用户名: 密码: 验证码:
全光铯原子磁力仪系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弱磁检测技术的发展非常迅速,有着广泛的应用领域。主要包括地质调查、油气矿产勘察、考古、材料缺陷检测、海底光缆调查、寻找水下沉船、生物磁场检测等。最早的高灵敏度磁力仪是在二次世界大战中开发出的磁通门磁力仪,随后又相继出现了质子磁力仪,欧弗豪泽效应磁力仪,光泵磁力仪,超导磁力仪,测磁灵敏度不断提高。近几年,出现了测磁灵敏度更高的原子磁力仪。本文研究了原子磁力仪的原理,并搭建全光原子磁力仪系统,实现了高灵敏度弱磁场检测,主要研究了以下几个方面的内容。
     (1)本文选用铯(Cs)原子作为工作物质,详细讨论了圆偏振光极化原子的物理过程,利用线偏振光检测介质的圆二向色性的方法实现微弱磁场检测,并给出详细推导过程。同时,讨论了影响原子极化的各种弛豫。
     (2)实验系统中采用外腔半导体激光器作为光源,详细讨论了消多普勒极化谱和原子二向色性激光稳频技术(DAVLL),采用速率方程推导了这两种无调制激光器稳频技术的基本理论,与实验结果符合的较好,并分析了各种稳频技术在原子磁力仪系统中的优缺点。
     (3)原子磁力仪的核心器件是Cs原子气室,文中根据Cs-He自旋破坏碰撞弛豫和壁碰撞弛豫的原理讨论原子气室的直径与充入He气的压强对原子磁力仪的影响,并设计定制了Cs原子气室。同时提出利用压致增宽效应测量气室内压强的方法,通过测量Cs原子的吸收谱线宽实现气室内气体压强值的测量。
     (4)为提高Cs原子数密度,我们设计开发了无磁热气流加热装置对Cs原子气室进行加热,避免了电加热会引入磁噪声的缺点,成功用于原子磁力仪实验系统,并实现了0.1oC的分钟温度稳定性。
     (5)微小偏转角检测系统中详细讨论了分光束检测法和法拉第调制技术,从理论和实验中验证了其用于微小偏转角检测的可行性,二者均可实现10-7rad小角度检测。分光束检测法可实现更高的响应速度,并在实际系统中应用。
     最后,成功搭建了全光Cs原子磁力仪系统,通过实验测量数据讨论了泵浦光频率、泵浦光强、检测光强、温度、泵浦光调制占空比、磁场等因素对原子磁力仪的影响,在优化各参数后,在100nT附近实现了0.3pT/Hz1/2的国内最高测磁灵敏度,并给出了进一步提高灵敏度的思路。
     本文的主要创新性成果包括:(1)在国内首次采用双光束结构搭建全光Cs原子磁力仪系统,并实现了0.3pT/Hz1/2的国内最高测磁灵敏度;(2)采用与原子共振的线偏振光检测介质的圆二向色性实现弱磁检测;(3)利用压致增宽效应测量Cs原子气室内的实际压强值;(4)采用热气流加热方式设计制作了无磁加热系统。
The detecting techniques of weak magnetic field develop rapidly and have been used inmany practical applications, such as geological surveys, oil and gas mineral exploration,archeology, material defect detection, submarine cable survey, looking for underwatershipwrecks, bio-magnetic field detection and so on. The first high-sensitivity magnetometer,developed in the Second World War, is the flux-gate magnetometer, then protonmagnetometer, Overhauser effect magnetometer, optical pumped magnetometer,superconducting quantum interference device(SQUID) emerge in secession and the sensitivityincreases quickly. In recent years, the atomic magnetometer has become the most sensitivemagnetometer. In this paper we explain its basic principle and demonstrate an all opticalatomic magnetometer system. The main topics of this thesis are as follows.
     (1) The Cs atoms are used as the material. We analyze the theory of magnetic fielddetecting process of atomic magnetometer and discuss the process of atomic polarization. Theresulting circular dichroism of the atomic polarization is detected by measuring ellipticity ofthe probe light, the detailed proof is given in the paper. We calculate the various relaxationtechniques of the depolarization as well.
