用户名: 密码: 验证码:
基于群智能优化算法的流水车间调度问题若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产调度问题存在于大量实际制造业与服务业中,如石化业、烟草业、纺织业、造纸业、制药业以及食品业等,并在其中发挥着非常重要的作用。简单来说,生产调度问题就是如何在给定的时间约束内合理地安排分配有限的资源,使得一个或多个目标达到最优。从本质上来说它是一个决策过程。同时,生产调度问题也是一类非常典型的组合优化问题,当中很多类型的子问题都是NP-hard问题。使用传统的方法进行求解很难得到令人满意的结果,特别是对一些极为复杂的问题,甚至根本得不到有效的解。因此,无论在实际工业生产方面,还是在理论学术研究方面,对生产调度问题的研究都有着非常重要的意义。本文深入研究了四种典型的流水车间调度问题:带阻塞流水车间调度问题、中间存储有限流水车间调度问题、混合流水车间调度问题和机器故障情况下混合流水车间调度问题,建立了相应的数学模型,提出了几种群智能优化算法并成功应用到这些问题中。本文的主要研究成果如下:
     (1)针对带阻塞流水车间调度问题(Blocking Flowshop Scheduling Problem, BFSP),提出了一种离散群搜索优化算法(Discrete Group Search Optimizer, DGSO)用来最小化它的总流水时间。在DGSO算法中,种群初始化阶段使用了随机初始化与两种启发式算法(NEH和NEH-WPT)相结合的方法,保证了初始种群既具有一定的质量,又兼备多样性;接着将基于插入操作的邻域搜索、离散差分进化策略以及破坏重建过程嵌入到算法中,提高了算法的性能;最后使用了一种正交实验设计的方法选取了合适的算法参数值。基于标准算例的大量仿真测试结果表明,提出的DGSO算法具有明显的可行性和有效性。
     (2)针对中间存储有限流水车间调度问题(Flowshop Scheduling Problem with Limited Buffers, LBFSP),提出了一种混合离散和声搜索算法(Hybrid Discrete Harmony Search, HDHS)对其进行求解。此算法基于工件排列的编码方式,设计了一种构造离散和声的新方法以及离散差分进化策略;同时将此离散和声搜索策略与基于插入操作的局部搜索操作相结合,很好地平衡了算法的全局搜索能力与局部搜索能力;并使用正交实验的方法确定HDHS算法的参数值。基于Taillard标准算例的仿真实验表明提出的HDHS算法具有明显的优越性。
     (3)针对混合流水车间调度问题(Hybrid Flowshop Scheduling, HFS),使用向量表述的方式进行数学建模,并提出了一种改进离散人工蜂群算法(Improved Discrete Artificial Bee Colony, IDABC)来最小化其最大完工时间makespan。IDABC算法在引领蜂和跟随蜂阶段分别使用了一种全新设计的差分进化策略和改进变邻域搜索策略,实现了个体的更新;在侦察蜂阶段使用破坏重建操作提高了算法的全局搜索能力。此外也使用了正交设计的方法,仅仅通过少量次数的实验就获得了很好的算法参数值。大量的仿真实验表明,在求解相同的标准算例时,提出的IDABC算法的求解效果明显优于参与比较的当前其他几种高性能算法。
     (4)在以往对生产调度问题的研究中,常常假设所有的机器一直可用,不会出现故障。然而在实际生产中,加工机器由于各种原因不可避免地会发生故障。针对机器发生故障情况下的混合流水车间调度问题(Hybrid Flowshop Scheduling with Random Breakdown, RBHFS),分析了机器发生故障后的两种加工情况:preempt-resume情况和preempt-repeat'隋况,并提出了一种改进离散群搜索优化算法(Improved Discrete Group Search Optimizer, IDGSO)来求解。IDGSO算法采用向量表述方式来描述问题,并使用一些离散操作进行迭代进化,包括分布在发现者、追随者和游荡者阶段中的插入操作、交换操作、差分进化操作以及破坏重建操作等。仿真计算结果表明,在preempt-resume和preempt-repeat两种情况下,提出的IDGSO算法比其他高性能算法具有更好的效果。
Production scheduling problem is a decision-making process that plays a crucial role in manufacturing and service industries and widely exists in practical environments, such as chemical, oil, tobacco, textile, paper, pharmaceutical and food industries. It concerns how to allocate available production resources to tasks over given time periods, aiming at optimizing one or more objectives. At the same time, this problem is categorized as a very typical combinatorial optimization problem, and many kinds of subproblems are NP-hard. When we solve these subproblems, the traditional methods are difficult to obtain satisfactory results, especially for some complex problems, it can not even get feasible solutions. Therefore, the production scheduling problem has great significance in both engineering and theoretical fields, and it is meaningful to develop effective and efficient approaches for this problem. This dissertation analyses four typical flow shop scheduling problems:the blocking flow shop scheduling problem, the flow shop scheduling problem with limited buffers, the hybrid flowshop scheduling problem, and the hybrid flowshop scheduling problem with random breakdown, establishes the corresponding models, and proposes some swarm intelligence optimization algorithms for solving these problems. The main content of this dissertation can be summarized as follows:
     (1) For the blocking flow shop scheduling problem (BFSP), a discrete group search optimizer (DGSO) algorithm is proposed to minimize the total flow time. In the proposed DGSO algorithm, an efficient population initialization based on the NEH heuristic and NEH-WPT heuristic is incorporated into the random initialization to generate an initial population with certain quality and diversity; moreover, the insert neighborhood search, the discrete differential evolution scheme and the destruction and construction procedures are hybridized to improve the algorithm performance; in addition, an orthogonal experiment design is employed to provide a receipt for turning the adjustable parameters of the DGSO algorithm. The simulation results on benchmarks demonstrate the effectiveness and efficiency of the proposed DGSO algorithm.
