用户名: 密码: 验证码:
制造物联网环境下混流制造过程自适应调度方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混流制造是一种以客户需求为导向、在当前大批量定制生产中的常见生产组织模式。其生产订单存在多品种、周期性、数量多变等特点,但生产过程资源需求模型相对固定。混流制造过程不可避免存在诸多不确定的动态事件,如设备故障、紧急插单、质量事故等,导致生产过程无法遵循预定义的基准计划执行。因此对混流制造采取合理的动态调度机制,以消除动态事件对计划执行的影响,保持制造过程的稳定性,成为一个重要科学问题。
     然而,目前对动态调度的研究多集中在一个理想模型下的调度理论研究,其随机事件的加入也大多基于某种理论模型,没有考虑车间信息反馈断层的问题,缺乏在实际应用中的技术支撑环境,在实际应用中无法应对车间现场的瞬息万变。随着物联网技术飞速发展,实时制造环境下的自适应调度,具备了实现的技术基础。
     本论文在国家基金“基于RFID的分时段双层实时动态OKP调度理论模型与算法研究(61074146)”支持下,基于制造物联网实时制造环境,对混流制造过程在实时反馈条件下的自适应调度方法进行了研究。
     论文的具体研究内容如下:
     1)、针对目前我国中小企业制造车间存在的信息断层问题,构建了一个基于制造物联网技术的实时制造系统的框架,为后续混流过程的自适应调度研究提供了技术基础。在此框架下,采用了统一接口构建了RFID中间件实现了Multi-Agent封装模式下RFID对象的即插即用接入。然后设计了一个基于RFID-Bus的实时消息处理模式,实现了实时制造消息的处理和反馈统一机制。基于此机制,构建了一个两级RFID-Bus的实时制造系统环境及其在企业制造车间的部署方法。
     2)、针对混流制造系统规模庞大,难以求解的难题,提出了一个基于ROPN的制造系统MPN建模机制,给出了具体的建模流程和方法,缩小了混流制造系统模型规模。论文先分析了混流制造过程带转运/缓存约束的非等价并联机制造的特点,通过将等价并行机建模成一个资源提供节点,提出了一种基于制造系统资源建模方法和建模流程。定义了MPN (Manufacturing Petri Net)模型,在模型中阐述了基于实时制造物联网中智能令牌在模型中映射的知识函数,及路径查找办法。
     3)、构建了混流制造系统MPN模型后,对MPN中非等价并联机调度问题进行了分析,针对混流模型中并联机调度难题,构建了一个通过调度变迁触发顺序来进行作业调度的离线调度方案,并给出了基于MMAS的蚁群算法的优化方法,并采用田口实验设计方法对算法中的参数最优配置进行了探求,形成了制造系统执行的基准计划。
     4)、针对基准计划在MPN中的执行,首先分析了实时制造环境下大规模定制混流制造过程的动态事件的特点,并将动态事件在MPN中统一映射为资源提供能力的失能事件。根据实时制造环境的特点,采用修正式策略,构建了一个计划与执行交互的在线自适应调度的框架。在这个框架中,通过树结构的决策单元,实时监控制造系统MPN中各作业的执行偏离度,根据偏离度分布情况进行实时修正。然后,根据决策树结构特点,提出了一个基于层级反馈的在线调度方法,并对在线调度方法进行了实现。
     5)、根据论文提出的自适应调度框架和理论,开发了一套自适应调度仿真系统,对制造系统进行了仿真和推演,对算法有效性进行了验证。
     案例测试结果表明,本论文提出基于制造物联网实时制造环境的自适应调度方法,在某些动态事件模式下,可以有效的消除其对制造系统的影响,提高车间生产效率,验证了论文工作的合理性。
     本论文研究内容还有许多不足之处需要不断完善和改进,有待今后进一步研究。
Hybrid Flow Shop (HFS) manufacturing is a kind of customer-demand-oriented production mode which is commonly seen in mass customization production nowadays. Its production orders features multi-species, periodicity and quantity variety. But its resource demand model during the production is relatively stable. Inevitably, there are many uncertain dynamic events in the procedure of HFS manufacturing, such as equipment breakdowns, emergency orders, and quality accidents. And because of that, the pre-scheduled plan cannot execute as its wish. So dynamic scheduling mechanism is desired to eliminate the influence of dynamic events and maintain the stability of the manufacturing process.
