用户名: 密码: 验证码:
高超声速飞行器气动热烧蚀预测与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器是一个强耦合、不确定、时变以及具有独特气动特性的高阶非线性系统,对其再入飞行中烧蚀预测及控制的研究至今仍具有严峻的挑战。然而,由于高超声速飞行器的再入环境复杂、气动热烧蚀严重、涉及多学科的交叉以及对飞行控制要求较高等特点,吸引着国内外学者的广泛研究,以及在各国军事领域中的战略价值和应用前景同样备受关注。为此本文在高超声速飞行器的再入飞行建模与特性分析、气动热烧蚀预测和烧蚀控制策略等方面开展较为深入的研究。本文主要研究工作的内容和创新点包括以下几个方面:
     1.在参照国内外公开发表的文献基础上,介绍了有关高超声速飞行器的研究现状,并重点对气动热烧蚀、故障与烧蚀控制以及先进飞行控制技术的研究现状进行了阐述与分析。
     2.分析了高超声速飞行器的动力学和气动特性,建立了六自由度再入飞行的非线性数学模型及降阶模型,以及弹道式三自由度再入非线性模型,并通过仿真验证了所建模型具有复杂的非线性、耦合性及时变性等特点。
     3.利用已建立的数学模型,针对再入过程预测热防护材料烧蚀深度和温度的动态变化问题,根据设计的热防护罩几何参数研究了计算烧蚀质量、气动热和热辐射的工程估算方法,提出了基于Newton-Raphson和TDMA动态解析烧蚀的算法并应用一维非线性热传导方程模拟了烧蚀过程,阐述了控制舵面对烧蚀的影响以及故障条件下构建新气动平衡的优化方法,通过烧蚀预测的结果与热平衡积分法相比较,说明了该算法既合理可靠,又实现了再入全过程表面热防护材料的烧蚀和表面温度的动态变化,为估算烧蚀的质量以及动态舵面实时烧蚀控制提供了较为精准的预测。
     4.在研究了舵面故障下重构气动平衡的基础上,针对无约束控制舵面的故障导致烧蚀量突变问题考虑了烧蚀预测与容错控制相结合的方法。首先建立了控制舵面的故障模型,提出了自适应鲁棒输出反馈控制器设计方法。该方法实现了非参数化时变故障的自适应处理,并在反馈环节中直接应用估计的增益,从而提高了闭环系统的稳定性和鲁棒性。为了解决扰动与故障的耦合问题,构造了扰动观测器和故障重构控制器的设计方案,该方案不仅有利于评估故障的严重程度也为实施故障调节提供了一种有效的观测途径。仿真结果表明将自适应输出反馈控制器、重构气动系数和烧蚀预测算法相结合,确保了动态烧蚀预测轨迹的跟踪,有效减少了故障产生的烧蚀增量,并验证了该烧蚀控制结构是一种被动烧蚀控制的方法。
     5.由于无约束控制舵面故障导致再入飞行轨迹的突变,使得动态烧蚀的增量无法及时预测,而约束控制舵面即等效于限制了烧蚀的增量,为此提出了结合烧蚀预测和基于控制分配算法的在线鲁棒模型预测控制的方法。该方法应用控制分配算法能够有效地对健康冗余的控制舵面进行再分配,并利用离线鲁棒观测器改善闭环系统的抗扰动能力。通过设计无偏模型预测控制器,不仅实现了系统状态和控制舵面的约束并且解决了模型不匹配的问题。该方案不仅保证了系统的鲁棒性和稳定性,也通过限定控制舵面的最大最小偏转角度避免了故障所引起的不可预测性烧蚀,并且能够在线修正烧蚀增量达到了主动控制烧蚀的目的。
     本文最后,在总结全文的基础上,提出了有待进一步研究和探索的一些问题。
Hypersonic vehicle as a high order nonlinear system has the characteristics of strongcoupling, uncertainty, time-varying and unique aerodynamics. So it is a severe challengeto predict and control ablation during reentry flight. However, hypersonic’s special char-acteristics such as complex reentry environment, Serious aerodynamic thermal ablation,multidisciplinary cross and higher flight control requirements make it attracts the exten-sive research of scholars at home and abroad, and also has focused on significant strategicvalue and application prospect for military applications in the countries. Therefore, thereentry flight modeling and characteristic analysis of hypersonic vehicle, aerodynamicthermal ablation prediction and ablation control strategy is introduced and in-depth re-search in this dissertation. The main research content and primary innovation of thisdissertation can be summarized as follows:
     1. Based on the research contributions at home and abroad, the background of thehypersonic vehicle is introduced. And then, the research status of the aerodynamic abla-tion, fault and ablation control and advanced flight control technology is mainly describedand analyzed.
     2. A very specific analysis of the kinetic equation and aerodynamic characteristicsof the hypersonic vehicle is given, then a six degree of freedom nonlinear mathematicalmodel and reduced-order model of reentry flight is established, and then a three degree offreedom nonlinear mathematical model of ballistic reentry flight is also built. The resultsof simulation verify that the establishment of the model has the characteristics of thecomplex nonlinear, coupling and time-varying, and so on.