     (2) A hybrid discrete harmony search (HDHS) algorithm is proposed for the flow shop scheduling problem with limited buffers (LBFSP). The HDHS algorithm presents a novel discrete improvisation and a differential evolution scheme with the job-permutation-based representation. Moreover, the discrete harmony search is hybridized with the problem-dependent local search based on insert neighborhood to balance the global exploration and local exploitation. In addition, an orthogonal test is applied to configure the adjustable parameters in the HDHS algorithm. Comparisons based on the Taillard benchmark instances indicate the superiority of the proposed HDHS algorithm in terms of effectiveness and efficiency.
     (3) The hybrid flowshop scheduling (HFS) problem is modeled by vector representation, and then an improved discrete artificial bee colony (IDABC) algorithm is proposed for this problem to minimize the makespan. The proposed IDABC algorithm combines a novel differential evolution and a modified variable neighborhood search to generate new solutions for the employed and onlooker bees, and the destruction and construction procedures are used to enhance the ability of global search for the scout bees. Moreover, an orthogonal test is applied to efficiently configure the system parameters, after a small number of training trials. The simulation results demonstrate that the proposed IDABC algorithm is effective and efficient comparing with several state-of-the-art algorithms on the same benchmark instances.
     (4) The production scheduling problems have been discussed in the literature extensively under the assumption that the machines are permanently available without any breakdown. However, in the real manufacturing environments, the machines could be unavailable inevitably for many reasons. Here the authors introduce the hybrid flowshop scheduling problem with random breakdown (RBHFS) together with an improved discrete group search optimizer algorithm (IDGSO). In particular, two different working cases:preempt-resume case and preempt-repeat case are considered under random breakdown. The proposed IDGSO algorithm adopts the vector representation and several discrete operators, such as insert, swap, differential evolution, destruction and construction in the producers, scroungers, and rangers phases. The computational results in both cases indicate that the proposed algorithm significantly improves the performances compared with other high performing algorithms in the literature.
引文
[1]Graham R. L. et al. Optimization and approximation in deterministic sequencing and scheduling:a survey[J]. Annals of Discrete Mathematics.1979,5:287-326.
    [2]Johnson S. M. Optimal two-and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly,1954,1(1):61-68.
    [3]Ignall E., Schrage L. Application of the branch-and-bound technique to some flow-shop scheduling problems[J]. Operations Research,1965,13(3):400-412.
    [4]Brucker P., Jurisch B., Sievers B. A branch and bound algorithm for the job-shop scheduling problem[J]. Discrete Applied Mathematics,1994,49(1):107-127.
    [5]Conway R. W., Maxwell W. L., Miller L. W. Theory of scheduling[M]. Reading, MA: Addison-Welsey,1967.
    [6]Cook S. A. The complexity of theorem-proving procedures[A]. In:Proceedings of the 3rd Annual ACM Symposium on Theory of Computing[C]. New York:ACM Press,1971: 151-158.
    [7]Zanakis S. H., Evans J. R., Vazacopoulos A. A. Heuristic methods and applications:a categorized survey[J]. European Journal of Operational Research,1989,43(1):88-110.
    [8]Sha L. et al. Real time scheduling theory:A historical perspective[J]. Real-time systems, 2004,28(2-3):101-155.
    [9]Aytug H. et al. Executing production schedules in the face of uncertainties:A review and some future directions[J]. European Journal of Operational Research,2005.161(1): 86-110.
    [10]Graves S. A review of production scheduling[J]. Operations Research,1981,29(3): 646-675.
    [11]Land A. H., Doig A. G. An automatic method of solving discrete programming problems[J]. Econometrica,1960,28(3):497-520.
    [12]Lomnicki Z. A. A "branch-and-bound" algorithm for the exact solution of the three-machine scheduling problem[J]. Operations Research,1965:89-100.
    [13]Liaw C. F. A branch-and-bound algorithm for the single machine earliness and tardiness scheduling problem[J]. Computers & Operations Research,1999,26(7):679-693.
    [14]Sarin S. C., Ahn S., Bishop A. B. An improved branching scheme for the branch and bound procedure of scheduling n jobs on m parallel machines to minimize total weighted flowtime[J]. The International Journal of Production Research,1988,26(7):1183-1191.