     However, most of the researches on dynamic scheduling are based on an ideal production model with its random events following some kinds of distribution, without considering the problem of workshop info-feedback failure in acutual shop floor. So it is hard to cope with practical workshop situation. Especially with the rapid development of the Internet of Things (IOT), it opens the way to real-time manufacturing environment, which makes the realtime adaptive scheduling possible.
     This thesis is supported by the NSFC 'Research on multi-stages bi-level realtime dynamic scheduling for OKP based on RFID (61074146)'. The research is about adaptive scheduling method for HFS manufacturing in real-time feedback situation based on the Internet of Manufacturing Things (IOMT).
     The specific research contents of the thesis are as follows:
     1) To solve the information gap problem in shop floor, a real-time manufacturing system framework is proposed based on the technology of IOMT which provide the technical basis for the follow-up study. In this framework, RFID middleware with unified interface specification is programed to realize the plug-and-play access of RFID object under Multi-Agent encapsulation mode. Then a RFID-Bus is designed to process the real-time manufacturing information in a unified feedback mechanism. Based on this RFID-Bus, a real-time manufacturing system environment and its deployment method in the shop floor are constructed.
     2) To solve the problem of large model scale in actual enterprises, a MPN (Manufacturing Petri Net) modeling mechanism based on ROPN (Resource Oriented Petri Net) is proposed to reduce the model scale. A MPN model is defined to do this by modeling the equal-parallel-machine into one resource node, in which elaborated the knowledge function and the path search method which is mapped in the model by the intelligent token.
     3) After the analysis of the nonequal-parallel-machine problem in MPN, an offline scheduling algorithm based on MMAS (Max-Min Ant System) is designed. In this algorithm, a transition fire sequence is optimized instead of the token flow sequence. And Taguchi method is used to find the best parameters configurations. By this algorithm, an optimized baseline plan for the MPN can be produced.
     4) For execution of the baseline plan in MPN, after analyzing the characteristics of dynamic events in HFS in the real-time situation, the thesis maps the dynamic events into capacity-disable events in the MPN. According to the features of real-time manufacturing environment, using the modification strategy, an online adaptive scheduling framework based on interacting of the plan and execution is proposed. In this framework, a decision tree is structured to monitor the executing deviation of each job in the real-time MPN and makes adaptive scheduling decisions. Then, using the decision tree structure, an online scheduling algorithm based on level-feedback is designed.
     5) According to the above researches, an adaptive scheduling system is realized to simulate the operation of MPN system and deduct the plan execution to verify the effectiveness of the algorithm.
     A large number of tests and results show that the adaptive scheduling method in IOMT environment proposed by this thesis is able to eliminate the influence by some dynamic events and improve the efficiency of production.
     The research of this thesis still has many deficiencies need to improve in further study.
引文
[1]. http://www.ccwresearch.com.cn,2011年中国制造行业信息化建设与IT应用趋势研究报告,in计世资讯(CCW Research).2011.
    [2]. Luo, H., G.Q. Huang, Y.F. Zhang, et al., Hybrid flowshop scheduling with batch-discrete processors and machine maintenance in time windows[J]. International Journal of Production Research,2011.49(6):p.1575-1603.
    [3]. Wang, X. and L. Tang, A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers[J]. Computers & Operations Research,2009.36(3):p. 907-918.
    [4]. 管在林,刘俊良,马力,et al.,多品种小批量生产环境下基于约束管理的混流制造运行控制技术研究[J].现代制造工程,2007(4):p.1-5.
    [5]. 刘琼,王文玺,张超勇,et al.,基于改进分散搜索的混流装配线排序问题[J].计算机集成制造系统,2011.17(4):p.776-782.
    [6]. Ribas, I., R. Leisten, and J.M. Framinan, Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective[J]. Computers & Operations Research,2010.37(8):p.1439-1454.
    [7]. Ruiz, R. and J.A. Vazquez-Rodriguez, The hybrid flow shop scheduling problem[J]. European Journal of Operational Research,2010.205(1):p.1-18.
