用户名: 密码: 验证码:
铯磁力仪与载体匹配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于人类对大自然不断的探索、发现以及实际应用的需要,地球磁场以及地磁导航的研究正逐渐成为导航领域的研究热点。通过近几十年的快速发展,已经证明地磁导航具有无源、无辐射、全天时、全天候、全地域、能耗低等优良特征,并且地磁场为矢量场,在地球近地空间内任意一点的地磁矢量都不同于其它地点的矢量,且与该点的地理经纬度存在一一对应的关系。因此,地磁场为航空、航天、航海以及潜航提供了天然的坐标系。本文以国际科技合作项目为背景,研究了地磁导航中的一些关键技术,包括光泵磁力仪机理、地磁导航中载体自身消磁技术、磁补偿方法以及载体与磁力仪匹配技术。研究工作主要是下面3个方面:
     1、为了获得磁力仪与水下载体的最佳匹配点,本文在局部区域进行了地磁测量,并通过克里金插值法重构地磁图。在地磁图中的平缓区域进行水下载体对周围磁场影响实验。结果表明,在所选择的空间中,在未放置和放置水下载体时,磁场变化极为明显,同一位置的测量点相差可达2700nT以上。可见在水下地磁测量时必须考虑水下载体自身磁场的影响,为此我们在载体空间的8个平面进行了8方位载体磁测实验,并通过相关系数法进行了数据分析,得到了2个铯磁力仪与水下载体的最佳匹配点,使铯磁力仪间的差值受载体磁场影响较小。
     2、常用的消磁方法是以消磁线圈进行消磁,属于“硬补偿”,该方法工序繁琐,设备复杂,受限制较多。本文则主要研究“软补偿”,即在相关匹配的基础上,将水下载体进行水下360°旋转磁测实验,分析了在不同航向上水下载体对铯磁力仪的影响,从而得到水下载体自身磁场的消磁方法,给出不同航向上每个磁力仪测量值的补偿方法,更加真实的还原水下地磁场值,为高精度水下地磁导航及建立水下地磁图打下基础。
     3、分析了原子在磁场中发生塞曼效应而形成塞曼子能级的过程,给出了光泵磁力仪的理论分析和系统设计,通过光学布洛赫方程详细解释了在激光抽运时,原子各塞曼子能级粒子数随时间演化的过程。可以发现原子在磁场中作拉莫尔进动,而其态矢量在各个塞曼子能级上的分布也同时作一定的周期性变化,当态矢量偏离初始时刻时,由于布居数的改变将对光抽运造成影响,并对入射光的吸收发生显著变化。分析计算了原子中各塞曼子能级粒子数变化的速率方程,由此获得了基态和激发态各能级粒子数随时间演化的函数,从而在理论上解释了光泵磁力仪的工作机理。
Based on the constant exploration, discovery and practical application of nature, theresearch of geomagnetic field and navigation using geomagnetic field have becoming researchhotspot. Along with the rapid development in recent decades, it has be proved that thegeomagnetic field navigation has the outstanding feature of passive, no radiation, all time, allweather, all terrain and low power. The geomagnetic field belongs to vector field, anygeomagnetic vector is unique in the near-Earth space, and corresponds with longitude andlatitude. Therefore geomagnetic field can provide a natural coordinate to space flight,sailing and diving navigation. Some key technologies of geomagnetic navigation have beenresearched in this paper in the background of international science and technologycooperation project. It contains principle of optical pumping cesium magnetometer, carrierdegaussing technology in geomagnetic navigation and the technology of carrier matchingmagnetometer. There are three major aspects in research:
     1、 In order to get the best matching points between magnetometer and underwatervehicle. In the paper geomagnetic values in local area is measured, and the geomagnetic mapis reconstructed by Kriging. The experiment underwater carrier impacting magnetic fieldaround is finished in the flat area of the magnetic map. It turned out that the magnetic fieldchanged significantly in the selected space in cases of placing and not placing underwatercarrier. The difference in the same location can be up to2500nT. Thus it can be seen the ownmagnetic influence of underwater carrier must be considered when underwater magnetic fieldbe measured. We did8orientation magnetic tests with carrier in8planes of space for thereason, and analyzed the data by means of correlation coefficient. Finally the best point ofcesium magnetometer matching with the underwater carrier.