    [15]Ranjbar M., Davari M., Leus R. Two branch-and-bound algorithms for the robust parallel machine scheduling problem[J]. Computers & Operations Research,2012,39(7): 1652-1660.
    [16]Fisher M. L. The Lagrangian relaxation method for solving integer programming problems[J]. Management Science,2004,50(12 supplement):1861-1871.
    [17]Fisher M. L. Optimal solution of scheduling problems using lagrange multipliers[J]. Operations Research,1973,21(5):1114-1127.
    [18]Luh P. B. et al. Schedule generation and reconfiguration for parallel machines[J]. IEEE Transactions on Robotics and Automaiton,1990,6(6):687-696.
    [19]Luh P. B., Hoitomt D. J. Scheduling of manufacturing systems using the lagrangian relaxation technique[J]. IEEE Transactions on Automatic Control,1993,38(7): 1066-1079.
    [20]Geoffrion A. M. Lagrangian relaxation for integer programming[M]. Springer Berlin Heidelberg,1974.
    [21]Bellman R. On the theory of dynamic programming[J]. Proceedings of the National Academy of Sciences of the United States of America,1952,38(8):716-719.
    [22]Bomberger E. E. A dynamic programming approach to a lot size scheduling problem[J]. Management Science,1966,12(11):778-784.
    [23]Gascon A., Leachman R. C. A dynamic programming solution to the dynamic, multi-item, single-machine scheduling problem[J]. Operations Research,1988,36(1):50-56.
    [24]Lawler E. L. A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs[J]. Annals of Operations Research,1990, 26(1):125-133.
    [25]Campbell H. G., Dudek R. A., Smith M. L. A heuristic algorithm for the n job, m machine sequencing problem[J]. Management Science,1970,16(10):630-637.
    [26]Palmer D. Sequencing jobs through a multi-stage process in the minimum total time a quick method of obtaining a near optimum[J]. Operations Research Quarterly,1965,16: 101-107.
    [27]Dannenbring D. An evaluation of flow shop sequencing heuristics[J]. Management Science,1977,23(11):1174-1182.
    [28]Nawaz M., Enscore J. E. E., Ham I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega,1983,11(1):91-95.
    [29]Adams J., Balas E., Zawack D. The shifting bottleneck procedure for job shop scheduling[J]. Management Science,1988,34(3):391-401.
    [30]Holland J. H. Adaptation in natural and artificial systems[M]. Michigan University Press, 1975.
    [31]Davis L. Job shop scheduling with genetic algorithms[A]. In:Proceedings of the 1st International Conference on Genetic Algorithms[C]. L. Erlbaum Associates Inc.,1985: 136-140.
    [32]Gupta M. C., Gupta Y. P., Kumar A. Minimizing flow time variance in a single machine system using genetic algorithms[J]. European Journal of Operational Research,1993, 70(3):289-303.
    [33]Sevaux M., Dauzere-Peres S. Genetic algorithms to minimize the weighted number of late jobs on a single machine[J]. European Journal of Operational Research,2003,151(2): 296-306.
    [34]Hou E. S. H., Ansari N., Ren H. A genetic algorithm for multiprocessor scheduling[J]. IEEE Transactions on Parallel and Distributed Systems,1994,5(2):113-120.
    [35]Cochran J. K., Horng S. M., Fowler J. W. A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines[J]. Computers & Operations Research,2003,30(7):1087-1102.
    [36]Reeves C. R. A genetic algorithm for flowshop sequencing[J]. Computers & Operations Research,1995,22(1):5-13.
    [37]Ziaeifar A., Tavakkoli-Moghaddam R., Pichka K. Solving a new mathematical model for a hybrid flow shop scheduling problem with a processor assignment by a genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2012, 61(1-4):339-349.
    [38]Della Croce F., Tadei R., Volta G. A genetic algorithm for the job shop problem[J]. Computers & Operations Research,1995,22(1):15-24.
    [39]Goncalves J. F., De Magalhaes Mendes J. J., Resende M. G. C. A hybrid genetic algorithm for the job shop scheduling problem[J]. European Journal of Operational Research,2005,167(1):77-95.
    [40]Pezzella F., Morganti G., Ciaschetti G. A genetic algorithm for the flexible job-shop scheduling problem[J]. Computers & Operations Research,2008,35(10):3202-3212.
    [41]Metropolis N. et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics,1953,21(6):1087-1092.
    [42]Osman I. H., Potts C. N. Simulated annealing for permutation flow-shop scheduling[J]. Omega,1989,17(6):551-557.
    [43]Van Laarhoven P. J. M., Aarts E. H. L., Lenstra J. K. Job shop scheduling by simulated annealing[J]. Operations Research,1992,40(1):113-125.
    [44]吴大为等.求解作业车间调度问题的并行模拟退火算法[J].计算机集成制造系统,2005,11(6):847-850.