     3. By using the established mathematical model, the predicted problem of thermalprotection material subject to the dynamic change of the ablative depth and tempera-ture is presented in the reentry process. According to the designed geometric parameterof the heat shield, the engineering prediction method for calculating the ablation mass,the aerodynamic heating and thermal radiation is studied, and then the algorithm ofdynamic analytic ablation is proposed based on the Newton-Raphson and TDMA, anda one dimensional nonlinear heat conduction model is employed to simulate the processof the ablation. Furthermore, The influence of control surface on the ablation and the optimization method of the building a new aerodynamic blance under the fault conditionis elucidated. The results of the proposed method are reliable and reasonable by compar-ing with heat balance integral method, and is able to realize that the dynamic change ofsurface protection material ablation and surface temperature in the whole reentry, andalso provides more accurate prediction for the estimation of the ablation mass and thereal-time ablation control of dynamic control surface.
     4. It is studied on the basis of reconstitution aerodynamic balance under the condi-tion of actuator fault, the combination of ablation prediction and fault-tolerant controlmethod subject to unpredictable ablation problem result from the fault of the uncon-strained control surface is considered. A adaptive output feedback controller is presentedbased on control surface fault model. By this controller, the non-parametric time-varyingfailures can be realized by the way of adaptive process, and then the estimated gain canbe directly used in the feedback loop. Therefore, The stability and robustness of theclosed-loop system is enhanced. In order to solve the problem of disturbance decoupledfault, the disturbance observer and fault reconstruction control is designed. This ap-proach can be beneficial to evaluate the severity of the fault and provides an efcientobservation method to implement fault accommodation. Simulation results show thatthe combination of adaptive output feedback controller, reconfiguration aerodynamic co-efcients and ablation prediction can ensure the dynamic ablation to track the predictivetrajectory, efectively reduce the ablation increment caused by faults, and also verify thatthis ablation control framework is a kind of passive ablation control method.
     5. The unpredictable of dynamic ablation increment in time is because that thesaltation of reentry trajectory resulting from the fault of unconstraint control surface.But, constraint control surface is equivalent to limit the ablation increment. Hence, themethod of ablation prediction combined with robust model predictive control with on-line control allocation is proposed. This approach is capable of redistributing the controlsurface among healthy actuators in a stable manner by control allocation scheme, and theof-line robust observer is applied to improve the ability against disturbances of the closed-loop system. By designing the ofset-free model predictive controller, the constraints ofsystem states and the control surface can be realized and the model mismatch problemis also resolved. This control framework can not only guarantee the robustness andstability of the system, but also by limiting the maximum-minimum angular deflection of the control surface to avoid the unpredictability ablation cased by faults, and achievethe purpose of active control with online correction ablation increment.
     Finally, the main results of the dissertation are concluded and some issues for futureresearch and exploration are proposed.
引文
[1]杨亚正,李松年,杨嘉陵.高超音速飞行器及其关键技术简论[J].力学进展,2007,37(4):537-550
    [2]王艳奎.临近空间飞行器应用前景及发展分析[J].国防科技,2009,30(2):20-34
    [3]朱云骥,史忠科.高超声速飞行器飞行特性与控制的若干问题[J].飞行力学,2005,23(3):5-8
    [4] McClintona C.R., Rauscha V.L, Shawb R.J.. Hyper-X: foundation for future hy-personic launch vehicles [J]. Acta Astronautica,2005,(57):614-622
    [5]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1159-1265
    [6] Young M, Keith S. An overview of advanced concepts for near-space systems [A].45th AIAA/ASME/SAE/ASEE Jiont Propulsion Conference and Exhibit, Col-prado [C]. Chicago: American Institute of Aeronautics and Astronautics,2009:1-18
    [7] Harsha P.T., Keel L.C. X-43A vehicle design and manufacture [A].13thAIAA/CIRA International Space Planes and Hypersonics Systems and Technolo-gies [C]. Reston: American Institute of Aeronautics and Astronautics,2005:1-9
    [8] Joyce P.J., Pomroy J.B, Grindle L.. The Hyper-X launch vehicle: challenges and de-sign considerations for hypersonic flight testing [A].13th AIAA/CIRA InternationalSpace Planes and Hypersonics Systems and Technologies [C]. Reston: American In-stitute of Aeronautics and Astronautics,2005:10-19