     2、It is common that using the wrapping coils to degauss the vehicle and belong to hardcompensation. This process is trival and equipments are complex. In this paper, it is based onsoft compensation. The magnetic survey experiment that underwater carrier rotates360degrees underwater has been done on this basis, and the effect of underwater carrier oncesium magnetometer in different heading is analyzed. The degaussing algorithm for ownmagnetic field of carrier is obtained and the real value of underwater magnetic field can berestored. It is the solid foundation of high precision underwater geomagnetic navigation andestablishing the underwater geomagnetic map.
     3、The formation process of Zeeman sublevels when Zeeman effect occurred in magnetic field is analyzed, then the theoretical analysis and the system design of laser optical pumpingcesium magnetometer sensor and gradient measurement theory are shown. The time evolutionprocess of the population in laser-pumped cesium atomic Zeeman sublevels when is detailedexplained using the Schrodinger equation and the optical Bloch equation. It can be found thatthe atom is doing Larmor precession in magnetic field while the distribution of state vector ineach Zeeman sublevel has cyclical change. The optical pumping will be affected and theabsorption of incident light will change significantly due to the population altering whendeviating from the initial time. Using the approximate form of the optical Bloch equations, therate equations of the populations in the cesium atomic Zeeman sublevels is analyzed andcalculated. Thus the time evolution functions of populations in levels of ground state andexcited state is obtained, and the operating principle of optical pumping cesium magnetometercan be explained by the quantum theory consequently.
引文
[1] Lohmann K J, Lohmann C M F. Detection of magnetic field intensity by sea turtles.Nature[J],1996,380:59-61P
    [2] Kenneth J, Lohmann*, Catherine M. F. Geomagnetic map used in sea-turtle navigation.Nature[J],2004,428:909-910P
    [3]杨云涛,石志勇,关贞珍等.地磁场在导航系统中的应用[J].中国惯性技术学报,2007,15(6):686-693页
    [4]杨功流,李士心,姜朝宇.地磁辅助惯性导航系统的数据融合算法[J].中国惯性技术学报,2007,5(1):46-49页
    [5] H.Rice, S.Kelmenson, L.Mendelsonhn. Geophysical navigation technologies andapplications. IEEE,2004:618-624P
    [6]王解先,李浩军.磁偏角与磁倾角的公式推导与运算[J].大地测量与地球动力学,2009,3(29):88-94页
    [7]高金田.地磁正常场的选取与地磁异常场的计算[J].地球物理学报,2005,48(1):84-95页
    [8]宋贯一.地球基本磁场的成因.地球物理学进展[J].2009,24(1):89-94页
    [9]李大明.磁场的测量.北京:机械工业出版社,1993,31-39页
    [10]管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005
    [11]徐文耀,白春华,康国发.地壳磁异常的全球模型.地球物理学报[J].2008,23(3):641-651页
    [12] U.Frese, P.Larsson, T.Duckett.A. Multilevel Relaxation Algorithm for SimultaneousLocalization and Mapping, IEEE. Trans.Robotics,2005,21(2):196~207P
    [13]金际航,边少峰.世界地磁模型进展WMM2005.国家安全与军事地球物理研究[C].国家安全地球物理学术研讨会论文集,2005:58-64页
    [14]安振昌,王月华.1900-2000年非偶极子磁场的全球变化[J].地球物理学报,1999,42(2):170页
    [15]刘天佑.地球物理勘探概论[M].北京:中国地质大学出版社,2007.