     (2) The external cavity semiconductor laser is used as light source. We discusspolarization spectroscopy and dichroic atomic vapor laser lock (DAVLL) in theory andexperiment based on the rate equation. The calculation is agreement with the experiment. Theadvantages and disadvantage of the techniques are analyzed.
     (3) The Cs vapor cell is the core component of the atomic magnetometer. According tothe relaxation technique of Cs-He spin destruction collision and wall collisions we discuss theinfluence of vapor cell diameter and He pressure to atomic magnetometer and design the Csvapor cell. According to pressure broadening effect, we propose the method of measuring cellvapor pressure through testing Cs absorption spectrum.
     (4) In order to increase the density of Cs atoms, we use hot air heating means to heat theCs vapor cell. The method can avoid the magnetic noise and has been used in theexperimental system successfully with temperature stability of0.1°C.
     (5) A highly sensitive detecting system is designed. The polarizing beamsplitter and Faraday modulator techniques are used to detect small rotation angle, both methods canachieve10-7rad small angle detecting. The polarizing beamsplitter used in practical systemcan achieve higher response rate.
     We build all-optical Cs atomic magnetometer successfully and discuss the influence ofpumping beam frequency, pumping intensity, probing intensity, temperature, duty cycle ofpumping beam modulation and magnetic field. We have achieved the sensitivity of magneticmeasurement of0.3pT/Hz1/2at100nT. How to improving the sensitivity is discussed at theend of the paper.
     The innovative results of this paper include:(1) We build all-optical Cs atomicmagnetometer based on dual optical beam structure and have achieved the most sensitivemagnetic measurement of0.3pT/Hz1/2at home.(2) The linear polarized light is used to detectcircular dichroism of the atomic polarization.(3) We adopt pressure broadening effect tomeasure the pressure of the Cs vapor cell.(4) We design the non-magnetic heating systemusing hot current.
引文
[1]郑广如,张玄杰,范子良,周坚鑫,宋燕兵,温世新.高精度航磁调查在新疆西天山地区的应用.物探与化探,2011,35(2):188-191P
    [2]董杰,李卫东,肖金平,张亚东,刘晓敏.河北省八道河航磁低背景场区铁矿地面磁测勘查实例.物探与化探,2010,34(5):557-563P
    [3]张伟庆,张作伦,张鲁新等.高精度磁法在某铅锌矿体勘查中的应用.金属矿山,2009,(4):81-94P
    [4]朱英.中国石油航空磁测的进展和展望.石油物探,1989,28(3):16-21P
    [5]Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field andmagnetization measurements with an atomic magnetometer. Applied PhysicsLetters,2010,97(15):151110
    [6]阎桂林.考古磁学——磁学在考古中的应用.考古与科技,1997,(1):1-3P
    [7]湖北“郧县人”化石地层的磁性地层学初步研究.地球科学—中国地质大学学报,1993,18(2),221-226P
    [8]詹志佳.震磁现象的观测与研究.地震,1984,(6),55-60P
    [9]Johnston M J S, Mueller R J and Sasai Y. Magnetic field observations in thenear-field the28June1992Mw7.3Landers, California, earthquake. Bulletinof the Seismological Society of America,1994,84(3):792-798P
    [10]许建华,张炼,王晨,王晓美,马洁美.地震短临跟踪黑龙江地磁台阵的架设.地震地磁观测与研究,2006,27(5):121-124P