    [8]. Gupta, J.N., Two-stage, hybrid flowshop scheduling problemfJ]. Journal of the Operational Research Society,1988:p.359-364.
    [9]. 李苏珂,刘盛强,喻道远,et al.,面向整车混流装配线客户订单的优化分配排序[J].中国机械工程,2011(20):p.2459-2462.
    [10]. 郜庆路,罗欣,and杨叔子,基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统,2003.9(006):p.456-459.
    [11]. Huang, G.Q., Y. Zhang, and P. Jiang, RFID-based wireless manufacturing for real-time management of job shop WIP inventories[J]. The International Journal of Advanced Manufacturing Technology,2008.36(7):p.752-764.
    [12].戴青云,基于RFID的物料及在制品追踪管理系统[J].中国科技成果,2008(004):p.53-53.
    [13]. Wang, M.L., T. Qu, R.Y. Zhong, et al., A radio frequency identification-enabled real-time manufacturing execution system for one-of-a-kind production manufacturing: a case study in mould industry[J]. International Journal of Computer Integrated Manufacturing,2011.25(1):p.20-34.
    [14]. Chen, R.S. and M.A. Tu, Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology [J]. Expert Systems with Applications,2009.36(4):p.7581-7593.
    [15]. Dai, Q., R. Zhong, M. Wang, et al., RFID-enable Real-time Multi-experiment Training Center Management System[J]. International Journal of Advanced Science and Technology,2009.7:p.27-48.
    [16]. Huang, G.Q., T. Qu, M.J. Fang, et al., RFID-enabled gateway product service system for collaborative manufacturing alliances [J]. CIRP Annals-Manufacturing Technology,2011.
    [17]. Brusey, J. and D.C. McFarlane, Effective RFID-based object tracking for manufacturing[J]. International Journal of Computer Integrated Manufacturing,2009. 22(7):p.638-647.
    [18]. McFarlane, D., S. Sarma, J.L. Chirn, et al., Auto ID systems and intelligent manufacturing control[J]. Engineering Applications of Artificial Intelligence,2003. 16(4):p.365-376.
    [19]. Dimitropoulos, P. and J. Soldatos, RFID enabled fully automated warehouse management: adding the business context[J]. International Journal of Manufacturing Technology and Management,2010.21(3):p.269-288.
    [20]. Lee, W., C. Cheung, S. Kwok, et al., Development of a framework for an RFID-based manufacturing process automation system[J], International Journal of Logistics Economics and Globalisation,2009.2(1):p.1-22.
    [21].臧传真and范玉顺,无线传感器网络中信息获取关键问题的研究[J].传感器技术,2005.24(9):p.23-25.
    [22].臧传真and范玉顺,基于智能物件的制造企业信息系统研究[J].计算机集成制造系统,2007.13(1):p.49-56.
    [23]. Liu, W., L. Zheng, D. Sun, et al., RFID-enabled real-time production management system for Loncin motorcycle assembly line[J]. International Journal of Computer Integrated Manufacturing,2012.25(1):p.86-99.
    [24]. 苏卫星,马连博,胡琨元,et al.,基于RFID的装配生产车间制造执行系统设计[J].2007仪表,自动化及先进集成技术大会论文集(二),2007.
    [25]. Dai, Q., R. Zhong, K. Zhou, et al. A RFID-enabled real-time manufacturing hardware platform for discrete industry.2010:Springer.
    [26]. Meilin, W., D. Qingyun, Z. Xiangwei, et al., A RFID-enabled MES for real-time pharmaceutical manufacturing supervision[J].2010 IEEE International Conference on RFID-Technology and Applications (RFID-TA),2010:p.49-5353.
    [27]. Wang, M., Q. Dai, X. Zhang, et al. A RFID-enabled MES for real-time pharmaceutical manufacturing supervision[C]. in 2010 IEEE International Conference on RFID-Technology and Applications, RFID-TA 2010, June 17,2010-June 19,2010.2010. Guangzhou, China: IEEE Computer Society.
    [28].戴青云and罗天友,基于RFID的在制品追踪与管理系统[J].电脑与电信,2006(007):p.10-15.