    [9] Dumbacher D.. NASA’s second generation reusable launch vehicle program intro-duction, status, and future plans [R]. Boston: American Institute of Aeronauticsand Astronautics,2002
    [10] Johnson M.D., Calise A.J., Johnson E.N.. Evaluation of an adaptive method forlaunch vehicle flight contorl [A]. AIAA Guidance, Navigation, and Control Confer-ence and Exhibit [C]. Reston: American Institute of Aeronautics and Astronautics,2003:1-19
    [11]汤一华,余梦伦,杨勇,等.第二代可重复使用运载器及其再入制导技术[J].导弹与航天运载技术,2010,(1):26-31
    [12]黄一敏,重复使用运载器再入段控制技术研究[D].南京:南京航空航天大学,2012
    [13]崔尔杰.重大研究计划“空天飞行器的若干重大基础问题”研究进展[J].中国科学基金,2006,(5):278-280
    [14]国家自然科学基金委.国家自然科学基金重大研究计划“近空间飞行器的关键基础科学问题”.2009年度学术交流文集
    [15] Hanson J.M., Jones R.E.. Advanced guidance and control project for reusablelaunch vehicles: test results [A]. AIAA Guidance, Navigation and Control Confer-ence and Exhibit [C]. Reston: American Institute of Aeronautics and Astronautics,2002:508-518
    [16] Mirmirani M., Wu C., Clark A., et al. Modeling for control of a generic airbreathinghypersonic vehicle [A]. AIAA Guidance, Navigation and Control Conference andExhibit [C]. Reston: American Institute of Aeronautics and Astronautics,2005:1-19
    [17] Holzapfel F., Heller M., Zahringer C., et al. Flight dynamics modeling environ-ment for controller design and analysis of hypersonic vehicles [A].10th AIAA Inter-national Space Planes and Hypersonic Systems and Technologies Conference [C].Reston: American Institute of Aeronautics and Astronautics,2001:1-11
    [18] Cobleigh B.R.. Development of the X-33aerodynamic uncertainty model[R]. Ed-wards, California: Dryden Flight Research Center,1998
    [19] Johnson E.N., Calise A.J.. Limited authority adaptive flight control for reusablelaunch vehicles [J]. AIAA Journal of Guidance, Control, and Dynamics,2003,26(6):906-913
    [20] Keshmiri S., Mirmirani M.D., Richard D.. Six-DOF modeling and simulation of ageneric hypersonic vehicle for conceptual design studies [A]. AIAA Modeling andSimulation Technologies Conference Providence [C]. Reston: American Institute ofAeronautics and Astronautics,2004:1-12
    [21] Keshmiri S., Colgren R., Mirmirani M.. Development of an aerodynamic databasefor a generic hypersonic air vehicle [A]. AIAA Guidance, Navigation, and ControlConference and Exhibit [C]. Reston: American Institute of Aeronautics and Astro-nautics,2005:1-21
    [22]何烈堂.跨大气层飞行器的力热环境分析与飞行规划研究[D].长沙:国防科技大学,2008
    [23] Holden M.S., Wadhams T.P.. A database of aerothermal measurements in hyper-sonic flow in “building block” experiments for CFD validation [R]. Washington:AIAA,2003
    [24] Brown J.L., Turbulence model validation for hypersonic flows [A].8th AIAA/ASMEJoint Thermophysics and Heat Transfer Conference [C]. St. Louis: American Insti-tute of Aeronautics and Astronautics,2002:330-338
    [25] Cockrell C.E., Engelund W.C., Braun R.D., et al. Integrated aero-propulsive CFDmethodology for the Hyper-X flight experiment [R]. Washington: NASA LangleyTechnical Report Server,2000
    [26] Cockre C., Auslender A., White J., et al. Aeroheating predictions for the X-43cowl-closed configration at Mach7and10[A].40th AIAA Aerospace Sciences Meeting&Exhibit [C]. Reno: American Institute of Aeronautics and Astronautics,2002:21-28
    [27] Robinson, J.S., Wurster, K.E., Mills, J.C.. Entry trajectory and aeroheating En-vironment Definition for Capsule-Shaped Vehicles [J]. Journal of Spacecraft andRockets,2009,46(1):74-86.
    [28] Subrahmanyam, P.. High-fidelity aerothermal engineering analysis for planetaryprobes using DOTNET framework and OLAP cubes database [J]. InternationalJournal of Aerospace Engineering,2009,(1):1-21
    [29] Park, C.. Stagnation-region heating environment of the Galileo probe [J]. Journalof Thermophysics and Heat Transfer,2009,23(3):417-424.
    [30] Anderson L.A.. Efects of surface catalytic activity on stagnation heat transfer rates[J]. AIAA Journal,1973,11(5):649-656
    [31] Fay J., Riddell F.. Theory of stagnation point heat transfer in dissociated air [J].Journal of Aeronautical Sciences,1958,25(2):73-85
    [32] Tauber M.E., Sutton K.. Stagnation-point radiative heating relations for earth andmars entries [J]. Journal of Spacecraft and Rockets,1991,28(1):40-42
    [33] Wurster K.E., Stone H.W.. Aerodynamic heating environment definition/thermalprotection system selection for the HL-20[J]. Journal of Spacecraft and Rockets,1993,30(5):549-557
    [34] Wurster K.E., Riley C.J., Zoby E.V.. Engineering aerothermal analysis for X-34thermal protection system design [J]. Journal of Spacecraft and Rockets,1999,36(2):216-228
    [35] Tartabini P.V., Wurster K.E., Korte J.J., et al. Multidisciplinary analysis of a liftingbody launch vehicle [J]. Journal of Spacecraft and Rockets,2002,39(5):788-795
    [36] Wurster K.E., Zoby E.V., Thompson R.A.. Flowfield and vehicle parameter influ-ence on results of engineering aerothermal methods [J]. Journal of Spacecraft andRockets,1991,28(1):16-22