    [45]赵良辉,邓飞其.解决Job Shop调度问题的模拟退火算法改进[J].计算机工程2006,32(21):38-40.
    [46]史烨,李凯.并行机问题的模拟退火调度算法研究[J].运筹与管理,2011,20(4):104-107,112.
    [47]Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers & Operations Research,1986,13:533-549.
    [48]Glover F., Taillard E. A user's guide to tabu search[J]. Annals of Operations Research, 1993,41(1):1-28.
    [49]Dell-Amico M., Trubian M. Applying tabu search to the job-shop scheduling problem[J]. Annals of Operations Research,1993,41 (3):231-252.
    [50]Nowicki E., Smutnicki C. A fast tabu search algorithm for the permutation flow-shop problem[J]. European Journal of Operational Research,1996,91(1):160-175.
    [51]Saidi-Mehrabad M., Fattahi P. Flexible job shop scheduling with tabu search algorithms[J]. The International Journal of Advanced Manufacturing Technology,2007, 32(5-6):563-570.
    [52]黄志,黄文奇.一种基于禁忌搜索的作业车间调度算法[J].计算机工程与应用,2006,42(3):12-14.
    [53]梁迪等.基于遗传和禁忌搜索算法求解双资源车间调度问题[J].东北大学学报(自然科学版),2006,8:895-898.
    [54]金锋,宋士吉,吴澄.一类基于FSP问题Block性质的快速TS算法[J].控制与决策,2007,22(3):247-251.
    [55]李俊青,潘全科,王玉亭.多目标柔性车间调度的Pareto混合禁忌搜索算法[J].计算机集成制造系统,2010,16(7):1419-1426.
    [56]Dorigo M., Maniezzo V., Colorni A. Distributed optimization by ant colonies[A]. In: Proceedings of ECAL91-European Conference on Artificial Life[C]. Elsevier Publishing, 1991:134-142.
    [57]李艳君,吴铁军.求解混杂生产调度问题的嵌套混合蚁群算法[J].自动化学报,2003,29(1):95-101.
    [58]Alaykyran K., Engin O., Doyen A. Using ant colony optimization to solve hybrid flow shop scheduling problems[J]. The International Journal of Advanced Manufacturing Technology,2007,35(5-6):541-550.
    [59]Yagmahan B., Yenisey M. M. Ant colony optimization for multi-objective flow shop scheduling problem[J]. Computers & Industrial Engineering,2008,54(3):411-420.
    [60]王万良等.基于改进蚁群算法的柔性作业车间调度问题的求解方法[J].系统仿真学报,2008,20(16):4326-4329.
    [61]许瑞等.极小化总完工时间批调度问题的两种蚁群算法[J].计算机集成制造系统,2010,16(006):1255-1264.
    [62]Kennedy J., Eberhart R. C. Particle swarm optimization[A]. In:Proceeding of IEEE International Conference on Neural Networks[C]. Perth, Australian,1995,4:1942-1948.
    [63]Liu B., Wang L., Jin, Y. H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers[J]. Computers & Operations Research,2008,35(9): 2791-2806.
    [64]Liao C. J., Tjandradjaja E., Chung T. P. An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem[J]. Applied Soft Computing,2012,12(6):1755-1764.
    [65]田野,刘大有.求解流水车间调度问题的混合粒子群算法[J].电子学报,2011,39(5):1087-1093.
    [66]张静等.混合粒子群算法求解多目标柔性作业车间调度问题[J].控制理论与应用,2012,29(6):715-722.
    [67]张静等.基于改进粒子群算法求解柔性作业车间批量调度问题[J].控制与决策,2012,27(4):513-518.
    [68]Storn R., Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11(4): 341-359.
    [69]Qian B. et al. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers[J]. Computers & Operations Research,2009,36(1): 209-233.
    [70]Pan Q. K. et al. An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers[J]. Information Sciences,2011,181(3): 668-685.
    [71]刘黎黎,王诗元,汪定伟.求解交货期可变动态调度问题的差分进化算法[J].东北大学学报(自然科学版),2011,32(2):183-187.
    [72]王海燕等.改进差分进化算法求解化工间歇与连续混合生产过程调度问题[J].系统工程理论与实践,2009,29(11):157-167.
    [73]王海燕等.两级差分进化算法求解多资源作业车间批量调度问题[J].控制与决策,2010,25(11):1635-1644.
    [74]王万良等.基于混合差分进化算法的作业车间动态调度[J].计算机集成制造系统,2012,18(3):85-93.
    [75]Han K. H., Kim J. H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation,2002, 6(6):580-593.
    [76]Li B. B., Wang L. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2007,37(3):576-591.
    [77]Gu J. W., Gu X. S., Gu M. Z. A novel parallel quantum genetic algorithm for stochastic job shop scheduling[J]. Journal of Mathematical Analysis and Applications,2009,355(1): 63-81.
    [78]Gu J. W. et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research,2010, 37(5):927-937.
    [79]Niu Q., Zhou T., Ma S. A quantum-inspired immune algorithm for hybrid flow shop with makespan criterion[J]. Journal of Universal Computer Science,2009,15(4):765-785.