    [29].周科,钟润阳,戴青云,et al.,基于RFID技术的离散制造业MES系统设计与实现[J].中国制造业信息化:学术版,2008.37(10):p.5-7.
    [30]. Huang, G., J.H. Li, X.D. Yuan, et al., RFID-enabled real-time PBS monitoring for automobile assembly factory[J]. International Journal of Computer Integrated Manufacturing,2010.
    [31]. Huang, G.Q., P.K. Wright, and S.T. Newman, Wireless manufacturing: a literature review, recent developments, and case studies[J]. International Journal of Computer Integrated Manufacturing,2009.22(7):p.1-16.
    [32]. Zhang, Y., G.Q. Huang, T. Qu, et al., Agent-based workflow management for RFID-enabled real-time reconfigurable manufacturing[J]. International Journal of Computer Integrated Manufacturing,2010.23(2):p.101-112.
    [33]. Zhang, Y, T. Qu, O.K. Ho, et al., Agent-based Smart Gateway for RFID-enabled real-time wireless manufacturing[J]. International Journal of Production Research, 2011.49(5):p.1337-1352.
    [34]. Wang, M., T. Qu, R. Zhong, et al., A radio frequency identification-enabled real-time manufacturing execution system for one-of-a-kind production manufacturing: a case study in mould industry[J]. International Journal of Computer Integrated Manufacturing,2012.25(1):p.20-34.
    [35]. Luo, H., G.Q. Huang, Y. Zhang, et al., Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm[J]. Robotics and Computer-Integrated Manufacturing,2009.25(6):p. 962-971.
    [36]. Mirabi, M., S.F. Ghomi, and F. Jolai, A two-stage hybrid flowshop scheduling problem in machine breakdown condition[J]. Journal of Intelligent Manufacturing, 2013.24(1):p.193-199.
    [37]. Bosilj-Vuksic, V., G.M. Giaglis, and V. Hlupic, IDEF diagrams and petri nets for business process modeling: suitability, efficacy, and complementary use.2007.
    [38]. Mayer, R.J., M.K. Painter, and P.S. deWitte, IDEF family of methods for concurrent engineering and business re-engineering applications[J]. Knowledge Based Systems, Inc,1992.
    [39]. 陈禹六,IDEF建模分析和设计方法[M].1999:清华大学出版社.
    [40]. Sarshar, K. and P. Loos, Comparing the control-flow of epc and petri net from the end-user perspective[J]. Business Process Management,2005:p.434-439.
    [41].刘艳梅,郑国君,and祁国宁,基于扩展事件驱动过程链(eEPC)的企业业务过程模型的仿真[J].制造业自动化,2004.26(2):p.18-22.
    [42].嵇文路and夏安邦,基于eEPC和UML的企业建模[J].计算机工程,2008.34(8):p.275-277.
    [43]. NaiQi, W. and Z. MengChu, Intelligent token Petri nets for modelling and control of reconfigurable automated manufacturing systems with dynamical changes [J]. Transactions of the Institute of Measurement and Control,2011.33(1).
    [44]. Wu, N. and M.C. Zhou, System modeling and control with resource-oriented Petri nets.2009:CRC.
    [45]. Zhou, M.C. and K. Venkatesh, Modeling, simulation, and control of flexible manufacturing systems: a Petri net approach. Vol.6.1999:World Scientific Pub Co Inc.
    [46]. 谢楠.基于Petri网的可重组制造系统建模,调度及控制方法研究[D].上海:同济大学经济与管理学院,2006.
    [47]. Wu, N. Avoiding deadlocks in automated manufacturing systems with shared material handling system.1997:IEEE.
    [48]. Wu, N. and M.C. Zhou, Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems [J]. Robotics and Automation, IEEE Transactions on,2001.17(5):p.658-669.
    [49]. Wu, N. and M.C. Zhou, Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2005.35(6):p. 1193-1202.
    [50]. Colorni, A., M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies[C]. in Proceedings of the first European conference on artificial life.1991: Paris, France.
    [51]. Dorigo, M., V. Maniezzo, and A. Colorni, Ant system:optimization by a colony of cooperating agents[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,1996.26(1):p.29-41.