    [11]陈章立,李志雄.对地震预报的科学思考.地震,2008,28(1):1-17P
    [12]Xia H, Ben-Amar Baranga A, Hoffman D, Romalis M V. Magnetoence-phalographywith an atomic magnetometer. Applied Physics Letters,2006,89(21):211104
    [13]李英梅,金惠根,权薇薇,等.冠心病患者的心磁图应用.2008,28(5):1-3P
    [14]赵丹,陈元禄,刘芳,等.心磁图在冠心病诊断中的临床应用.2010,16(2):242-245P
    [15]Bison G,Wynands R, Weis A. A laser-pumped magnetometer for the mapping ofhuman cardiomagnetic fields. Applied Physics B,2003,76(3):325-328P
    [16]李克勇,王直中,曹克利.听觉诱发脑磁反应.临床耳鼻喉科杂志13(10):476-479P
    [17]Bonavolonta C, Valentino A, Peluso G, Barone A.A“Non destructive evaluationof advanced composite materials for aerospace application using HTS SQUIDs”.IEEEtransactions on applied superconductivity,2007,17(2):772-775P
    [18]Kuroda M, Yamanaka S and Isobe Y. Detection of plastic deformation in lowcarbon steel by SQUID magnetometer using statistical techniques. NDT&EInternational,2005,38:53-57P
    [19]吴水根,谭勇华,周建平.铯光泵磁力仪(G880)在海洋工程勘探方面的应用.海洋科学,2006,30(5):5-9P
    [20]刘胜旋.光泵磁力仪在光缆路由调查中的应用.海洋测绘,2002,22(1):25-29P
    [21]年永吉.SeaSPY磁力仪在南海海底光缆检测中的应用.工程地球物理学报,7(5):566-573P
    [22]张启国,付勇先,任来平.海底沉锚磁探测的技术方法研究.中国测绘学会海洋测绘专业委员会第二十一届海洋测绘综合性学术研讨会论文集,2009,43-45
    [23]何敬礼.高灵敏度磁力仪在寻找坠落飞机残骸中的应用.物探与化探,1999,23(6):470-473P
    [24]王传雷,祁明松,陈超,彭松柏,谭伦武.高精度磁测在长江马当要塞沉船探测中的应用.地质科技情报,2000,19(3):98-102P
    [25]尹春晓,磁通门传感器及其模拟处理电路的研究.吉林大学硕士学位论文.2010:7-8P
    [26]Koch R H, Deak J G, and Grinstein G,Fundamental limits to magnetic-fieldsensititvity of fluxgate magnetic-field sensors. Appl. Phys.Lett.,1999,75(24):3862-3864P
    [27]张昌达,董浩斌.量子磁力仪评说.工程地球物理学报,2004,1(6):499-507P
    [28]李曙光.原子磁力仪的研究.浙江大学博士学位论文,2009:7-9P
    [29]石艳林,董浩斌.Overhauser磁力仪初步设计.仪表技术与传感器,2008,(2):18-19P
    [30]谭超,董浩斌,葛自强.Overhauser磁力仪激发接收系统设计.仪器仪表学报,2010,31(8):1867-1871P
    [31]周志坚,程德福,王君,张振宇,刘祥.氦光泵磁力仪中磁敏传感器的研制,2009,22(9):1284-1288P
    [32]张振宇,程德福,王君,周志坚,连明昌.光泵磁力仪中磁共振光学检测方法研究,2011,29(3):253-257P
    [33]刘浩军.新一代航空氦光泵磁力仪(HC-2000型)通过部级鉴定验收.物探与化探,2003,(2):149P
    [34]Clark J. Principles and applications of SQUIDs. Proceedings of theIEEE,1989,77(8):1208-1223P
    [35]Drung D, Cantor, R, Peters M, Scheer H J and Koch H.Low-noise high speeddc superconducting quantum interference device magnetometer with simplifiedfeedback electronics. Appl. Phys. Lett.,1990,57:406P
    [36]倪小静,杨朝云.超导量子干涉器(SQUID)原理及应用.物理与工程,2007,17(6):28-30P
    [37]董浩斌,张昌达.量子磁力仪再评说.工程地球物理学报,2010,7(4):460-469
    [38]白世武,丁红胜.直流超导量子干涉器的无损检测研究.无损检测,2006,28(8):399-401P
    [39]曾昭发,王者江.SQUID及在地球物理中的应用.地球物理学进展.2003,18(4):608-613P
    [40]Happer W. Optical pumping. Review of Modern Physics,1972,42(2):169-238P
    [41]Happer W and Tang H. Spin-Exchange Shift and Narrowing of MagneticResonance Lines in Optically Pumped Alkali Vapors. Phys. Rev.Lett.,1973,31(5):273–276P
    [42]Happer W and Tam A C. Effect of rapid spin exchange on the magnetic resonancespectrum of alkali vapors. Phys.Rev.A,1977,16(5):1877-1891P