    [80]Ruiz R., Stutzle T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[J]. European Journal of Operational Research,2007,177(3): 2033-2049.
    [81]Ruiz R., Stutzle T. An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives[J]. European Journal of Operational Research,2008,187(3):1143-1159.
    [82]Fanjul-Peyro L., Ruiz R. Iterated greedy local search methods for unrelated parallel machine scheduling[J]. European Journal of Operational Research,2010,207(1):55-69.
    [83]Ribas I., Companys R., Tort-Martorell X. An iterated greedy algorithm for the flowshop scheduling problem with blocking[J]. Omega,2011,39(3):293-301.
    [84]Geem Z. W., Kim J. H., Loganathan G. V. A new heuristic optimization algorithm: harmony search[J]. Simulation,2001,76(2):60-68.
    [85]武磊等.求解零空闲流水线调度问题的和声搜索算法[J].计算机集成制造系统,2009,15(10):1960-1967.
    [86]Wang L., Pan Q. K., Fatih Tasgetiren M. Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms[J]. Expert Systems with Applications,2010,37(12):7929-7936.
    [87]Gao K. Z., Pan Q. K., Li J. Q. Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion[J]. International Journal of Advanced Manufacturing Technology,2011,56(5-8):683-692.
    [88]张敬敏,李霞.求解作业车间调度问题的差分和声搜索算法[J].计算机应用,2013,33(2):329-332.
    [89]Karaboga D. An idea based on honey bee swarm for numerical optimization[J]. Technical. Report, Turkey:Computer Engineering Department, Erciyes University Press, Erciyes, 2005.
    [90]Pan Q. K. et al. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem[J]. Information Sciences,2011,181(12):2455-2468.
    [91]Tasgetiren M. F. et al. A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops[J]. Information Sciences,2011,181(16): 3459-3475.
    [92]王凌等.求解不相关并行机混合流水线调度问题的人工蜂群算法[J].控制理论与应用,2012,29(12):1551-1557.
    [93]He S., Wu Q. H., Saunders J. R. A novel group search optimizer inspired by animal behavioural Ecology[A]. In:IEEE Congress on Evolutionary Computation[C]. Vancouver BC Canada:IEEE Press,2006:1272-1278.
    [94]Hall N. G., Sriskandarajah C. A survey of machine scheduling problems with blocking and no-wait in process[J]. Operations Research,1996,44(3):510-525.
    [95]Reddi S. S., Ramamoorthy C. V. On the flow-shop sequencing problem with no wait in process[J]. Operations Research Quarterly,1972,23(3):323-331.
    [96]Gilmore P. C., Lawler E. L., Shmoys D. B. Well-solved special cases of the traveling salesman problem[M]. Computer Science Division, University of California,1984.
    [97]Papadimitriou C. H., Kanellakis P. C. Flowshop scheduling with limited temporary storage[J]. Journal of the Association for Computing Machinery,1980,27(3):533-549.
    [98]McCormick S. T. et al. Sequencing in an assembly line with blocking to minimize cycle time[J]. Operations Research,1989,37(6):925-935.
    [99]Ronconi D. P., Armentano V. A. Lower bounding schemes for flowshops with blocking in-process[J]. Journal of the Operational Research Society,2001,52(11):1289-1297.
    [100]Ronconi D. P. A note on constructive heuristics for the flowshop problem with blocking[J]. International Journal of Production Economics,2004,87(1):39-48.
    [101]Companys R., Ribas I., Mateo M. Note on the behaviour of an improvement heuristic on permutation and blocking flow-shop scheduling[J]. International Journal of Manufacturing Technology and Management,2010,20(1-4):331-357.
    [102]Caraffa V. et al. Minimizing makespan in a blocking flowshop using genetic algorithms[J]. International Journal of Production Economics,2001,70(2):101-115.
    [103]Grabowski J., Pempera J. The permutation flow shop problem with blocking. A tabu search approach[J]. Omega,2007,35(3):302-311.
    [104]Ronconi D. P. A branch-and-bound algorithm to minimize the makespan in a flowshop problem with blocking[J]. Annals of Operations Research,2005,138(1):53-65.
    [105]Wang L. et al. A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems[J]. Computers and Operations Research,2010,37(3):509-520.
    [106]Framinan J. M., Leisten R., Ruiz-Usano R. Comparison of heuristics for flowtime minimisation in permutation flowshops[J]. Computers & Operations Research,2005, 32(5):1237-1254.
    [107]Pan Q. K., Ruiz R. A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime[J]. Computers & Operations Research,2013,40(1): 117-128.
    [108]Pasupathy T., Rajendran C., Suresh R. K. A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs[J]. International Journal of Advanced Manufacturing Technology,2006,27(7-8):804-815.
    [109]Pan Q. K., Tasgetiren M. F., Liang Y. C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem[J]. Computers & Operations Research,2008,35(9):2807-2839.
