用户名: 密码: 验证码:
大流量插装式伺服阀的设计与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大流量插装式伺服阀是很多重大机械装备中电液控制系统的核心部件,譬如大型模锻压机、快锻压机、铝合金压铸机等,目前很大程度上还依赖于进口。在以往的研究中,关于插装式伺服阀与实际应用工况相匹配的参数设计方法、以及插装式伺服阀控制器设计的研究较少,阀的性能潜力未能得到充分挖掘,性能进一步提升受到制约。本文将围绕上述两大问题,通过理论建模、仿真分析、实验验证相结合的方法展开研究,主要内容如下:
     第一章,对大流量电液比例/伺服插装式节流阀的实现原理及其工程应用背景进行阐述。在分析了国内外相关技术研究现状基础上,提出了本文的主要研究内容。
     第二章,对插装式伺服阀结构参数优化设计方法的研究。推导了与使用工况相匹配的主动式插装伺服阀一系列结构参数的设计公式,平衡各项结构参数的相互制约关系。推导了主阀芯所受液压力和液动力的理论公式和简化计算公式,为先导控制腔的参数设计提供依据,并为后续控制器的设计提供了负载模型。
     第三章,对伺服比例阀的整体性建模研究。建立了电一机械转换器的集中参数模型,体现了滞环、非线性电感等常见的电磁铁非线性特征。建立了阀体机械运动部件的模型,通过直接测量与间接估算确定了各主要参数值。根据实验拟合了稳态液动力的数学模型。设计了开环和闭环两种实验测试方法,验证了模型的有效性。通过零位处的线性化方法,获取了阀的标称模型,得到其传递函数及状态空间表达式,以及各主要参数的线性化参数值及变动范围。
     第四章,对伺服比例阀的非线性滑模控制方法研究。根据伺服比例阀的标称模型频响曲线,分析了曲线上各渐近线方程所代表的动力学约束,推导了这些约束与阀模型参数间的函数式,以此作为后续滑模控制器设计的基础。根据阀的各参数值和阀芯行程限制,采用了基于加加速度约束下、代表时间最优阶跃响应的非线性滑模面,并据此设计了滑模控制系统。通过仿真和实验分别测试了伺服比例阀的阀芯位置闭环阶跃响应和频率响应,并与阀原始配套的模拟PID控制器作了对比,从而验证了上述滑模控制器的性能。
     第五章,对伺服比例阀的改进型滑模控制方法研究。针对第四章的非线性滑模控制器,分析了其不足之处,并提出了多项改进方法。引入积分器以解决滑模控制中稳态精度得不到保证的问题。提出了两种速度前馈补偿的方法,以提高阀芯的轨迹跟踪能力。采用了高/低压电源切换技术,进一步提升阀的动态响应。提出了对阀身自带的LVDT位移传感器改造的办法,提取了阀芯运动的位移、速度和加速度信号全状态反馈信号,并成功应用于滑模控制中。设计了基于加速度和加加速度联合约束下、代表时间最优阶跃响应的非线性滑模面,并设计了相应的滑模控制器,给出了应用于实时控制中的实现准则和计算流程,实现了不同负载下滑模状态的稳定性和显著增强的抗负载扰动能力。
     第六章,大流量插装式伺服阀的非线性控制方法研究。针对先导级伺服比例阀的频响远低于主级阀频响的特点,忽略主阀芯动态,建立了插装式伺服阀的简化三阶模型,并据此设计控制器。采用了基于模型补偿的鲁棒控制和反步控制方法(backstepping)改造系统的动力学方程、配置系统的极点;采用基于Lyapunov函数和非线性映射的自适应算法,对阀系数、泄漏等参量进行自适应估计,提高模型补偿的精确性。通过仿真分析和实验对比,验证了上述控制算法的性能。
     第七章,对全文的主要研究工作进行了总结。阐述了主要研究结论和创新点,并对课题的后续研究提出了展望。
The large-flow cartridge servo valve (LFCSV for short) is the key core component of the electro-hydraulic control systems in many major mechanical equipments, such as the large die-forging press, fast forging hydraulic press, aluminum alloy die-casting machine. However, the LFCSV is still largely dependent on imports. In previous study, the parameter design method of the LFCSV to match the actual application condition, and the controller design method for the LFCSV are rarely mentioned. As a result, the potential performance of the LFCSV has not been fully exploited and the further performance improvement of the valve is limited. The study of this paper will focus on the above two issues, through the combining method of theoretical modeling, simulation analysis and experimental validation. The main contents of the study are as follows:
     In chapter1, the realization principle of LFCSV and its engineering practical applications are briefly introduced. A review of LFCSV related technologies is presented. Then the main research contents are put forward.