    [43]Allred J C, Lyman R N, Kornack T W, Romalis M V. High-sensitivity atomicmagnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett.,2002,89(13):130801
    [44]Savukov I M, Seltzer S J, and Romalis M V. Tunable atomic magnetometer fordetection of radio-frequency magnetic fields. Phys. Rev. Lett.,2005,96(6):063004
    [45]Lee S K, Sauer K L, Seltzer S J, Alem O, Romalis M V. Subfemtoteslaradio-frequency atomic magnetometer for detection of nuclear quadrupoleresonance. Applied Physics Letters,2006,(89)21:214106
    [46]Seltzer S J, Romalis M V. Unshielded three-axis vector operation of a spinexchange relaxation free atomic magnetometer. Applied PhysicsLetters,2004,85(20):4804-4806P
    [47]Higbie J M, Corsini E, Budker D. Robust, high-speed,all-optical atomicmagnetometer. Review of Scientific Instrument,2006,77(11):113106
    [48]Budker D, Kimball D F, Rochester S M, Yashchuk V V, Zolotorev M. Sensitivemagnetometry based on nonlinear magneto optical rotation. Phys.Rev.A,2000,62(4):043403
    [49]Hovde C, PattonB, CorsiniE, Higbie J, Budker D. Sensitive optical atomicmagnetometer based on nonlinear magneto-optical rotation. Proceedings of theSPIE,2010,7693,769313
    [50]Belfi J, Bevilacqua G, Biancalana V, Dancheva Y, Moi L. All optical automatedmagnetic field monitoring based on coherent population trapping produced by afrequency-modulated diode laser.Proc.of SPIE,2007,6604,66040A
    [51]Belfi J, Bevilacqua G, Biancalana V, Cartaleva S, Dancheva Y, Moi1L. Cesiumcoherent population trapping magnetometer for cardiosignal detection in anunshielded environment.J. Opt. Soc. Am. B,2007,4(9):2357-2362P
    [52]Groeger S, Bison G, Schenker J L, Wynands R and Weis A. A high sensitivitylaser-pumped Mx magnetometer. Eur. Phys. J. D,2006,38:239-247P
    [53]Groeger S, Bison G, Knowles P E, Wynands R, Weis A. Laser pumped cesiummagnetometers for high-resolution medical and fundamental research. Sensors andActuators A,2006,129:1-5P
    [54]Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L A, MorelandJ. Chip-scale atomic magnetometer. Applied Physics Letters,2004,85(26):6409-6411P
    [55]Schwindt P D D, Lindseth B, Knappe S, Shah V, Kitching J. Chip-scale atomicmagnetometer with improved sensitivity by use of the Mx technique. AppliedPhysics Letters,2007,90(8):081102
    [56]Shah V, Knappe S, Schwindt P D D, Kitching J. Subpicotesla atomicmagnetometry with a microfabricated vapour cell. Nature Photonics,2007,1(11):649–652P
    [57]Kitching J, Knappe S, Shah V, Schwindt P, Griffith C, Jimenez R, PreusserJ, et al. Microfabricated Atomic Magnetometers and Applications. IEEEInternational Frequency Control Symposium,2008,789-794P
    [58]Griffith W C, Knappe S, Kitching J. Femtotesla atomic magnetometry in amicrofabricated vapor cell.Optics Express,2010,18(26):27167-27171P
    [59]Shah V, Romalis M V. Spin-exchange relaxation-freemagnetometry usingelliptically polarized light. Phys. Rev.A,2009,80(1):013416