    [110]Pan Q. K., Tasgetiren M. F., Liang Y. C. A discrete differential evolution algorithm for the permutation flowshop scheduling problem[J]. Computers & Industrial Engineering, 2008,55(4):795-816.
    [111]Deng G. L., Xu Z. H., Gu X. S. A discrete artificial bee colony algorithm for minimizing the total flow time in the blocking flow shop scheduling[J]. Chinese Journal of Chemical Engineering,2012,20(6):1067-1073.
    [112]He S., Wu Q. H., Saunders J. R. Group Search Optimizer:An optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Computation,2009,13(5):973-990.
    [113]Wang L., Zhong X., Liu M. A novel group search optimizer for multi-objective optimization[J]. Expert Systems with Applications,2012,39(3):2939-2946.
    [114]He S., Wu Q. H., Saunders J. R. A group search optimizer for neural network training[A]. In:Computational Science and Its Applications[C]. ICCSA, Glasgow, UK, 2006:934-943.
    [115]Chen D. B. et al. An improved group search optimizer with operation of quantum-behaved swarm and its application[J]. Applied Soft Computing,2012,12(2): 712-725.
    [116]Wu Q. H. et al. Optimal placement of FACTS devices by a group search optimizer with multiple producers[A]. In:Proceedings of IEEE Congress on Evolutionary Computatio[C]. Hong Kong, China,2008:1033-1039.
    [117]Moradi-Dalvand M., Mohammadi-Ivatloo B., Najafi A. Continuous quick group search optimizer for solving non-convex economic dispatch problems[J]. Electric Power Systems Research,2012,93:93-105.
    [118]詹俊鹏等.快速群搜索优化算法及其在电力系统经济调度中的应用[J].中国电机工程学报,2012,32(z1):1-6.
    [119]He S. et al. An improved group search optimizer for mechanical design optimization problems[J]. Progress in Natural Science,2009,19(1):91-97.
    [120]Barnard C. J., Sibly R. M. Producers and Scroungers:A General Model and Its Application to Captive Flocks of House Sparrows[J]. Animal Behaviour,1981,29(2): 543-550.
    [121]Leisten R. Flow shop sequencing problems with limited buffer storage[J]. International Journal of Production Research,1990,28(11):2085-2100.
    [122]Wang L., Pan Q. K.., Tasgetiren M. F. A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem[J]. Computers & Industrial Engineering,2011,61(1):76-83.
    [123]Taillard E. Some efficient heuristic methods for the flow shop sequencing problem[J]. European Journal of Operational Research,1990,47(1):65-74.
    [124]Goldberg D. E., Lingle R. J. Alleles, loci, and the travelling salesman problem[A]. In: Proceedings of First International Conference on Genetic Algorithms and Their Applications[C]. Pittsburgh, USA,1985:154-159.
    [125]Taillard E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research,1993,64(2):278-285.
    [126]Montgomery D. C. Design and Analysis of Experiments,7th ed[M]. New York:John Wiley and Sons, Inc,2008.
    [127]Brucker P., Heitmann S. Flow-shop problems with intermediate buffers[J]. OR Spectrum,2003,25(4):549-574.
    [128]Duclos L. K., Spencer M. S. The impact of a constraint buffer in a flow shop[J]. International Journal of Production Economics,1995,42(2):175-185.
    [129]Smutnicki C. A two-machine permutation flow shop scheduling problem with buffers[J]. OR Spectrum,1998,20(4):229-235.
    [130]Norman B. A. Scheduling flowshops with finite buffers and sequence-dependent setup times[J]. Computers & Industrial Engineering,1999,36(1):163-177.
    [131]Nowicki E. The permutation flow shop with buffers:A tabu search approach[J]. European Journal of Operational Research,1999,116(1):205-219.
    [132]Sawik T. Mixed integer programming for scheduling flexible lines with limited intermediate buffers[J]. Mathematical and Computer Modeling,2000,31(13):39-52.
    [133]Wardono B, Fathi Y. A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities[J]. European Journal of Operational Research, 2004,155(2):380-401.
    [134]Wang L., Zhang L., Zheng D. Z. An effective hybrid genetic algorithm for flow shop scheduling with limited buffers[J]. Computers & Operations Research,2006,33(10): 2960-2971.
    [135]Lee K. S. et al. The harmony search heuristic algorithm for discrete structural optimization[J]. Engineering Optimization,2005,37(7):663-684.
    [136]Mahdavi M., Fesanghary M., Damangir E. An improved harmony search algorithm for solving optimization problems[J]. Applied Mathematics and Computation,2007,188(2): 1567-1579.
    [137]Geem Z. W., Kim J. H., Loganathan G. V. Harmony search optimization:Application to pipe network design[J]. International Journal of Modelling and Simulation,2002,22(2): 125-133.
    [138]Geem Z. W. Optimal cost design of water distribution networks using harmony search[J]. Engineering Optimization,2006,38(3):259-280.
    [139]Lee K. S., Geem Z. W. A new structural optimization method based on the harmony search algorithm[J]. Computers and Structures,2004,82(9):781-798.