    [52]. Bullnheimer, B., R.F. Hartl, and C. Strauss, A new rank based version of the Ant System. A computational study[J].1997.
    [53]. Stutzle, T. and H. Hoos. MAX-MIN ant system and local search for the traveling salesman problem[C]. in Evolutionary Computation,1997., IEEE International Conference on.1997:IEEE.
    [54]. Stutzle, T. and H. Hoos. Improvements on the ant-system:Introducing the MAX-MIN ant system[C]. in Artificial Neural Nets and Genetic Algorithms.1998: Springer.
    [55]. Stutzle, T. and H. Hoos, The max-min ant system and local search for combinatorial optimization problems, in Meta-heuristics.1999, Springer, p.313-329.
    [56]. Alaykyran, K., O. Engin, and A. Doyen, Using ant colony optimization to solve hybrid flow shop scheduling problems[J]. The International Journal of Advanced Manufacturing Technology,2007.35(5):p.541-550.
    [57]. Ying, K.-C. and S.-W. Lin, Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach[J]. International Journal of Production Research,2006.44(16):p.3161-3177.
    [58]. Costa, A., F.A. Cappadonna, and S. Fichera, A dual encoding-based meta-heuristic algorithm for solving a constrained hybrid flow shop scheduling problem[J]. Computers & Industrial Engineering,2013.
    [59]. Kim, Y.-D., B.-J. Joo, and J.-H. Shin, Heuristics for a two-stage hybrid flowshop scheduling problem with ready times and a product-mix ratio constraint[J]. Journal of Heuristics,2009.15(1):p.19-42.
    [60]. 王红娟.基于约束理论的混合流水线车间生产调度及其应用[D].上海交通大学,2008.
    [61].邓超.基于自适应遗传算法的混合Flow shop调度研究[D].上海交通大学,2008.
    [62]. 赵纯民.混合流程作业调度问题研究[D].浙江大学,2008.
    [63]. 赵建峰,朱晓春,汪木兰,et al.,基于自适应遗传算法混合Flow-shop的调度与仿真[J].组合机床与自动化加工技术,2010(003):p.98-102.
    [64]. 苏平and于兆勤,基于混合遗传算法的混合装配线排序问题研究[J].计算机集成制造系统,2008.14(005):p.1001-1007.
    [65]. 刘琼,刘炜琪,and张超勇,基于GA-PSO的多目标混流装配线排序研究[J].华中科技大学学报(自然科学版),2011.10.
    [66]. 黄刚,邵新宇,and饶运清,多目标混流装配计划排序问题[J].华中科技大学学报:自然科学版,2007.35(010):p.84-86.
    [67]. 王炳刚,饶运清,邵新宇,et al.,基于多目标遗传算法的混流加工/装配系统排序问题研究[J].中国机械工程,2009(012):p.1434-1438.
    [68]. 彭运芳.多品种混流制造车间运作控制方法研究与应用[D].华中科技大学,2010.
    [69]. 王会勇.基于多智能体的机群动态调度方法[D].河北工业大学,2005.
    [70]. 钱晓龙,唐立新,and刘文新,动态调度的研究方法综述[J].控制与决策,2001.16(2):p.141-145.
    [71]. 高俊宇,张平,and余海峰,车间动态调度方法综述[J].机电工程技术,2009.38(9):p.13-16.
    [72]. 潘全科and朱剑英,作业车间动态调度研究[J].南京航空航天大学学报,2005.37(2):p.262-268.
    [73]. Bidot, J., A general framework integrating techniques for scheduling under uncertainty[J].2005.
    [74]. 陈宇,陈新,and陈新度,不确定环境下的多Agent鲁棒性预测调度研究[J].中国机械工程,2009(16):p.1937-1943.
    [75]. Tuncel, G. and G.M. Bayhan, Applications of Petri nets in production scheduling: a review[J]. The International Journal of Advanced Manufacturing Technology,2007. 34(7-8):p.762-773.
    [76]. Nof, S.Y. and F. HANK GRANT, Adaptive/predictive scheduling: review and a general framework[J]. Production Planning & Control,1991.2(4):p.298-312.
