grating Sensor Technology[J]. Chinese Journal of Sensors and Actuators,2011,5:028.
    [55]Reddy P S, Prasad R L N S, Sengupta D, et al. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications[C]//AIP Conference Proceedings.2011,1391:440.
    [56]Liu Z G, Kashef A, Crampton G, et al. Findings of the international road tunnel fire detection research project[J]. Fire technology,2010,46(3):697-718.
    [57]Liu Z G, Kashef A H, Lougheed G D, et al. Investigation on the Performance of Fire Detection Systems for Tunnel Applications—Part 1:Full-Scale Experiments at a Laboratory Tunnel[J]. Fire technology,2011,47(1):163-189.
    [58]Chen T H, Yin Y H, Huang S F, et al. The smoke detection for early fire-alarming system base on video processing[C]//Intelligent Information Hiding and Multimedia Signal Processing,2006. IIH-MSP'06. International Conference on. IEEE,2006:427-430.
    [59]Chen T H, Wu P H, Chiou Y C. An early fire-detection method based on image processing[C]//Image Processing,2004. ICIP'04.2004 International Conference on. IEEE, 2004,3:1707-1710.
    [60]Liu C B, Ahuja N. Vision based fire detection[C]//Pattern Recognition,2004. ICPR 2004. Proceedings of the 17th International Conference on. IEEE,2004,4:134-137.
    [61]Marbach G, Loepfe M, Brupbacher T. An image processing technique for fire detection in video images[J]. Fire safety journal,2006,41(4):285-289.
    [62]Celik T, Demirel H. Fire detection in video sequences using a generic color model[J]. Fire Safety Journal,2009,44(2):147-158.
    [63]Ko B C, Cheong K H, Nam J Y. Fire detection based on vision sensor and support vector machines[J]. Fire Safety Journal,2009,44(3):322-329.
    [64]Azuma T, Gunki S, Ichikawa A, et al. Effectiveness of a flame-sensing-type fire detector in a large tunnel[J]. TUNNEL MANAGEMENT INTERNATIONAL,2005,8(3).
    [65]Toreyin B U, Dedeoglu Y, Gudukbay U, et al. Computer vision based method for real-time fire and flame detection[J]. Pattern recognition letters,2006,27(1):49-58.
    [66]Zalosh R G, Chantranuwat P. International Road Tunnel Fire Detection Research Project: Review of Prior Test Programs and Tunnel Fires. Phase I[M]. Fire Protection Research Foundation,2003.
    [67]Liu Z G, Crampton G P, Kashef A H, et al. International Road Tunnel Fire Detection Research Project-Phase Ⅱ:Task 1, Fire Detectors, Fire Scenarios and Test Protocols[J]. National Research Council Canada, Fire Protection Research Foundation, Report (B-4179.1), 2006.
    [68]Babin S A, Kuznetsov A G, Shelemba I S. Comparison of temperature distribution measurement methods with the use of the Bragg gratings and Raman scattering of light in optical fibers[J]. Optoelectronics, Instrumentation and Data Processing,2010,46(4): 353-359.
    [69]Hiromitsu Ishiia, Kiyoshi Kawamuraa, Takashi Onoa, et al. A fire detection system using optical fibres for utility tunnels [J]. Fire Safety Journal,1997,29(2-3):87-98.
    [70]Brugger S. Rapid fire detection concept for road tunnels[C]//5 th International Conference on Safety in Road and Rail Tunnels, Marseilles, France.2004.
    [71]Incropera F, DeWitt D. Introduction to heat transfer[J].1985.
    [72]Siegel R, Howell J R. Thermal radiation heat transfer[J]. NASA STI/Recon Technical Report A,1992,93:17522.
    [73]Moaveni S. Finite element analysis:theory and application with ANSYS[M]. Pearson Education India,2003.
    [74]Reddy J N, Gartling D K. The finite element method in heat transfer and fluid dynamics[M], CRC press,2010.
    [75]Girault V, Raviart P A. Finite element approximation of the Navier-Stokes equations[J]. Lecture Notes in Mathematics, Berlin Springer Verlag,1979,749.
    [76]Woodburn P J, Britter R E. CFD simulations of a tunnel fire—Part Ⅰ[J]. Fire Safety Journal, 1996,26(1):35-62.
    [77]Woodburn P J, Britter R E. CFD simulations of a tunnel fire—Part Ⅱ[J]. Fire Safety Journal, 1996,26(1):63-90.
    [78]Dennison P E, Matheson D S. Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data[J]. Remote Sensing of Environment,2011,115(3):876-886.
    [79]Fuller R, Tegart D, Sideris S. Integrated electric power distribution center fire protection system:European Patent EP 2197081[P].2010-6-16.
    [80]Kong D, Lu S, Feng L, et al. Uncertainty and sensitivity analyses of heat fire detector model based on Monte Carlo simulation[J]. Journal of Fire Sciences,2011,29(4):317-337.