    [16]王稟文.地磁场模型研究[D].北京:中国地震局地球物理研究所,2001
    [17]安振昌.中国地磁测量、地磁图和地磁场模型的回顾[J].地球物理学报,2002,47:190-193页
    [18]李新,程国栋,卢玲.青藏高原期望分布的空间插值方法比较[J].高原气象.2003,22(6):565-573页
    [19] Noel A.C.Cressie. Statistics for Spatial Data[J], A Wiley-Interscience publication,1991:38~91P
    [20] BriggsC.Machine. Contouring Using Minimum Curvature[J], Geophysics,1979,39(1):39P
    [21]周军,葛致磊,施桂国,刘玉霞.地磁导航发展与关键技术[J].宇航学报,2008,29(5):1467-1472页
    [22]丁鸿佳,隋厚堂.磁通门磁力仪和探头研制的最新进展[J].地理物理学进展,2004,19(4):743-745页
    [23]杨婕,许仪西. G856质子旋进磁力仪性能测试[J].防灾科技学院学报,2008,10(1):42-43页
    [24]张昌达,董浩斌.量子磁力仪评说[J].工程地球物理学报,2004,1(6):499-507页
    [25]陈林,李敬东,唐跃进,任丽.超导量子干涉仪发展和应用现状[J].低温物理学报,2005,27(5):657-661页
    [26]周耀忠,张国友.舰船磁场分析计算[M].北京:国防工业出版社,2004
    [27]周贤高,李士心,杨建林,张良通.地磁匹配导航中的特征区域选取[J].中国惯性技术学报,2008,16(6):694-698页
    [28] T.Wang, R.L.McClintock.Terrain. Correlation Suitability. Proc of SPIE,1994,2220(4):50-58P
    [29]张国忠,王征,蒋秀峰,朱华勇.基于离散分数布朗随机场模型的景象适配性分析方法[J].宇航学报,2004,25(1):19-23页.
    [30]胡正东,郭才发,张士峰,蔡洪.Unscented卡尔曼滤波在飞航导弹地磁导航中的应用[J].宇航学报,2009,30(4):1443-1448页
    [31]于平,刘淼.战斧导弹的五大不足[J].中国航天,2000,11:4445页
    [32]王向磊,孙付平,陈坡.地磁匹配导航算法研究[J].测绘工程,2009,18(3):37-39页
    [33]谢仕民,李邦清,李文耀,王黎斌.地磁匹配技术及其基本匹配算法仿真研究[J].航天控制,2008,26(5):55-59页
    [34]吴美平,刘颖,胡小平.ICP算法在地磁辅助导航中的应用[J].航天控制,2007,25(6):17~21页
    [35]晏登洋,任建新,宋永军.惯性/地磁组合导航技术研究[J].机械与电子,2007,25(1):19-22页
    [36]刘颖,吴美平,胡小平.基于等值线约束的地磁匹配方法[J].空间科学学报,2007,27(6):505-511页
    [37]穆华,任治新,胡小平.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报,2007,15(3):322-326页
    [38]周军,葛致磊,施桂国,刘玉霞.地磁导航发展与关键技术[J].宇航学报,2008,29(5):1467-1472页
    [39] F.Goldenberg. Geomagnetic Navigation Beyond Magnetic Compass. PLANS,2006,San Diego,California:684-94P
    [40] C.Tyrén. Magnetic Anomalies As A Reference for Ground Speed and Map Matchingnavigation. Journal of Navigation,1982,35(2):242-254P
    [41] C.Tyrén. Magnetic terrain navigation. Proceedings of the5th Int Symp on UnmannedUntethered Submersible Tech-nology,1987:245-256P
    [42]彭富清.地磁模型与地磁导航[J].海洋测绘,2006,26(2):73-75页
    [43]蔡兆云,魏海平,任志新.水下地磁导航技术研究综述[J].尖端科技,2007(3):28~30页
    [44]李刚.非晶丝传感器研究[D].哈尔滨工业大学硕士论文,2009:1-4P
    [45]高军科.基于巨磁阻抗效应的地磁导航研究[D].哈尔滨工业大学硕士论,.2007:1-7页
    [46]章复中,周树平,陈效真.微磁传感器在无源导航及导引技术中的应用前景[J].红外与激光工程,2006,35(增刊):35~40页