    [77]. Kouiss, K., H. Pierreval, and N. Mebarki, Using multi-agent architecture in FMS for dynamic scheduling[J]. Journal of Intelligent Manufacturing,1997.8(1):p.41-47.
    [78]. 柴永生,孙树栋,余建军,et al.,基于免疫遗传算法的车间动态调度[J].机械工程学报,2005.41(10):p.23-27.
    [79]. JONES, A., L. RABELO, and Y. YIH, A hybrid approach for real-time sequencing and scheduling[J]. International Journal of Computer Integrated Manufacturing,1995. 8(2):p.145-154.
    [80]. Lee, C.-Y, S. Piramuthu, and Y.-K. Tsai, Job shop scheduling with a genetic algorithm and machine learning[J]. International Journal of Production Research, 1997.35(4):p.1171-1191.
    [81]. Jain, A. and H. Elmaraghy, Production scheduling/rescheduling in flexible manufacturing[J]. International Journal of Production Research,1997.35(1):p. 281-309.
    [82]. Li, W., X. Luo, D. Xue, et al., A heuristic for adaptive production scheduling and control in flow shop production[J]. International Journal of Production Research, 2011.49(11):p.3151-3170.
    [83]. 边潇,阚树林,樊迅,et al.,基于Flexsim的混流生产线最小生产循环时间多因素分析[J].机械制造,2010(011):p.52-55.
    [84]. 戴青云,钟润阳,张本军,et al.,装备制造业MES系统的设计与实现[J].2008全国制造业信息化标准化论坛论文集,2008.
    [85]. Hoogeveen, J., J.K. Lenstra, and B. Veltman, Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard[J]. European Journal of Operational Research, 1996.89(1):p.172-175.
    [86]. Girault, C., R. Valk, and王生原,系统工程Petri网——建模,验证与应用指南[M].2005,北京:电子工业出版社.
    [87].刘晓红and陈定方,面向Agent的时间Petri网及其在虚拟概念设计行为建模中的应用[J].机械设计,2003.20(8):p.40-43.
    [88]. 吴哲辉,Petri网导论.2006:DynoMedia Inc.
    [89]. Huang, R.-H. and C.-L. Yang, Ant colony system for job shop scheduling with time windows[J]. The International Journal of Advanced Manufacturing Technology,2008. 39(1):p.151-157.
    [90]. Merkle, D., M. Middendorf, and H. Schmeck, Ant colony optimization for resource-constrained project scheduling[J]. Evolutionary Computation, IEEE Transactions on,2002.6(4):p.333-346.
    [91]. Ying, K.-C. and C.-J. Liao, An ant colony system for permutation flow-shop sequencing[J]. Computers & Operations Research,2004.31(5):p.791-801.
    [92]. 高清振,王耀华,and陆明,基于田口方法的某航空应急推动机构参数优化[J].机械设计,2010.27(10):p.73-75.
    [93].金旭星,基于田口法的端铣刀研磨参数优化设计[J].机械设计与制造,2013(5):p.235-237.
    [94]. 张沙清.不确定环境下模具制造多项目动态调度建模与仿真[D].广东工业大学,2011.
    [95]. 张沙清,陈新度,陈庆新,et al.,资源不确定环境下模具多项目预测—反应式调度算法[J].计算机集成制造系统,2010.16(12):p.2688-2696.
    [96]. Yin, J. and B. Chen. The research on job shop on-line scheduling with random release-date.2010:IEEE.
    [97]. Zandieh, M. and M. Adibi, Dynamic job shop scheduling using variable neighbourhood search[J]. International Journal of Production Research,2010.48(8): p.2449-2458.
    [98]. Rote, G., Computing the minimum Hausdorff distance between two point sets on a line under translation [J]. Information Processing Letters,1991.38(3):p.123-127.
    [99]. Huttenlocher, D.P., G.A. Klanderman, and W.J. Rucklidge, Comparing images using the Hausdorff distance[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1993.15(9):p.850-863.
    [100]. Dubuisson, M.-P. and A.K. Jain. A modified Hausdorff distance for object matching[C]. in Pattern Recognition,1994. Vol.1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on.1994: IEEE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700