     In chapter2, the design and optimization methods of the structural parameters of the LFCSV are studied. A series of design formulas of the LFCSV are derived, basing on the match with the working condition. The inter-constraints between the structural parameters are balanced. The theoretical formulas and simplified calculation formulas of the hydraulic force and steady-state flow force exerted on the main spool are derived, which provides the basis for the design of the pilot control chamber and provides the load model for the subsequent controller design of the LFCSV.
     In chapter3, the modelling of the servo-solenoid valve (SSV for short) is discussed. A lumped-parameter model of proportional solenoid is built based on the principle of nonlinear circuit. This model takes into account the hysteresis, magnetic saturation and other highly parametric nonlinearity which are common in the solenoid. The model of mechanical motion part of the SSV is built based on kinetic equation and the values of parameters are gained by direct measurements and indirect calculation. The steady-state flow force is measured by experiment and its mathematical model is provided. Two methods including open-loop test and closed-loop test are designed, which validate the combination model of the SSV.
     In chapter4, the nonlinear sliding-mode (SLM) control of the SSV is studied. The nominal model of the SSV is built by linearizing the dynamics on the null position. Through the frequency response of the identified model, the kinetic constraints of the valve under the power limitation are analyzed, which comes out the maximum available velocity, acceleration and jerk for the SLM control design later. According to the variation ranges of the model parameters and the limitation of the spool's stroke, a nonlinear SLM surface based on the maximum jerk and time-optimal step response is used and the SLM controller is designed. The step responses and frequency responses of the SSV with the SLM controller are tested by simulation and experiments, which exhibits its performance advantages when compared to traditional PID analogue controller.
     In chapter5, the improved SLM control methods of the SSV are investigated. With the analysis of the existing disadvantages of traditional SLM control used in chapter4, some effective modifications are proposed. Specifically, the integral element and two types of velocity feed-forward are used to eliminate steady-state error and enhance trajectory tracking ability respectively. The switch of power supply is employed to improve dynamic response of the SSV, and the modification of LVDT is designed to obtain full-state feedback signals which have been effectively applied in the SLM control of the SSV. A novel SLM surface is proposed which takes into account both spool's acceleration and jerk limitation. And subsequently the SLM control strategy is developed with the new SLM surface. Experimental studies are conducted which demonstrates that the nonlinear SLM controller proposed by this paper could guarantee the continuous and stable sliding mode state, realize the time-optimal step response of the valve and exhibit strong disturbance rejection abilities.
     In chapter6, the nonlinear control strategy of the LFCSV is studied. The dynamics of the main valve is ignored, as the natural frequency of the pilot valve (namely, SSV) is much lower than that of the main vale. Then the simplified3-order model of the LFCSV is built and the nonlinear adaptive-robust controller (ARC) is designed. The robust control and backstepping method based on the model compensation are used to reform the dynamics and assign the pole of the plant. The adaptive control algorithm based on the Lyapunov function and nonlinear projection is employed to adaptively estimate the parameters such as the leakage and valve's coefficients, and to increase the accuracy of model compensation. Finally, the performance of designed controller is validated through the simulation analysis and experimental contrast.
     In chapter7, the main work of this dissertation is summarized. Conclusions and innovative points are introduced. Finally, the subsequent research on the LFCSV is prospected.
引文
[1]陆燕荪.重大技术装备国产化是振兴装备制造业的重中之重[J].中国机械企业管理,2003(11):9-11.