    [60]Johnson C, Schwindt P D D, Weisend M. Magnetoencephalography with a two-colorpump-probe, fiber-coupled atomic magnetometer. Applied Physics Letters,2010,97(24):243703
    [61]Brown J M, Smullin S J, Kornack T W, and Romalis M V. New Limit on Lorentz-and CPT-Violating Neutron Spin Interactions. Physical Review Letters,2010,105(15):151604
    [62]Savukov I M and Romalis M V. NMR Detection with an Atomic Magnetometer.Physical Review Letters,2005,94(12):123001
    [63]Li S G, Xu Y F, Wang Z Y, Liu Y X, Lin Q. Experimental Investigation on aHighly Sensitive Atomic Magnetometer. Chin. Phys. Lett.,2009,26(6):067805
    [64]李曙光,周翔,曹晓超,盛继腾,徐云飞,王兆英,林强.全光学高灵敏度铷原子磁力仪的研究.物理学报,2010,59(2):878-881P
    [65]Liu G B, Du R C, LIU C Y, Gu S H. CPT Magnetometer with Atomic Energy LevelModulation.Chin. Phys. Lett.,2008,25(2):472-474P
    [66]Liu G B, Gu S H. Experimental study of the CPT magnetometer worked on atomicenergy level modulation. J. Phys. B: At. Mol. Opt. Phys.,2010,43(3):035004
    [67]Song X, Dong H F, Fang J C. Chip scale atomic magnetometer based on SERF.4thIEEE International Conference on Nano/Micro Engineered and MolecularSystems,2009:231-234P
    [68]褚圣麟.原子物理学.高等教育出版社,2005:174-177P
    [69]杨福家.原子物理学.高等教育出版社,2008:152-177P
    [70]Seltzer S J. Developments in alkali-mental atomic magnetometer. DoctoralDissertation of Princeton university,2008:19-58P
    [71]Kornack T W. A test of CPT and Lorentz symmetry using a K-3He co-magnetometer.Doctoral Dissertation of Princeton university,2005:21-45P
    [72]Ledbetter M P, Savukov I M, Acosta V M, Budker D. Spin-exchange relaxationfree magnetometry with Cs vapor. Physical Review A,2008,77(3):033408
    [73]Appelt S, Baranga B, Young A R, Happer W.Light narrowing of rubidiummagnetic-resonance lines in high-pressure optical-pumping cells. PhysicalReview A,1999,59(3):2078-2084
    [74]陈翼翔,薛大键,程波涛,陆璇辉,王玉竹.半导体激光器稳频技术的发展动态.激光与红外,2005,35(1):18-21P
    [75]陈永水,王芳,刘颂豪,张阳德.半导体激光器稳频技术综述.量子电子学报,2010,27(5):513-520P
    [76]MacAdam K B, Steinbach A, Wieman C E. Narrow-band tunable diode lasersystem with grating feedback, and a saturated absorption spectrometer for Csand Rb.Am.J.Phys.,1992,60(12):1098-1111P
    [77]Yang D H, Wang Y Q. Study on the saturation absorption of cesium. OpticsCommunication,1989,74:54-58P
    [78]Wieman C, H nsch T W. Doppler-free laser polarization spectroscopy. Phys.Rev. Lett.,1976,36:1170-1173P
    [79]Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G.Polarization spectroscopy of a closed atomic transition:applications to laserfrequency locking. J.Phys.B:At.Mol. Opt.Phys.,2002,35,5141-5151P
    [80]Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E,Hughes I G.Polarization spectroscopy in rubidium and cesium. Phys. Rev.A,76(6):062509
    [81]Yashchuk V V, Budker D, Davis J R, Laser frequency stabilization using linearmagneto-optics, Review of Scientific Instruments,2000,71(2),341-348P