    [47] G.Shorshi, I. Bar-Itzhack.Satellite. Autonomous Navigation Based on MagneticFieldMeasurements.Journal of Guidance[J]. Control and Dynamics,1995,18(4):843-850P
    [48]余天荣,孙秋菊,冯顺和.全国航磁数据库的建设[J].铀矿地质,2003,19(5):269-303页
    [49]杨云涛,石志勇,关贞珍,李豫泽.地磁场在导航定位系统中的应用[J].中国惯性技术学报,2007,15(6):686-692页
    [50]左文辑,宋福香.微小卫星磁测自主导航方法[J].宇航学报,2000,21(2):100-104页
    [51]赵敏华,石萌,曾雨莲.等基于磁强计的卫星自主定轨算法[J].系统工程与电子技术,2004,26(9):1236~1238页
    [52]高长生,荆武兴,张燕.基于Unscented卡尔曼滤波器的近地卫星磁测自主导航[J].中国空间科学技术,2006,2:27~32页
    [53]高金田,安振昌.地磁正常场的选取与地磁异常场的计算[J].地球物理学报,2005,48(1):56-62页
    [54]安振昌.2000年中国地磁场及其长期变化冠谐分析[J].地球物理学报,2003,46(1):68~72页
    [55]董昆,周军,葛致磊.基于地磁场的新型导航方法研究[J].火力与指挥控制,2009,34(3):153-155页
    [56]赵敏华,吴斌,石萌.基于三轴磁强计与雷达高度计的融合导航算法[J].宇航学报,2004,25(4):411-415页
    [57]赵敏华,吴斌,石萌.基于GPS与三轴磁强计的联合导航算法[J].天文学报,2006,47(1):93-99页
    [58]李素敏,张万清.地磁场资源在匹配制导中的应用研究[J].制导与引信,2004,25(3):19~21页
    [59]郭庆,魏瑞轩,胡明朗,周炜.基于投影寻踪的自适应地磁/地形匹配导航[J].仪器仪表学报,2008,29(12):2663-2667页
    [60]乔玉坤,王仕成,张琪.地磁异常匹配制导技术应用于导弹武器系统的制约因素分析[J].飞航导弹,2006,8:39~41页
    [61]晏登洋,任建新,宋永军.惯性/地磁组合导航技术研究[J].机械与电子,2007,25(1):19-22页
    [62]刘颖,吴美平,胡小平.基于等值线约束的地磁匹配方法[J].空间科学学报,2007,27(6):505~511页
    [63]穆华,任治新,胡小平.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报,2007,15(3):322-326页
    [64]丁鸿佳,刘士杰.我国弱磁测量研究的进展[J].地球物理学报,1997,40(增刊):238-248页
    [65]褚圣麟.原子物理学[M].人民教育出版社,1979,115-143页
    [66]张杨,康崇等.基于超精细结构下的激光光泵铯磁力仪的理论研究[J].光学与光电子技术,2010,58-61页
    [67]董连芝,葛钟峋.近代物理[M].吉林大学出版社,1992
    [68] Mileti G, Deng J Q, Walls F L, Jennings D A, and Drullinger R E. Laser-pumpedrubidium frequency standards: new analysis and progress. IEEE,1998,34(2):233P
    [69] Cohen-Tannoudji C, Dupont-Roc J, Grynberg G.Atom-Photon Interactions: BasicProcesses and Applications. Wiley, New York.2004
    [70]廖延彪.偏振光学[M].北京:科学出版社,2003:246-301页
    [71] Jones R C. A new calculation for the treatment of optical systems: JOSA,1941,(31):488-503P
    [72]盛新志,娄淑琴.激光原理[M].清华大学出版社,2010
    [73]祁香兵.数字氦光泵磁力仪的设计与实现[D].浙江大学,2007,9-13页
    [74]肖建华.光泵磁共振原理的图像阐释[J].四川师范大学学报,1996,19(5):103-107页
    [75] Vorgelegt Von, Georg Bison. Development of an optical cardio-magnetometer,University atsdruckerei Freiburg,2004
    [76]孙延禄.关于圆偏振光在3D立体影像显示中的应用对《3D立体影像显示方法丛谈》的补充诠释.2010:24-29页
    [77] Corneay.Atomic and Laser Spectroscopy. Oxford Clarendon Press,1977.