    [2]邱明杰.重大技术装备国产化挺直装备工业的脊梁[J].通用机械,2012(01):24-26.
    [3]郭树涵,秦伟.装备国产化是中国现代化的重要途径[J].装备制造,2010(05):64-65.
    [4]耿殿贺,原毅军,侯小康.重大技术装备制造业的技术升级路径选择[J].科技进步与对策,2010(04):47-49.
    [5]杨尔庄.中国液压气动工业的现状与展望[J].液压气动与密封,2010(01):5-9.
    [6]汪建业.重型机械工业的发展和设备需求[J].世界制造技术与装备市场,2007(06):91-92.
    [7]汪建业,邓丽,刘福兰.重型机械制造业现状与发展趋势的分析和思考[J].重型机械,2008(05):1-5.
    [8]黄人豪.再谈液压技术和中国装备制造业[J].流体传动与控制,2009(01):1-3.
    [9]杨强.液压元件的发展与装备制造业的振兴[J].现代机械,2010(03):1-3.
    [10]黄人豪,濮凤根.中国大型工程和装备液压系统总成技术的发展和创新[J].流体传动与控制,2006(04):7-14.
    [11]许仰曾.我国液压工业与技术的发展现状与展望的战略思考[J].液压气动与密封,2010(08):1-5.
    [12]李耀文.我国液压件行业的现状和发展走势[J].机械工业标准化与质量,2008(11):13-15.
    [13]国务院办公厅.装备制造业调整和振兴规划[Z].2009.
    [14]陈柏金,黄树槐,魏运华,等.大通径电液比例阀及其在锻造液压机上的应用[J].锻压机械,2000(06):9-11.
    [15]黄火兵,夏伟,屈盛官,等.比例控制与插装阀技术的应用与发展[J].机床与液压,2007(04):229-231.
    [16]刘宏献,韩玉坤,王立新.比例插装阀在锻造液压机中的应用分析[J].锻压技术,2009(06):107-108.
    [17]熊国中.国内外注塑机液压系统现状及其发展趋势[J].塑料科技,1996(01):33-39.
    [18]郑开陆.电液比例方向节流阀在大型注塑机中的应用[J].轻工机械,2006,24(02):107-109.
    [19]Eriksson B. Control Strategy for Energy Efficient Fluid Power Actuators:Utilizing Individual Metering[D]. Linkoping Sweden:Linkoping University,2007.
    [20]Bache W, Lu Y H. Proportional-Drosselventile in 2-Wege-Einbauventil-Bauart[J]. Olhydraulik und Pneumatik,1981(25).
    [21]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [22]Andersson B R. On the Valvistor:a proportionally controlled seat valve[D]. Linkoping, Sweden: Linkoping University,1984.
    [23]Eaton. Valvistor Proportional Throttles[Z].2010.
    [24]权龙,李风兰.液压晶体管Valvistor—可连续比例控制的新型插装阀[J].工程机械,1995(06):30-33.
    [25]Parker. TDL Proportional Throttle Valve[Z].2010.
    [26]Moog. DSHR 2/2-Way Servo cartridge valve[Z].2004.
    [27]Boschrexroth.2/2 and 3/2 Way Proportional Cartridge Valves, Type.WRC [Z].2001.
    [28]Pfuhl B. Proportional 3-way cartridge valve[J]. Oelhydraulik und Pneumatik,1983,27(5): 345-349.
    [29]Back W. Design systematic and performance of cartridge valve controls[C]//International Conference on Fluid Power. Tampere, Finland:[s. n.],1987:1-48.
    [30]Ulery T J. Proportional cartridge valves-economical alternative to large valves[J]. Agricultural Eng.,1990,71(4):11.
    [31]Pippenger J J. Hydraulic cartridge valve technology[M]. Berlin:Amalgam Publishing Company, 1990.
    [32]Ellman A. Proposals for utilizing theoretical and experimental methods in modelling two-way cartridge valve circuits[D]. Tampere, Finland:Tampere University of Technology,1992.