    [82]Corwin K L, Lu Z T, Hand C F,et al.Frequency-stabilized diode laser withthe Zeeman shift in an atomic vapor.Applied Optics,1998,37(15):3295-3298P
    [83]Martins W S, Grilo M, Brasileiro M,et al. Diode laser frequency lockingusing Zeeman effect and feedback in temperature. Applied Optics,2010,49(5):871-874P
    [84]Beverini N, Maccioni E, Marsili P,et al. Frequency stabilization of a diodelaser on the Cs D2resonance line by the Zeeman effect in a vapor cell. AppliedPhysics B,2001,73(2):133-138P
    [85]Bouchiat M A, Brossel J. Relaxation of optically pumped Rb atoms on paraffin-coated wall. Phys.Rev.,1996,147(1):41-54P
    [86]Graf M T, Kimball S M, Rochester S M, Kerner K, Wong C, Budker D. Relaxationof atomic polarization in paraffin-coated cesium vapor cells. Phy.Rev.A,2005,72(2):023401
    [87]Andalkar A, Warrington R B. High-resolution measurement of the pressurebroadening and shift of the Cs D1and D2lines by N2and He buffer gases.Phys.Rev.A,2008,65(3):032708
    [88]Couture A H, Clegg T B, Driehuys B,Pressure shifts and broadening of the CsD1and D2lines by He,N2,and Xe at densities used for optical pumping and spinexchange polarization. J. Appl. Phys.,2008,104(9):094912
    [89]刘强,曾宪金,张军海,黄宗军,孙伟民.利用压致展宽测量铯气室内压强.黑龙江大学自然科学学报,2010,27(6):814-817P
    [90]Cort Johnson,Peter D D Schwindt. A two color pump probe atomic magnetometerfor magnetoencephalography.IEEE,2010,371-375P
    [91]Preusser J, Knappe S, Kitching John, Gerginov V. A microfabricated photonicmagnetometer.IEEE,2009,1180-1182P
    [92]Li S J, Wang B, Yang X D, Han Y X,Wang H,Xiao M,Peng K C. Controlledpolarization rotation of an optical field in multi-Zeeman-sublevel atoms.Phy.Rew.A,2006,74(3),033821
    [93]Acosta V M, Bauch E, Jarmola A, Zipp L J, Ledbetter M P, Budker D.Broadbandmagnetometry by infrared-absorption detection of nitrogen-vacancy ensembles indiamond. Applied Physics Letters,2010,97(17):174104
    [94]李晓坤.精密光电检测电路设计方案.电子产品世界,2003,12:37-39P
    [95]刘彬,张秋婵.光电检测前置放大电路设计.燕山大学学报,2003,27(3):193-196P
    [96]王立刚,建天成,牟海维,刘强,付天书.基于光电二极管检测电路的噪声分析与电路设计.大庆石油学院学报,2009,33(2):88-92P
    [97]Jiménez-Martínez R, Knappe S, Griffith W C, Kitching J.conversion oflaser-frequency noise to optical-rotation noise in cesium vapor. Optical Letters,2009,34(16):2519-2521P
    [98]刘强,曾宪金,张军海,孙伟民,张建中.法拉第调制技术在微小旋转角检测中的应用.光学与光电技术,2009,7(6):65-68P
    [99]徐丽珊.平面偏振光微小偏转角的精密测量.武汉科技大学硕士学位论文,2006,9-11P
    [100]常悦,钱小陵.光偏振的微小旋转角的测量技术.量子电子学报,1999,16(4):375-378P
    [101]Kominis I K,Kornack T W, Allred J C, Romalis M V.A subfemtoteslamultichannel atomic magnetometer.Nature,2003,422:596-598P
    [102]陈文兰,袁杰,齐向晖,伊林,汪中,刘新元,陈徐宗.外腔半导体激光器设计与高次谐波稳频.中国激光,2007,34(7),895-900P
    [103]张华峰,李涛.数字式标准磁场发生器的设计与设计.电子测量技术,2010,33(2):12-13P
    [104]Kornack T W,Smullin S J,Lee S K,Romalis M V.A low-noise ferrite magneticshield. Applied physics letters,2007,90(22):223501
    [105]李君良,吕玉祥,魏循,杨慧岩,杨周琴.亥姆霍兹线圈的磁场及其测量.太原理工大学学报,2005,36(5),564-566P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700