    [37] Viviani A.. Computational flowfield analysis over a blunt-body reentry vehicle [J].Journal of Spacecraft and Rockets,2010,47(2):258-270
    [38] Bertin J.J.. The efect of protuberances, cavities, and angle of attack on the wind-tunnel pressures and heat-transfer distribution for the Apollo command module [R].Washington: National Aeronautics and Space Administration,1966
    [39] Lees, L.. Laminar heat transfer over blunt-nosed bodies at hypersonic speeds [J].Jet Propulsion,1956,26(4):259-269
    [40] Reddy D.K., Sinha K.. Hypersonic turbulent flow simulation of FIRE II reentryvehicle afterbody [J]. Journal of Spacecraft and Rockets,2009,46(4):745-757
    [41] Park C.. Non-equilibrium hypersonic aerothermodynamics [M]. New York: Wiley-Interscience,1990:18-68
    [42]贺国宏,高晓成,庞勇.高超声速再入体表面热流数值模拟研究[J].空气动力学学报,2001,19(2):177-185
    [43]王发民,沈月阳,姚文秀,等.高超声速升力体气动力气动热数值计算[J].空气动力学学,2001,19(4):439-445
    [44]宗文刚.类航天飞机外形气动热数值计算的验证与研究[A].第一届近代空气动力学与气动热力学会议论文集[C].北京:国防工业出版社,2006,178-184
    [45]叶友达,芦笙.高超声速高升阻比飞行器气动特性数值模拟研究[A].第一届近代空气动力学与气动热力学会议论文集[C].北京:国防工业出版社,2006,63-69
    [46]艾邦成,姜贵庆,童秉纲.复杂外型飞行器层流和湍流热环境数值预测研究[A].第一届近代空气动力学与气动热力学会议论文集[C].北京:国防工业出版社,2006,55-61
    [47]黄志澄.空天飞机气动热的工程预测方法[J].气动实验与测量,1992,6(1):1-8
    [48]沈遐龄.航天飞机气动加热计算[J].北京航空航天大学学报,1998,24(2):189-192
    [49] Wright M., Loomis M., Padadopoulos P.. Aerothermal analysis of the project FireII afterbody Flow [J]. Journal of Spacecraft and Rockets,2003,17(2):240-249
    [50] Anderson J.D.. Hypersonic and high temperature gas dynamics [M]. New York:McGraw-Hill,1989
    [51] Milos F.S., Chen Y.K. Squire T.H.. Updated ablation and thermal response programfor spacecraft heatshield analysis [A].17th Thermal and Fluids Analysis Workshop[C], Maryland: National Aeronautics and Space Administration,2006:1-21
    [52] Candane S.R., Balaji C., Venkateshan S.P.. A comparison of quasi one-dimensionaland two-dimensional ablation models for Subliming ablators [J]. International Jour-nal of Heat transfer engineering,2009,30(3):229-236
    [53] Potts R.L.. Application of integral methods to ablation charring erosion, A review[J]. Journal of Spacecraft and Rockets,1995,32(2):200-209
    [54] Milos F.S., Chen Y.K.. Ablation predictions for carbonaceous materials using CEAand JANAF-Based species thermodynamics [A].42th AIAA Thermophysics Con-ference [C]. Reno: American Institute of Aeronautics and Astronautics,2011:3123-3139
    [55] John A.D., Braun R.D., Laub B.. Ablative thermal response analysis using thefinite element method [J]. Journal of Spacecraft and Rockets,2012,26(2):201-212
    [56]黄海明,高锁文.极端环境下端头热结构分析[J].科学技术与工程,2006,6(4):417-423
    [57]张涛,孙冰.航天器再入全过程轴对称烧蚀热防护数值仿真研究[J].宇航学报,2011,32(5):1195-1204
    [58]杨琼梁.超声速飞行器烧蚀与结构热耦合计算及气动伺服弹性分析[D].上海:复旦大学,2011
    [59]胡锐锋,吴子牛,曲溪,等.空间碎片再入烧蚀预测与地面安全评估软件系统[J].航空学报,2011,32(3):390-399
    [60]王中原,史金光.超高速飞行弹箭气动烧蚀数值模拟研究[J].南京理工大学学报,2003,27(5):595-602
    [61]端木正.基于气动热化学轴对称烧蚀的仿真[D].北京:北京交通大学,2010
    [62] Zhang Y.M., Jiang J.. Bibliographical review on reconfigurable fault-tolerant con-trol systems [J]. Annual Reviews in Control,2008,(32):229–252
    [63]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000
    [64] Yang Z., Blanke M.. The robust control mixer module method for control reconfigu-ration [A].2000American control conference [C]. Chicago: IEEE Computer Society,2000:3407-3411
    [65] Bajpai G., Chang, B.C., Lau A.. Reconfiguration of flight control systems for actu-ator failures [J]. IEEE Aerospace and Electronics Systems Magazine,2001,16(9):29-33
    [66] Alwi H., Edwards C.. Fault tolerant control using sliding modes with on-line controlallocation [J]. Automatica,2008,44(7):1859-1866
    [67] Shin J.Y., Wu N.E., Belcastro C.. Adaptive linear parameter varying control syn-thesis for actuator [J]. Journal of Guidance, Control, and Dynamics,2004,27(4):787-794
    [68] Ganguli S., Marcos A., Balas G.. Reconfigurable LPV control design for Boeing747-100/200longitudinal axis [A].2002American control conference [C]. Anchorage:IEEE Computer Society,2002:3612-3617
    [69] Marcos A., Balas G.J.. A robust integrated controller/diagnosis aircraft application[J]. International Journal of Robust and Nonlinear Control,2005,15(12):531-551
    [70] Sheng Q.S., Dong L., Lin L., et al. Fault-tolerant control for constrained linear sys-tems based on MPC and FDI [J]. International Journal of information and systemssciences,2008,4(4):512-523
    [71] Ocampo-Martinez C., Puig V.. Fault-tolerant control model predictive controlwithin the hybrid systems framework: application to sewer networks [J]. Inter-national Journal of Adaptive Control and Signal Processing,2009,23(8):757-787
    [72] Rodil S.S., Fuente M.J.. Fault tolerance in the framework of support vector ma-chines based model predictive control [J]. Engineering Applications of ArtificialIntelligence,2010,23(7):1127-1139