    [81]Mawhinney J R. Fixed fire protection systems in tunnels:issues and directions[J]. Fire technology,2013,49(2):477-508.
    [82]Chi J H. Metallographic analysis and Fire Dynamics Simulation for electrical fire scene reconstruction[J]. Journal of forensic sciences,2012,57(1):246-249.
    [83]Aralt T T, Nilsen A R. Automatic fire detection in road traffic tunnels[J]. Tunnelling and Underground Space Technology,2009,24(1):75-83.
    [84]Wang J, Xu T. A New Calculation Model of Detection Time for Heat Detector in Long and Narrow Space[J]. Procedia Engineering,2013,52:355-362.
    [85]Roh J S, Ryou H S, Park W H, et al. CFD simulation and assessment of life safety in a subway train fire[J]. Tunnelling and Underground Space Technology,2009,24(4):447-453.
    [86]Weisenpacher P, Halada L, Glasa J. Computer simulation of fire in a tunnel using parallel version of FDS[C]//Proc. of the 7th Mediterranean Combustion Symposium, Associazione Sezione Italiana del Combustion Institute.2011.
    [87]Jia F, Wang Z, Galea E R. Modelling factors that influence CFD fire simulations of large tunnel fires[J].2010.
    [88]周彪,江记记,白亚楠.基FDS的电缆隧道火灾探究[J].中国公共安全(学术版).2008(Z1)
    [89]周彪,徐幼平,张腾,吴建星.电缆隧道火灾数值仿真及分析[J].中国安全科学学报.2008(04)
    [90]Fan D, Ding H. Cable tunnel fire experiment study based on linear optical fiber fire detectors[C]//Asia Pacific Optical Sensors Conference 2013. International Society for Optics and Photonics,2013:892428-892428-4.
    [91]Chen F, Leong J C. Smoke flow phenomena and turbulence characteristics of tunnel fires[J]. Applied Mathematical Modelling,2011,35(9):4554-4566.
    [92]Vasanth S, Tauseef S M, Abbasi T, et al. Assessment of four turbulence models in simulation of large scale pool fires in the presence of wind using Computational fluid dynamics (CFD)[J]. Journal of Loss Prevention in the Process Industries,2013.
    [93]Ciambelli P, Meo M G, Russo P, et al. Thermal Radiation Modelling in Tunnel Fires[J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,2011,3(3):327-353.
    [94]Cai N, Chow W K. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors[J]. International Journal of Chemical Engineering,2012, 2012.
    [95]Poulsen A, Jomaas G Experimental study on the burning behavior of pool fires in rooms with different wall linings[J]. Fire technology,2012,48(2):419-439.
    [96]Migoya E, Garcia J, Crespo A, et al. Determination of the heat release rate inside operational road tunnels by comparison with CFD calculations[J]. Tunnelling and Underground Space Technology,2011,26(1):211-222.
    [97]Overholt K J, Ezekoye O A. Characterizing heat release rates using an inverse fire modeling technique[J]. Fire Technology,2012,48(4):893-909.
    [98]Kotha S, Lilley D G. Two-Room Structural Fire Calculations with the FDS Computer Code for Smoke and Heat Detector Response[J]. AIAA,2010,978:4-7.
    [99]McGrattan KB (2007) Fire dynamics simulator (Version 5)—technical reference guide. NIST special publication 1018, National Institute of Standards and Technology, Gaithersburg, MD
    [100]胡隆华,隧道火灾烟气蔓延的热物理特性研究[D],中国科学技术大学,2006.
    [101]首安工业消防有限公司,JTW-LCD-SL-D8000A可恢复式线型差定温火灾探测器,http://www.sureland.com/pro_info.aspx?cls=568&nid=30
    [102]首安工业消防有限公司,JTW-LCD-SL-D1000A不可恢复式线型定温火灾探测器, http://www.sureland.com/pro_info.aspx?cls=568&nid=30
    [103]上海华魏光纤传感技术有限公司,DTS400分布式光纤温度传感系统,http://www.boomdts.com/productshows.asp?ID=1235
    [104]北京品傲光电科技有限公司,FBGT112410光纤光栅感温火灾探测器,http://www.ca800.com/product/d_Inrusm3sicruu.html
    [105]陈涛,光纤传感技术在隧道火灾监测中的应用研究[M],武汉理工大学,2009
    [106]冯王碧,周次明,光纤光栅感温火灾探测技术研究和应用[J],消防科学技术,2007(02)
    [107]高族国,万树志,感温光纤光栅传感器及其原油储罐中的应用[J],安全、健康和环境,2008(10)
    [108]张嵩,王剑,光纤光栅传感技术在隧道火灾监控中的应用[J],激光与红外,2010(02)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700