    [140]Geem Z. W., Lee K. S., Park Y. Application of harmony search to vehicle routing[J]. American Journal of Applied Sciences,2005,2(12):1552-1557.
    [141]李亮,迟世春,林皋.改进和声搜索算法及其在土坡稳定分析中的应用[J].土木工程学报,2006,39(5):107-111.
    [142]Yadav P. et al. An improved harmony search algorithm for optimal scheduling of the diesel generators in oil rig platforms[J]. Energy Conversion and Management,2011,52(2): 893-902.
    [143]Liu L., Zhou H. Hybridization of harmony search with variable neighborhood search for restrictive single-machine earliness/tardiness problem[J]. Information Sciences,2013,226: 68-92.
    [144]Chen J. et al. A hybrid dynamic harmony search algorithm for identical parallel machines scheduling[J]. Engineering Optimization,2012,44(2):209-224.
    [145]Pan Q. K. et al. A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem[J]. Expert Systems with Applications,2011,38(4):3252-3259.
    [146]王万良等.含有混合中间存储策略的模糊流水车间调度方法[J].计算机集成制造系统,2006,12(12):2067-2073.
    [147]Alia O. M. D., Mandava R. The variants of the harmony search algorithm:An overview[J]. Artificial Intelligence Review,2011,36(1):49-68.
    [148]Lee K. S., Geem Z. W. A new meta-heuristic algorithm for continues engineering optimization:harmony search theory and practice[J]. Computer Methods in Applied Mechanics and Engineering,2004,194(36):3902-3933.
    [149]Omran M. G. H., Mahdavi M. Global-best harmony search[J]. Applied Mathematics and Computation,2008,198(2):643-656.
    [150]Wang L., Zheng D. Z. An effective hybrid heuristic for flow shop scheduling[J]. International Journal of Advanced Manufacturing Technology,2003,21(1):38-44.
    [151]Cui Z., Gu X. S. An improved discrete artificial bee colony algorithm for hybrid flow shop problems[J]. Communications in Computer and Information Science,2013,335: 294-302.
    [152]Wang C. M., Huang Y. F. Self-adaptive harmony search algorithm for optimization[J]. Expert Systems with Applications,2010,37(4):2826-2837.
    [153]Geem Z. W. Improved harmony search from ensemble of music players[J]. Lecture Notes in Computer Science,2006,4251:86-93.
    [154]Pinedo M. Scheduling:theory algorithms and systems[M]. New Jersey:Prentice-Hall, Englewood Cliffs,2002.
    [155]吴云高,王万良.基于遗传算法的混合Flowshop调度[J].计算机工程与应用,2002,38(12):82-84.
    [156]Gupta J. N. D. Two-stage hybrid flowshop scheduling problem[J]. Journal of The Operational Research Society,1988,39:359-364.
    [157]Hoogeveen J. A., Lenstra J. K.., Veltman B. Minimizing the makespan in a multiprocessor flow shop is strongly NP-hard[J]. European Journal of Operational Research,1996,89(1):172-175.
    [158]Ruiz R., Rodriguez J. A. V. The hybrid flow shop scheduling problem[J]. European Journal of Operational Research,2010,205(1):1-18.
    [159]Ribas I., Leisten R., Framinan J. M. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective[J]. Computers & Operations Research,2010,37(8):1439-1454.
    [160]Arthanary T. S., Ramaswamy K. G. An extension of two machine sequencing problems[J]. Operations Research,1971,8:10-22.
    [161]Santos D. L., Hunsucker J. L., Deal D. E. Global lower bounds for flow shops with multiple processors[J]. European Journal of Operational Research,1995,80(1):112-120.
    [162]Neron E., Baptiste P., Gupta J. N. D. Solving hybrid flow shop problem using energetic reasoning and global operations[J]. Omega,2001,29(6):501-511.
    [163]Carlier J., Neron E. An exact method for solving the multi-processor flow-shop[J]. Operations Research,2000,34(1):1-25.
    [164]Gupta J. N. D., Tunc E. A. Minimizing tardy jobs in a two-stage hybrid flow shop[J]. The International Journal of Production Research,1998,36(9):2397-2417.
    [165]Brah S. A., Loo L. L. Heuristics for scheduling in a flow shop with multiple processors[J]. European Journal of Operational Research,1999.113(1):113-122.
    [166]Ruiz R., Serifoglu F. S., Urlings T. Modeling realistic hybrid flexible flowshop scheduling problems[J]. Computers & Operations Research,2008,35(4):1151-1175.
    [167]Ying K., Lin S. Scheduling multistage hybrid flowshops with multiprocessor tasks by an effective heuristic[J]. The International Journal of Production Research,2009,47(13): 3525-3538.
    [168]Ruiz R., Maroto C. A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility[J]. European Journal of Operational Research,2006, 169(3):781-800.
    [169]Kahraman C. et al. An application of effective genetic algorithms for solving hybrid flow shop scheduling problems[J]. International Journal of Computational Intelligence Systems,2008,1(2):134-147.