    [78] S.Groeger, G.Bison, P.E.Knowles. Laser-pumped cesium magnetometers forhigh-resolution medical and fundamental research[J],Sensors and ActuatorsA,2006,129(3):1-5P
    [79] S.Groeger,A.S.Pazgalev, A.Weis. Comparison of discharge lump and laser pumpedcesium magnetometers[J], Applied PhysicsB,2005,80(6):645-654P
    [80]郭志宏.航磁及梯度数据正反演解释方法技术实用化改进及应用[D].北京:中国地质大学,2004,26-40页
    [81]吴招才,刘天佑.磁力梯度张量测量及应用[J].地质科技情报,2008,27(3):107-110页
    [82] Luo Yao, Changli Yao. Forward modeling of gravity, gravity gradients and magneticanomalies due to complex bodies[J]. Journal of China University of Geosciences,2007,18(3):280-286P
    [83]李曙光周翔等.全光学高灵敏度铷原子磁力仪的研究[J].物理学报,2010,59(02):0877页
    [84] BudkerD, GawlikW, Kimball D F, Rochester SM, YashchukV V,WeisA2002Rev. M od.Phys.74:1153P
    [85] Johnston M J S, Mueller R J, Sasai Y1994B ull. Seism. Soc.Am84:792P
    [86] Jacques, Trerbla P. Calculations on the Efficiency of Optical Pumping of a CesiumAtomic Beam by Lasers of Finite Linewidth.42nd Annual Frequency ControlSymposium.505-507P
    [87]王庆涛.激光源对光磁共振信号的影响[D].哈尔滨工程大学,2010
    [88] Volz U, Schmoranzer H, Phys. Scr.1996, T65:48P
    [89] EdmondsAR.Angular Momentum in Quantum Mechanics. New Jersey. Princeton,1960
    [90] Moon G, Noh HR. Theoretical Calculation of the Saturated Absorption Spectrum for aMultilevel Atom. Journal of the Korean Physical Society.2007,50(4):1037-43P
    [91] Moon G, Shin S R, Noh HR. Analytic Solutions for the populations of anoptically-pumped multilevel atom. Journal of the Korean Physical Society.2008,53(2):552-557P
    [92]姚启钧.光学教程[M].高等教育出版社,2005:336-340页
    [93] Varcoet B T H, Sang R T, Macgillivary W R, Standage M C. Optical pumping of theNa D2transition with elliptically polarized light. Journal of Modern optics,1999,46(5),787-800P
    [94] Adonts G G, Arutunyan V M, Optical pumping of atoms by a saturated ellipticallypolarized wave in a magnetic field. J. Phys. B.1989,22:1103-1114P
    [95]吴福全,王吉明,封太忠.磁光晶体的磁致退偏效应.中国激光.2004,31(11):1347-1350页
    [96] Goldenberg F Geomagnetic navigation beyond the magnetic-compass.PositionLocation and Navigation Symposium. Washington: IEEE,2006:684-694P
    [97] Rice H, Kelmenson S, Mendelsohn L. Geophysical navigation technologies andapplications.Position Location and Navigation Symposium. April26-29,2004:618-624.
    [98]穆华,任治新,胡小平等.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报,2007,15(3):322-326页
    [99] Lohmann K J, Lohmann C M F, Ehrhart L M. Geomagnetic map used in sea-turtlenavigation [J]. Nature,2004,428:909-910P
    [100]Henryk K.Lachowicz, Karin L.Garcia, Arcady Zhukov. Skin-effect andCircum-Ferential Permeability in Micro-Wires Utilized in GMI-Sensors[J]. Sensorsand Actuators A.2005,(119):384-389P
    [101]Oliver J.Woodman.An introduction to inertial navigation[D].UnitedKingdom:Cambridge,2007,39(2):93-96P
    [102]Chu J C, His W C, Hubbard L. Performance of magnetic field-guided navigationsystem for interventional neurosurgical and cardiac procedures [J]. Journal of AppliedClinical Medical Physics,2005,6(3):143-149P
    [103]刘成瑞,徐春,王治华.基于相关系数AR模型的陀螺随机漂移分析方法[J].空间控制技术与应用,2011,37(4):31-35页
    [104]Iagnemma K,Dubowsky S.Traction control of wheeled robotic vehicles in roughterrain with application to planetary rovers[J]. The International Journal of RoboticsResearch,2004,23(10-11):1029-1040P
    [105]郝燕玲,赵亚凤,胡峻峰.地磁匹配用于水下载体导航的初步分析[J].地球物理学进展,2008,23(2):594-598页
    [106]张杨,康崇.区域地磁测量实验及水下载体对周围磁场的影响分析[J].中国惯性技术学报,2011,19(2):205-208页
    [107]刘大明.舰船消磁理论与方法[M].国防工业出版社,2010:120-123页
    [108]田民波.磁性材料[M].清华大学出版社,2001:23-27页
    [109]王光辉,朱海,郭正东.潜艇磁偶极子近似距离条件分析[J].海军工程大学学报,2008,20(2):60-63
    [110]Ioan R Ciric, Felllow. New model for the computation of quasi stationary fields due toarbitrary distributions of magnetic dipoles [J]. IEEE Transactionson magnetics, July2000,36(4):1990-1995P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700