    [33]Gimkiewicz K. Combined proportional valve and 2-way cartridge valve control for hydraulic drive systems[J]. Oelhydraulik und Pneumatik,1993,37(1):43-51.
    [34]Latour C. Development and testing of measures aimed at the reduction of flow forces in 2-way cartridge valves[J]. Oelhydraulik und Pneumatik,1994,38(1-2):54-58.
    [35]Renn J C, Chen K J. Design of a Novel Unbalanced-Type Hydraulic Cartridge Valve with Faster Response[J]. JOURNAL-CHINESE SOCIETY OF MECHANICAL ENGINEERS,2002,23(5): 481-486.
    [36]Hu H, Zhang Q. Realization of programmable control using a set of individually controlled electrohydraulic valves.[J]. International Journal of Fluid Power,2002,3(2):29-34.
    [37]Hu H, Zhang Q. Multi-function realization using an integrated programmable E/H control valve[J]. Applied Engineering in Agriculture,2003,19(3):283-290.
    [38]Liu S, Krutz G, Yao B. Easy5 model of two position solenoid operated cartridge valve[C]//ASME IMECE. New Orleans, LA:ASME,2002:63-67.
    [39]Liu S, Yao B. Automated onboard modeling of cartridge valve flow mapping[J]. IEEE/ASME Trans, on Mechatronics,2006,11(4):381-388.
    [40]Liu S, Yao B. Coordinate control of energy saving programmable valves[J]. IEEE Trans, on Control Systems Technology,2008,16(1):34-45.
    [41]Liu S. Automated modeling and energy saving adaptive robust control of electro-hydraulic systems with programmable valves[D]. West Lafayette, Indiana:Purdue University,2005.
    [42]路甬祥,邱敏秀,吴根茂,等.三通插装式电液比例方向阀的开发研究[J].液压与气动,1987, 3(2):1-3.
    [43]路甬祥.两通插装阀的流量系数和液动力[J].液压气动与密封,1983,3(4):14-21.
    [44]路甬祥,胡大纥.电液比例控制技术[M].北京:机械工业出版社,1988.
    [45]易达云,邓华,夏毅敏,等.高速大流量插装式比例节流阀的建模与验证[J].现代制造工程,2009(06):38-41.
    [46]李亚星.电液比例插装阀数值模拟分析及可视化实验研究[D].秦皇岛:燕山大学,2012.
    [47]俞滨,孔祥东,李亚星,等.位移-电反馈型插装式比例节流阀主阀流场数值模拟分析[J].机电工程,2011(11):1291-1294.
    [48]刘莉华.双主动型比例节流阀特性研究与流场分析[D].秦皇岛:燕山大学,2010.
    [49]艾超,孔祥东,田德志.先导式大流量电液比例方向阀建模与仿真研究[J].计算机仿真,2012(11):11-15.
    [50]刘莉华,姚静,孔祥东,等.双主动型比例二通节流阀试验与仿真研究[J].机床与液压,2010(21):37-39.
    [51]郑淑娟,权龙.基于CFD的液压锥阀阀芯启闭过程的液动力分析[J].机电产品开发与创新,2007(02):81-82.
    [52]郑淑娟,权龙.插装型液压锥阀内部流场的三维动态仿真分析[J].液压气动与密封,2007(04):30-31.
    [53]庞俊峰,权龙,金正府,等.插装式电闭环比例节流阀的特性研究[J].流体传动与控制,2011(03):10-13.
    [54]孔晓武,魏建华.大流量插装式伺服阀数学模型及试验验证[J].浙江大学学报(工学版),2007(10):1759-1762.
    [55]赖振宇.大流量高响应比例节流阀的研究[D].杭州:浙江大学,2007.
    [56]傅林坚.大流量高响应电液比例阀的设计及关键技术研究[D].杭州:浙江大学,2010.
    [57]邓业民,孔晓武,邱敏秀,等.先导式大流量高速开关阀的优化设计[J].机械设计,2010(09):84-87.
    [58]邓业民.大流量快速节流比例阀的研制[D].杭州:浙江大学,2010.