    [170]Engin O., Doyen A. A new approach to solve hybrid flow shop scheduling problems by artificial immune system[J]. Future Generation Computer Systems,2004,20(6): 1083-1095.
    [171]Basturk B., Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[A]. In:IEEE Swarm Intelligence Symposium[C]. Indianapolis, Indiana, USA,2006:12-14.
    [172]Karaboga D., Basturk B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007,39(3):459-471.
    [173]Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft computing,2008,8(1):687-697.
    [174]Karaboga D., Ozturk C. Neural networks training by artificial bee colony algorithm on pattern classification[J]. Neural Network World,2009,19(3):279-292.
    [175]Karaboga D., Ozturk C. A novel clustering approach:Artificial Bee Colony (ABC) algorithm[J]. Applied Soft Computing,2011,11(1):652-657.
    [176]刘路,王太勇.基于人工蜂群算法的支持向量机优化[J].天津大学学报,2011,44(9):803-809.
    [177]Yeh W. C., Hsieh T. J. Solving reliability redundancy allocation problems using an artificial bee colony algorithm[J]. Computers & Operations Research,2011,38(11): 1465-1473.
    [178]Akay B., Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization[J]. Journal of Intelligent Manufacturing,2012,23(4): 1001-1014.
    [179]Liu Y. F., Liu S. Y. A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem[J]. Applied Soft Computing,2013,13(3):1459-1463.
    [180]Deng G. L., Cui Z., Gu X. S. A discrete artificial bee colony algorithm for the blocking flow shop scheduling problem[A]. In:The Ninth World Congress on Intelligent Control and Automation[C]. Beijing, China,2012:518-522.
    [181]Han Y. Y. et al. An improved artificial bee colony algorithm for the blocking flowshop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2012,60(9-12):1149-1159.
    [182]Sang H., Gao L., Pan Q. K. Discrete artificial bee colony algorithm for lot-streaming flowshop with total flowtime minimization[J]. Chinese Journal of Mechanical Engineering,2012,25(5):990-1000.
    [183]Wang L. et al. An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling[J]. The International Journal of Advanced Manufacturing Technology,2012,60(9-12):1111-1123.
    [184]Pan Q. K. et al. An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process[J]. IEEE Transactions on Automation Science and Engineering,2013,10(2):307-322.
    [185]Oguz C. et al. Hybrid flow-shop scheduling problems with multiprocessor task systems[J]. European Journal of Operational Research,2004,152(1):115-131.
    [186]Oguz C., Ercan M. F. A genetic algorithm for hybrid flow shop scheduling with multiprocessor tasks[J]. Journal of Scheduling,2005,8(4):323-351.
    [187]Karaboga D., Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation,2009,214(1):108-132.
    [188]高卫峰,刘三阳,黄玲玲.受启发的人工蜂群算法在全局优化问题中的应用[J].电子学报,2012,40(12):2396-2403.
    [189]Akay B., Karaboga D. Parameter tuning for the artificial bee colony algorithm[A]. In: Proceedings of First International Conference on Computational Collective Intelligence[C]. Springer-Verlag:Berlin Heidelberg,2009:608-619.
    [190]Alcaide D., Rodriguez-Gonzalez A., Sicilia J. An approach to solve the minimum expected makespan flow-shop problem subject to breakdowns[J]. European Journal of Operational Research,2002,140(2):384-398.
    [191]Chen J., Chen F. F. Adaptive scheduling in random flexible manufacturing systems subject to machine breakdowns[J]. International Journal of Production Research,2003, 41(9):1927-1951.
    [192]Allaoui H., Artiba A. Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints[J]. Computers & Industrial Engineering,2004,47(4): 431-450.
    [193]Tang H. Y., Zhao C. L., Cheng C. D. Single machine stochastic JIT scheduling problem subject to machine breakdowns[J]. Science in China Series A:Mathematics,2008,51(2): 273-292.
    [194]Gholami M., Zandieh M., Alem-Tabriz A. Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns[J]. The International Journal of Advanced Manufacturing Technology,2009,42(1):189-201.
    [195]Zandieh M., Gholami M. An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns[J]. International Journal of Production Research,2009,47(24):6999-7027.
    [196]Safari E., Sadjadi S. J. A hybrid method for flowshops scheduling with condition-based maintenance constraint and machines breakdown[J]. Expert Systems with Applications, 2011,38(3):2020-2029.
    [197]Wang K., Choi S. H. A decomposition-based approach to flexible flow shop scheduling under machine breakdown[J]. International Journal of Production Research,2012,50(1): 215-234.
    [198]Mirabi M., Ghomi S. M. T. F., Jolai F. A two-stage hybrid flowshop scheduling problem in machine breakdown condition[J]. Journal of Intelligent Manufacturing,2013,24(1): 193-199.
    [199]Couzin I. D. et al. Effective leadership and decision-making in animal groups on the move[J]. Nature,2005,433(7025):513-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700