    [73] Yetendje A., Seron M., De Dona′J.. Robust MPC design for fault tolerance ofconstrained multisensor linear systems [J]. International Journal of Applied Math-ematics and Computer Science,2012,22(1):211-223
    [74] Zhang Y.M., Camille A.R., Su C.Y.. Reconfigurable control allocation applied toan aircraft benchmark model [A].2008American control conference [C]. Seattle:IEEE Computer Society,2008:1052-1057
    [75] Zhang Y.M., Jiang J.. An active fault-tolerant control system against partial actu-ator failures. IET Control Theory and Applications,2002,149(1):95-104
    [76] Zhu F.L., Cen F.. Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear [J]. Jour-nal of Process Control,2010,20(10):1141-1149
    [77] Wahrburg A., Adamy J.. Parametric design of robust fault isolation observers forlinear non-square systems [J]. Systems&Control Letters,2013,62(5):420-429
    [78] Qu Z.H., Ihlefeld C.M., Jin Y.F.. Robust fault tolerant self-recovering control ofnonlinear uncertain systems [J]. Automatica,2003,39(10):1763-1771
    [79] Wang Y.Q., Zhou D.H., Liu L.H.. Robust and active fault tolerant control for aclass of nonlinear uncertain systems [J]. International Journal of Automation andComputing,2006,3(3):309-313
    [80] Patton R.J., Uppal F.J., Simani S., et al. Robust FDI applied to thruster faults ofa satellite system [J]. Control Engineering Practice,2010,18(9):1093-1109
    [81] Jin X.Z., Yang G.H., Chang X.H., et al. Robust Fault-tolerant H∞Control withAdaptive Compensation [J]. Acta Automatica Sinica,2013,39(1):31-42
    [82]王福忠,姚波,张庆灵.基于LMI双故障动态输出反馈完整性控制[J].控制理论与应用,2006,23(6):976-980
    [83] Wang L.M., Chen X., Gao F.R.. An LMI Method to robust iterative learning fault-tolerant guaranteed cost control for batch processes [J]. Chinese Journal of ChemicalEngineering,2013,21(4):401-411
    [84] Wang J.L., Yang G.H., Liu J.. An LMI approach to H index and mixed H/H∞fault detection observer design [J]. Automatica,2007,43(9):1656-1665
    [85] Liu G., Wang D., Li Y.. Active fault tolerant control with actuation reconfiguration[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):1110-1117
    [86] Wang T., Xie W.F., Zhang Y.M.. Sliding mode fault tolerant control dealing withmodeling uncertainties and actuator faults [J]. ISA Transactions,2012,51(3):386-392
    [87] Hess R.A., Wells S.R.. Sliding mode control applied to reconfigurable flight controldesign [J]. Journal of Guidance, Control, and Dynamics,2003,26(3):452–462
    [88] Edwards C., Tan C.P.. A comparison of sliding mode and unknown input observersfor fault reconstruction [J]. European Journal of Control,2006,12(3):245-260
    [89] Yan X.G., Edwards C.. Nonlinear robust fault reconstruction and estimation usinga sliding mode observer [J]. Automatica,2007,43(9):1605-1614
    [90] Ye D., Yang G.H.. Adaptive reliable H∞control for linear time-delay systems viamemory state feedbaek [J]. IET Control Theory&Applications,2007, l (3):713-721
    [91] Yang G.H., Ye D.. Adaptive fault-tolerant H∞control via dynamic output feedbackfor linear systems against actuator faults [A].45th IEEE Conferenee on Decisionand Control [C]. SanDiego: IEEE Computer Society,2006:3524-3529
    [92] Ye D., Yang G.H.. Adaptive fault-tolerant tracking control against actuator faultswith application to flight control [J]. IEEE Transactions on Control Systems Tech-nology,2006,14(6):1088-1096
    [93]赵钦君,姜斌,陈复扬.基于故障检测的自适应重构控制及其应用[J].系统工程与电子技术,2006,28(12):1870-1873
    [94]邓胜利,雷虎民,邵雷.基于交互式多模型的飞控系统容错控制研究[J].飞行力学,2011,29(1):34-37
    [95]郭玉英.基于多模型的飞机舵面故障诊断与主动容错控制[D].南京:南京航空航天大学,2009
    [96] Bodson M., Groszkiewicz J.. Multivariable adaptive algorithms for reconfigurableflight control [J]. IEEE Transactions on Control Systems Technology,1997,5(2):217-229
    [97] Kim K.S., Lee K.J., Kim Y.. Reconfigurable flight control system design usingdirect adaptive method [J]. Journal of Guidance, Control, and Dynamics,2003,26(4):543-550
    [98] Staroswiecki M., Yang H., Jiang B.. Progressive accommodation of parametric faultsin linear quadratic control [J]. Automatica,2007,43(12):2070-2076
    [99] Yang Z., Stoustrup J.. Robust reconfigurable control for parametric and additivefaults with FDI uncertainties [A].39th IEEE Conferenee on Decision and Control
    [C]. Chicago: IEEE Computer Society,2000:4132-4137
    [100]田科丰,李智斌.基于动态逆的卫星姿控系统飞轮故障容错控制[J].中南大学学报(自然科学版),2009,40(1):191-199
    [101] Doman D.B., Ngo A.D.. Dynamic inversion-based adaptive/reconfigurable controlof the X-33on ascent [J]. Journal of Guidance, Control, and Dynamics,2002,25(2):275-284
    [102]高志峰.复杂系统的容错控制技术及其在近空间飞行器中的应用研究[D].南京:南京航空航天大学,2011
    [103]龚新平.几类线性系统的容错控制器设计方法研究[D].哈尔滨:哈尔滨工程大学,2012
    [104] Cai W.C., Liao X.H., Song Y.D.. Indirect robust adaptive fault tolerant controlfor attitude tracking of spacecraft [J]. AIAA Journal of Guidance, Control, andDynamics,2008,31(5):1456-1463
    [105] Yang H., Cocquempot V., Jiang B.. Robust fault tolerant tracking control withapplication to hybrid nonlinear systems [J]. IET control Theory and applications,2009,3(2):211-224