    [59]胡世松.陶瓷压机大流量比例节流阀的研制[D].杭州:浙江大学,2012.
    [60]于良振,王明琳,方锦辉.大流量电液比例插装阀液压测试试验台的设计[J].液压气动与密封,2010(09):37-39.
    [61]蒲曾坤.大流量电液伺服插装阀先导级配置及控制策略研究[D].杭州:浙江大学,2013.
    [62]满珍.并联型先导控制电液伺服阀的数学模型及控制算法研究[D].杭州:浙江大学,2012.
    [63]于良振,王明琳.大流量双主动双电反馈电液比例插装式节流阀简介[J].流体传动与控制,2010(01):54-55.
    [64]陈柏金.锻造液压机组液压控制系统研究[D].武汉:华中科技大学,2000.
    [65]陈柏金,黄树槐,魏运华,等.锻造液压机高压卸载系统改进研究[J].液压与气动,2008(01): 57-59.
    [66]蒋婷婷,谭建平,司玉,等.高压大流量液压系统卸荷规律实验研究[J].锻压技术,2012,5:18.
    [67]司玉校.高压大流量比例卸荷技术研究[D].长沙:中南大学,2012.
    [68]魏运华.快速锻造液压机液压控制系统研究[J].化工机械,2012,39(3):313-316.
    [69]赵静一,曹文熬,王彪.快锻液压机新型电液比例控制系统研究[J].机床与液压,2011(05):47-49.
    [70]姚静.锻造油压机液压控制系统的关键技术研究[D].秦皇岛:燕山大学,2009.
    [71]俞新陆.液压机的设计与应用[M].北京:机械工业出版社,2007.
    [72]孙大宇.二通插装阀在大流量液压系统中的应用[J].机电设备,2012(03):38-41.
    [73]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007(11):162-165.
    [74]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势[J].工程机械,2003(06):28-33.
    [75]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J].液压与气动,2005(06):5-8.
    [76]张劲.直动式电液伺服阀研究现状及发展趋势[J].机械制造与自动化,2012(06):194-195.
    [77]李磊,赵升吨,范淑琴.电磁直驱式大规格电液伺服阀的研究现状和发展趋势[J].重型机械,2012(03):17-24.
    [78]李其朋.直动式电液伺服阀关键技术的研究[D].杭州:浙江大学,2005.
    [79]崔剑.回转直动式电液伺服阀关键技术研究[D].杭州:浙江大学,2008.
    [80]夏立群,张新国.直接驱动阀式伺服作动器研究[J].西北工业大学学报,2006,24(3):308-312.
    [81]许小庆,权龙,王旭平.伺服比例阀用动圈式直线电机[J].中国电机工程学报,2010(9):92-96.
    [82]许小庆.新型电液伺服比例阀用电—机械转换器的理论分析和试验研究[D].太原:太原理工大学,2010.
    [83]Salloom M Y, Samad Z. Magneto-rheological directional control valve[J]. The International Journal of Advanced Manufacturing Technology,2012,58(1-4):279-292.
    [84]Salloom M Y, Samad Z. Design and modeling magnetorheological directional control valve[J]. Journal of Intelligent Material Systems and Structures,2012,23(2):155-167.
    [85]吴张永,王京涛,王娴,等.基于磁流变液的磁流变阀设计与研究[J].昆明理工大学学报(自然科学版),2012(04):48-51.
    [86]Zhu X, Jing X, Cheng L. Optimal design of control valves in magnetorheological fluid dampers using a nondimensional analytical method[J]. Journal of Intelligent Material Systems and Structures, 2013,24(1):108-129.
    [87]Moog. Servovalves direct-operated with integrated digital electronics and fieldbus interface, series D636 and D637[Z].2010.
    [88]Yuken. LSV(H)G Series High-speed Linear Servo Valves[Z].2009.
    [89]Boschrexroth. Servo Solenoid Valves with Electrical Position Feedback[Z].20053.
    [90]Topcu E E, Yuksel I, Kamis Z. Development of electro-pneumatic fast switching valve and investigation of its characteristics[J]. Mechatronics,2006,16(6):365-378.
    [91]Kajima T, Kawamura Y. Development of a high-speed solenoid valve:investigation of solenoids[J]. IEEE Trans. on Industrial Electronics,1995,42(1):1-8.
    [92]李其朋,丁凡,王传礼.耐高压双向比例电磁铁的研究[J].浙江大学学报(工学版),2006(02):322-325.
    [93]李其朋,丁凡.一种新型直动式电液伺服阀的研制[J].机床与液压,2010(13):88-90.
    [94]Mitsutake Y, Hirata K, Ishihara Y. Dynamic response analysis of a linear solenoid actuator[J]. IEEE Trans. on Magnetics,1997,33(2):1634-1637.
    [95]Sorli M, Figliolini G, Almondo A. Mechatronic model and experimental validation of a pneumatic servo-solenoid valve[J]. ASME J. Dyn. Syst., Meas., Control,2010,132(5).
    [96]Sorli M, Figliolini G, Pastorelli S. Dynamic model and experimental investigation of a pneumatic proportional pressure valve[J]. IEEE/ASME Trans, on Mechatronics,2010,9(1):78-86.
    [97]Kennedy M P, Chua L O. Hysteresis in electronic circuits:A circuit theorist's perspective[J]. Int. J. of Circuit Theory and Applications,1991,19(5):471-515.
    [98]Chua L O, Stromsmoe K A. Mathematical model for dynamic hysteresis loops[J]. Int. J. of Engineering Science,1971,9(5):435-450.
    [99]Chua L O, Stromsmoe K A. Lumped-circuit models for nonlinear inductors exhibiting hysteresis loops[J]. IEEE Trans, on Circuit Theory,1972,17(4):564-574.
    [100]Chua L O, Bass S C. A generalized hysteresis model[J]. IEEE Trans, on Circuit Theory,1972, 19(1):36-48.
    [101]Vaughan N D, Gamble J B. The modeling and simulation of a proportional solenoid valve[J]. ASME J. Dyn. Syst, Meas., Control,1996,118:120-125.
    [102]Cristofori D, Vacca A. The Modeling of Electrohydraulic Proportional Valves[J]. ASME J. Dyn. Syst., Meas., Control,2012,134(2):108-120.
    [103]Cristofori D, Vacca A. Analysis of the Dynamics of a Proportional Valve Operated by an Electronic Controller[C]//Proc. of 6th FPNI PhD Symposium. West Lafayette:[s. n.],2010:199-214.
    [104]Cristofori D, Vacca A. Electrohydraulic Proportional Valve Modeling Comprehending Magnetic Hysteresis[C]//52nd National Conference on Fluid Power. Las Vegas, Nevada:[s.n.],2011:700-711.
    [105]周淼磊,杨志刚,高巍,等.高速精密压电型电液伺服阀及其控制方法[J].哈尔滨工业大学学报,2009,41(9):160-163.
    [106]刘劲松,周世民,何学工,等.飞机刹车系统应用直接驱动伺服阀(DDV)的研究[J].航空精密制造技术,2013(02):48-51.
    [107]Bu F P, Yao B. Performance Improvement of Proportional Directional Control Valves:Methods and Experiments[C]//Proc. of the ASME Dynamic Systems and Control Division. Orlando, FL:ASME, 2000:297-304.
    [108]Bu F P. Nonlinear model based coordinated adaptive robust control of electro-hydraulic systems[D]. West Lafayette, Indiana:Purdue University,2001.
    [109]Ohsumi T, Takase H, Obara H, et al. A spool control in the small range of the flow rate of a hydraulic proportional valve[C]//Proc. of the 5th Int. Conf. on Fluid Power Transmission and Control. HangZhou:[s. n.],2001:18-22.
    [110]孔祥冰,唐德栋,尤波.电液比例阀的阀芯微量控制[J].液压与气动,2004(3):61-63.