    [106] Mai P., Hillermeier C.. Fault tolerant tracking control for nonlinear systems basedon derivative estimation [A].2010American Control Conference [C], Baltimore:IEEE Computer Society,2010:6486-6493
    [107] Kobayashi T., Simon D.L.. Evaluation of an enhanced bank of Kalman filters forin-flight aircraft engine sensor fault diagnostics [J]. Journal of Engineering for GasTurbines and Power,2005,127(1):497-504
    [108] Zhang Y., Jiang J.. Integrated active fault-tolerant control using IMM approach [J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(5):1221-1235
    [109] Rago C., Prasanth R., Mehraetal R.K.. Failure detection and identification andfault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV[A].37th IEEE Conference on Decision and Control [C]. SanDiego: IEEE ComputerSociety,1998:4208-4213
    [110] Sigthorsson D., Jankovsky P., Serrani A.. Robust linear output feedback control ofan airbreathing hypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics,2008,31(4):1052-1066
    [111] Rehman O.U., Fidan B., Petersen I.. Minimax LQR control design for a hypersonicflight vehicle [A].16th AIAA/DLR/DGLR International Space Planes and Hyper-sonic Systems and Technologies Conference [C]. SanDiego: American Institute ofAeronautics and Astronautics,2009:1-19
    [112] Groves K.P., Sigthorsson D.O., Serrani A., et al. Reference command tracking for alinearized model of an air-breathing hypersonic vehicle [A]. AIAA Guidance, Navi-gation, and Control Conference and Exhibit [C]. San Francisco: American Instituteof Aeronautics and Astronautics,2005:1-14
    [113] Sigthorsson D., Serrani A.. Development of linear parameter-varying models ofhypersonic air-breathing vehicles [A]. AIAA Guidance, Navigation, and ControlConference [C]. Chicago: American Institute of Aeronautics and Astronautics,2009:1-21
    [114] Roy S., Asif A.. Robust parametrically varying attitude controller designs for theX-33vehicle [R]. Seattle: American Institute of Aeronautics and Astronautics,2000
    [115] Gregory I., Mcmiinn J., Shaughnessy J.. Hypersonic vehicle control law develop-ment using H infinity and mu-synthesis [A].4th Symposium on MultidisciplinaryAnalysis and Optimization [C]. Orlando: American Institute of Aeronautics andAstronautics,1992:1-10
    [116] Sun H.F., Yang Z.L., Zeng J.P.. New tracking-control strategy for airbreathinghypersonic vehicles [J]. Journal of Guidance, Control, and Dynamics,2013,36(3):846-859
    [117] Bushcek H., Calise A.J.. Uncertainty modeling and fixed-order controller design fora hyPersonic vellicle model [J]. AIAA Joumal of Guidance, Control and Dynamics,1997,20(l):42-48
    [118] Nathan J., Falkiewicz, Carlos E.S.. Reduced-order aerothermoelastic framework forhypersonic vehicle control simulation [J]. AIAA Journal,2011,49(8):1625-1646
    [119] Zhang T.Y., Zhou J., Guo J.G.. A study on robust adaptive controll method forhypersonic vehicle [J].宇航学报,2013,34(3):384-388
    [120]周川,张浩华.高超声速飞行器的模型线性化及极点配置设计[J].仪器仪表学报,2008,29(8):364-367
    [121]黄宜庆,王莉,孙长银.具有极点约束的高超声速飞行器非脆弱最优H2/LQR控制[J].上海交通大学学报,2011,45(3):423-428
    [122] Silvina I.B., Jorge A.S.. Use of state estimation for inferential nonlinear MPC: acase study [J]. Chemical Engineering Journal,2005,(106):13-24
    [123] Bharadwaj S., Rao A.V., Mease K.D.. Entry trajectory tracking law via feedbacklinearization [J]. Journal of Guidance, Control, and Dynamics,1998,21(5):726-732
    [124] Van Soest W.R., Chu Q.P., Mulder J.A.. Combined feedback linearization and con-strained model predictive control for entry flight [J]. Journal of Guidance, Control,and Dynamics,2006,29(2):427-434
    [125] Costa R.R., Chu Q.P., Mulder J.A.. Reentry flight controller design using nonlineardynamic inversion [J]. Journal of Spacecraft and Rockets,2003,40(1):64-71
    [126] Huang X.Y., Wang Q., Dong C.Y.. Robust adaptive control for hypersonic vehiclebased on dynamic inversion [J]. Journal of Beijing University of Aeronautics andAstronautics,2011,37(5):560-563
    [127] Eric N.J., Calise A.J.. Feedback linearization with neural network augmentationapplied to X-33attitude control [R]. Seattle: American Institute of Aeronauticsand Astronautics,2000
    [128] Marwan B., Ken S., Abdollah H.. Fuzzy guidance of the shuttle orbiter duringatmospheric reentry [J]. Control Engineering Practice,1999,20(7):295-303
    [129] Bialy B., Klotz J., Curtis J.W.. An adaptive backstepping controller for a hypersonicair-breathing missile [A]. AIAA Guidance, Navigation, and Control Conference [C].Minneapolis: American Institute of Aeronautics and Astronautics,2012:1:10
    [130] Lian B.H., Bang H.C., Hurtado J.E.. Adaptive backstepping control based autopi-lot design for reentry vehicle [R]. Miami: American Institute of Aeronautics andAstronautics,2004