    [111]Boes C, Lenz W, Muller J. Digital servo valves with fieldbus interface in closed loop applications[C]//Proc. of the 8th Scandinavian Int. Conf. Fluid Power. Tampere, Finland:[s. n.],2003
    [112]王大或,郭宏,刘治,等.直驱阀用音圈电机的模糊非线性PID控制[J].电工技术学报,2011,26(3):52-56.
    [113]周淼磊,田彦涛,高巍,等.新型直动式压电电液伺服阀复合控制方法[J].吉林大学学报(工学版),2007,37(6):1386-1391.
    [114]刘志珍,张忠祥,侯延进.电-气比例阀高压驱动与低压PWM的双压控制模式[J].农业机械学报,2008,39(7):159-163.
    [115]Li B R, Gao L L, Yang G. Modeling and Control of a Novel High-Pressure Pneumatic Servo Valve Direct-Driven by Voice Coil Motor[J]. ASME J. Dyn. Syst., Meas., Control,2013,135: 14501-14507.
    [116]Pan Y D, Ozguner U, Dagci O H. Variable-structure control of electronic throttle valve[J]. IEEE Trans, on Industrial Electronics,2008,55(11):3899-3907.
    [117]Yuan X, Wang Y. A novel electronic-throttle-valve controller based on approximate model method[J]. IEEE Trans, on Industrial Electronics,2009,56(3):883-890.
    [118]Shen T, Tamura K, Kaminaga H, et al. Robust nonlinear control of parametric uncertain systems with unknown friction and its application to a pneumatic control valve[J]. ASME J. Dyn. Syst., Meas., Control,2000,122(2):257-262.
    [119]Sente P A, Labrique F M, Alexandre P J. Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications[J]. IEEE Trans. on Industrial Electronics,2012, 59(4):1971-1979.
    [120]Miyajima T, Fujita T, Sakaki K, et al. Development of a digital control system for high-performance pneumatic servo valve[J]. Precision engineering,2007,31(2):156-161.
    [121]Miyajima T, Sakaki K, Shibukawa T, et al. Development of pneumatic high precise position controllable servo valve[C]//Proc. of the IEEE Int. Conf. on Control Applications. IEEE,2004: 1159-1164.
    [122]Miyajima T, Fujita T, Sakaki K, et al. Digital control of high response pneumatic servo valve[C]// SICE 2004 Annual Conference. IEEE,2004:2008-2013.
    [123]Gamble J B, Vaughan N D. Comparison of sliding mode control with state feedback and PID control applied to a proportional solenoid valve[J]. ASME J. Dyn. Syst., Meas., Control,1996,118: 434.
    [124]Gamble J B. Sliding mode control of a proportional solenoid valve[D]. Claverton Down: University of Bath,1992.
    [125]Blackburn J F, Reethof G, Shearer J L. Fluid power control[M]. Technology Press of MIT,1960.
    [126]Merritt H E. Hydraulic control systems[M]. Hoboken, New Jersey:John Wiley & Sons,1967.
    [127]李运华,史维祥.近代液压伺服系统控制策略的现状与发展[J].液压与气动,1995(001):3-6.
    [128]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [129]Chen C T. Linear system theory and design[M]. New York:Oxford University Press,1999.
    [130]Jelali M, Kroll A. Hydraulic servo-systems:modelling, identification, and control[M]. London: Springer Verlag,2003.
    [131]astrom K J, Hagglund T. The future of PID control[J]. Control Engineering Practice,2001,9(11): 1163-1175.
    [132]Visioli A. Practical PID control[M]. London:Springer,2006.
    [133]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [134]Utkin V I, Guldner J, Shi J. Sliding mode control in electromechanical systems[M]. CRC,1999.
    [135]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [136]Utkin V. Variable structure systems with sliding modes[J]. IEEE Trans, on Automatic Control, 1977,22(2):212-222.
    [137]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [138]Slotine J J E, Li W. Applied nonlinear control[M]. New Jersey:Prentice-Hall,1991.
    [139]Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design[M]. New York: Wiley,1995.