    [131] Shtessel Y., Strott J., Zhu J.J.. Time-varying sliding modes control with slidingmode observer for reusable launch vehicle [R]. Los Angeles: American Institute ofAeronautics and Astronautics,2003
    [132] Xu H.J., Mirmirani M.D., Ioannou P.A.. Adaptive sliding mode control design fora hypersonic flight vehicle [J]. Journal of Guidance, Control, and Dynamics,2004,27(5):829-838
    [133] Wu S.F., Engelen C.J.H., Babuska R.. Fuzzy logic full-envelope autonomous flightcontrol for an atmospheric re-entry spacecraft [J]. Control Engineering Practice,2003,24(11):11-25
    [134] Gao D.X., Sun Z.Q., Du T.R.. Dynamic surface control for hypersonic aircraftusing fuzzy logic system [A].2007IEEE International Conference on Automationand Logistics [C]. Phoenix: IEEE Computer Society,2007:2314-2319
    [135]刘燕斌,陆宇平,何真.高超声速飞机纵向通道的多级模糊逻辑控制[J].南京航空航天大学学报,2007,39(6):716-721
    [136] Li X.D., Xian B., Diao C., et al. Output feedback control of hypersonic vehiclesbased on neural network and high gain observer [J]. Science China InformationSciences,2011,54(3):429-447
    [137] Nilesh V. Kulkarni, Minh Q.P.. Neural optimal magnetohydrodynamic control ofhypersonic flows [J]. Journal of Guidance, Control, and Dynamics,2007,30(5):1519-1523
    [138]赵刚,邵玮,陈凯,等.高超声速飞行器神经网络动态逆姿态控制器设计[J].系统仿真技术,2010,6(4):308-312
    [139]薛亚丽.基于轨迹线性化方法的近空间飞行器鲁棒自适应控制研究[D].南京:南京航空航天大学,2010
    [140]朱亮,姜长生.基于非线性干扰观测器的空天飞行器轨迹线性化控制[J].南京航空航天大学学报,2007,39(4):491-495
    [141] Ma G.F, She Z.Y.. Time-varying control via nominal trajectory linearization for anair-breathing hypersonic vehicle [J]. Journal of Control Theory and Applications,2011,9(4):535-540
    [142] Keshmiri S., Colgren R.. Six-DOF modeling and simulation of a generic hypersonicvehicle for control and navigation purposes [A]. AIAA Guidance, Navigation andControl Conference and Exhibit [C]. Manhattan: American Institute of Aeronauticsand Astronautics,2006:1-10
    [143] Keshmiri S, Mirmirani M.D.. Six-DOF modeling and simulation of a generic hy-personic vehicle for conceptual design studies [A]. AIAA Modeling and SimulationTechnologies Conference and Exhibit Norfolk [C]. Virginia: American Institute ofAeronautics and Astronautics,2004:1-16
    [144] Parker J.T., Serrani A., Yurkovich S., et al. Controloriented modeling of an air-breathing hypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics,2007,30(3):856-869
    [145]孟中杰,陈凯,黄攀峰,等.高超声速飞行器机体/发动机耦合建模与控制[J].宇航学报,2008,29(5):1509-1514
    [146]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:23-36
    [147] Shaughnessy J.D., Pinckney S.Z., McMinn J.D.. Hypersonic vehicle simulationmodel: winged-cone configuration [R]. Virginia: Langley Research Center Hamp-ton,1990
    [148]许域菲.近空间飞行器非线性容错控制技术研究[D].南京:南京航空航天大学,2011
    [149] Wang Q., Stengel R.F.. Robust nonlinear control of a hypersonic aircraft [J]. Journalof Guidance, Control and Dynamics,2000,23(4):577-585
    [150] Johnson E.N., Calise A.J.. Limited authority adaptive flight control for reusablelaunch vehicles [J]. AIAA Journal of Guidance, Control, and Dynamics,2003,26(6):906-913
    [151] Johnson M.D., Calise A.J., Johnson E.N.. Evaluation of an adaptive method forlaunch vehicle flight control [A]. AIAA Guidance, Navigation and Control Confer-ence [C]. Austin: American Institute of Aeronautics and Astronautics,2003:1-11
    [152] Zipfel P.H.. Modeling and simulation of aerospace vehicle dynamics [M]. Reston:AIAA Education Series,2000
    [153] Vinh N.X.. Optimal Trajectories in Atmospheric Flight(Studies in astronautics)[M]. Amsterdam: Elsevier,1981
    [154] Gupta R.N., Yos J.M., Thompson R.A., et al. A review of reaction rates and ther-modynamic and transport properties for an11-species air model for chemical andthermal non-equilibrium calculations to300000K [R]. Washington: National Aero-nautics and Space Administration,1990
    [155] Park C., Lee S.H.. Validation of multi-temperature nozzle flow code noznt [A].28thAIAA Thermophysics Conference [C], Reston: American Institute of Aeronauticsand Astronautics,1993:1-10
    [156] Korkan K.D., Hanley G.M.. Apollo command module aerothermodynamic charac-teristics at hyper-bolic earth entry velocities [J]. Journal of Spacecraft and Rockets,1966,3(8):1274-1281
    [157] Pavlosky J., Leger L.. Apollo experience report thermal protection subsystem [R].Washington: National Aeronautics and Space Administration,1974
    [158] Chrusciel G.T., Hull L.D.. Theoretical method for calculating aerodynamic charac-teristics of spheri-cally-blunted cones [R]. Reston: American Institute of Aeronau-tics and Astronautics,1968
    [159] Kirk D.B., Intrieri P.F., Seif A.. Aerodynamic behavior of the viking entry vehicle:ground test and flight results [J]. Journal of Spacecraft and Rockets,1978,15(4):208-212
    [160] Larson W.J., Pranke L.K.. Human spaceflight mission analysis and design [M]. NewYork: McGraw-Hill,1999
    [161] Gogu C., Matsumura T., Haftka R.T., et al. Aeroassisted orbital transfer trajectoryoptimization considering thermal protection system mass [J]. Journal of Guidance,Control, and Dynamics,2009,32(3):927-937
    [162] Gielis J.. A generic geometric transformation that unifies a wide range of naturaland abstract shapes [J]. Amrican Journal of Botany,2003,90(3):333-339
    [163] Quinn R.D., Gong L.. Real time aerodynamic heating and surface temperaturecalculations for hypersonic flight simulation [R]. Washington: National Aeronauticsand Space Administration,1990
    [164] Kaattari G.E.. A method for predicting shock shapes and presssure distributionsfor a wide variety of blunt bodies at zero angle of attack [R]. Washington: NationalAeronautics and Space Administration,1968
    [165] Kaattari G.E.. Shock envelopes of blunt bodies at large angles of attack [R]. Wash-ington: National Aeronautics and Space Administration,1963
    [166] Ried R.C., Rochelle W.C., Milhoan J.D.. Radiative heating to the apollo commandmodule: engineering prediction and flight measurement [R]. Washington: NationalAeronautics and Space Administration,1972
    [167] Bertin J.J.. Hypersonic aerothermodynamics [M]. New York: McGraw-Hill,1993:270-273
    [168] Lovelace U.M.. Charts depicting kinematic and heating parameters for a ballisticreentry at speeds of26,000to45,000feet per second [R]. Washington: NationalAeronautics and Space Administration,1961
    [169] Arpaci V.S.. Conduction heat transfer [M]. Boston: Addison-Wesely,1966
    [170] Oppenheimer M.W., Doman D.B., Bolender M.A.. A method for estimating con-trol failure efects for aerodynamic vehicle trajectory retargeting [R]. Providence:American Institute of Aeronautics and Astronautics,2004
    [171] Fahroo F., Doman D.. A direct method for approach and landing trajectory reshap-ing with failure efect estimation [R]. Providence: American Institute of Aeronauticsand Astronautics,2004
    [172] Zhao Q., Jiang J.. Reliable state feedback control system design against actuatorfailures [J]. Automatica,2006,34(10):1267-1272
    [173] Veillette R.J.. Reliable linear quadratic state feedback control [J]. Automatica,1995,31(1):137-143
    [174] Khosrowjerdi M.J., Nikoukhah R., Safari S.N.. A mixed H2/H∞approach to simul-taneous fault detection and control [J]. Automatica,2004,40(2):261-267
    [175] Wang W., Wen C.Y.. Adaptive actuator failure compensation control of uncertainnonlinear systems with guaranteed transient performance [J]. Automatica,2010,46(12):2082–2091
    [176] Boskovic J.D., Mehra R.K.. A decentralized fault-tolerant control system for ac-commodation of failures in higher-order flight control system [J]. IEEE TransactionControl System Technology,2010,18(5):1103-1115
    [177] Jin X.Z., Yang G.H.. Robust adaptive fault-tolerant compensation control withactuator failures and bounded disturbances [J]. Acta Automatica Sinica,2009,35(3):305-307
    [178] Tang X.D., Tao G., Wang L.F., et al. Robust and adaptive actuator failure compen-sation designs for a rocket fairing structural-acoustic model [J]. IEEE TransactionAerospace Electronic System,2004,40(4):1359-1366
    [179] Wu H.S.. Adaptive robust tracking and model following of uncertain dynamicalsystems with multiple time delays [J]. IEEE Transaction Automatic Control,2004,49(4):611-616
    [180] Durham WC.. Constrained control allocation [J]. Journal of Guidance, Control andDynamics,1993,16(4):717-725
    [181] Petersen J., Bodson M.. Constrained quadratic programming techniques for controlallocation [J]. IEEE Transaction Control Systems Technology,2006,14(1):91-98
    [182] Zaccarian L.. Dynamic allocation for input redundant control systems [J]. Automa-tia,2009,45(6):1431-1438
    [183] Lou Y., Doman D.B.. Dyanmic control allocation with asymptotic tracking of time-varying control input commands [A].2005American Control Conference [C]. Por-tiand: IEEE Computer Society,2005:2098-2103
    [184] H¨arkeg ard O., Torkel, Glad S.. Resolving actuator redundancy-optimal control vs.control allocation [J]. Automatia,2005,41(1):137-144
    [185] Bodson M.. Evaluation of optimization methods for control allocation [J]. Journalof Guidance, Control and Dynamics,2002,25(4):703-711
    [186] Maeder U., Borrelli F., Morari M.. Linear ofset-free model predictive control [J].Automatia,2009,45(10):2214-2222
    [187] Chang J.L.. Combining state estimator and disturbance observer in discrete-timesliding mode controller design [J]. Asian Journal Control,2008,10(5):515-524
    [188] Pannocchia G.. Robust disturbance modeling for model predictive control withapplication to multivariable ill-conditioned [J]. Journal of Process Control,2003,13(8):693-701
    [189] Rao C.V., Rawlings J.B.. Steady states and constraints in model predictive control[J]. AIChE Journal,1999,45(6):1266-1278
    [190] Tenny M.J., Rawlings J.B., Wright S.J.. Closed-loop behavior of nonlinear modelpredictive control [J]. AIChE Journal,2004,50(9):2142-2154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700