    [140]Sastry S. Nonlinear systems:analysis, stability, and control[M]. New York:Springer Verlag, 1999.
    [141]astrom K J, Wittenmark B. Adaptive control[M]. Boston:Addison-Wesley,1995.
    [142]Yao B. Adaptive robust control of nonlinear systems with application to control of mechanical systems[D]. Berkeley:University of California at Berkeley,1996.
    [143]Yao B, Xu L. Adaptive robust motion control of linear motors for precision manufacturing[J]. Mechatronics,2002,12(4):595-616.
    [144]朱笑丛.气动肌肉并联关节高精度位姿控制研究[D].杭州:浙江大学,2007.
    [145]Zhu X C, Tao G L, Yao B, et al. Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy [J]. IEEE/ASME Trans.on Mechatronics,2008,13(4):441-450.
    [146]Zhu X C, Tao G L, Yao B, et al. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles[J]. Automatica,2008,44(9):2248-2257.
    [147]Yao B, Bu F P, Reedy J, et al. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments[J]. IEEE/ASME Trans. on Mechatronics,2000,5(1):79-91.
    [148]Yao B, Bu F P, Chiu G T C. Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators[J]. Int. J. of Control,2001,74(8):761-775.
    [149]Yao B. Advanced motion control:From classical PID to nonlinear adaptive robust control[C]// The 11th IEEE International Workshop on Advanced Motion Control. Nagaoka, Japan:IEEE,2010: 815-829.
    [150]Bu F, Yao B. Adaptive robust precision motion control of single-rod hydraulic actuators with time-varying unknown inertia:a case study[C]//ASME IMECE. Citeseer,1999:131-138.
    [151]Bu F, Yao B. Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains[C]//Proc. of the American Control Conference. IEEE,2000:4129-4133.
    [152]Alleyne A. A systematic approach to the control of electrohydraulic servosystems[C]//American Control Conference. IEEE,1998:833-837.
    [153]Alleyne A, Liu R. A simplified approach to force control for electro-hydraulic systems[J]. Control Engineering Practice,2000,8(12):1347-1356.
    [154]Sun Z X, Tsao T C. Adaptive control with asymptotic tracking performance and its application to an electro-hydraulic servo system[J]. ASME J. Dyn. Syst., Meas., Control,2000,122(1):188-195.
    [155]Guan C, Pan S X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Engineering Practice,2008,16(11):1275-1284.
    [156]孔晓武,凌振飞,张新华,等.压铸机压射参数分析记录仪研制[J].特种铸造及有色合金,2011(04):325-328.
    [157]李葳,孔晓武,邱敏秀,等.实时控制型压铸机启动冲击问题研究[J].机械设计,2010(06):89-92.
    [158]李葳.压铸机实时压射系统的仿真优化及控制策略的研究[D].杭州:浙江大学,2010.
    [159]Bass S C. A generalized hysteresis model[D]. West Lafayette, Indiana:Purdue University,1971.
    [160]方文敏.非全周开口滑阀稳态液动力研究[D].杭州:浙江大学,2007.
    [161]Manring N D. Hydraulic control systems[M]. New York:John Wiley & Sons,2005.
    [162]Watton J. Fundamentals of fluid power control[M]. Cambridge University Press Cambridge, 2009.
    [163]张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表,2006(02):1-8.
    [164]Chinchuluun A, Pardalos P M, Enkhbat R, et al. Optimization and Optimal Control:Theory and Applications[M]. Springer,2010.
    [165]Geering H P. Optimal Control with Engineering Applications[M]. Springer-Verlag Berlin Heidelberg,2007.
    [166]李传江,马广富.最优控制[M].北京:科学出版社,2011.
    [167]赵雪晨.新型直线位移速度加速度三用测量仪的研制[J].自动化与仪表,1995(03):11-13.
    [168]庄凤龄.直线位移——速度测量仪的研究[J].机床与液压,1985(05):23-27.
    [169]赵凯华,陈熙谋.新概念物理教程:电磁学[M].北京:高等教育出版社,2007.
    [170]王春行.液压控制系统[M].北京:机械工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700