用户名: 密码: 验证码:
多孔隔板联箱的气液分离特性及分液冷凝制冷系统性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前全球的能源供求矛盾日趋突出,各种节能技术的研究及应用显得尤为重要。“分液式冷凝”是一种近年提出的通过分段冷凝中间分液实现强化凝结传热的新方法。该方法实现蒸汽和凝结液分离并将凝结液及时排出的关键装置是多孔隔板联箱。湿蒸汽进入联箱后,由于气、液相的密度相差较大,凝结液在重力和惯性力的作用下从蒸汽中分离出来并在多孔隔板上凝聚成液膜,然后通过多孔隔板上的小孔排出,在隔板上形成的液膜可阻止气体从小孔穿出,使蒸汽流进下一管程后能与管壁充分接触,利用凝结换热方式获得高传热系数,提高换热器的整体性能。目前尚未有针对这种联箱内的气液分离过程的现象和过程特性的系统研究。本文将对多孔隔板联箱内的气液分离和排液阻气过程进行深入研究,建立设计分液联箱的理论依据,并在此基础上设计分液冷凝器,对使用分液冷凝器的空调系统进行系统实验验证。
     首先,探索多孔隔板联箱内的气液分离和排液阻气的基本原理。搭建可视化冷态实验台,以空气和水作为工质,采用透明有机玻璃制作联箱试件,采用染色示踪和高速摄像的方法记录空气、水在联箱内的流动过程。对联箱内四种流型进行分析,揭示流速对液膜形态和运动的作用机理。并根据液膜高度的变化,引进两个临界点(溢出临界与击穿临界),划分出5种工作状态。对分液隔板上的液膜进行受力分析,引入描述气液分离特性的无量纲准则数——液体Re数和修正We数,为多孔隔板联箱结构的设计提供理论指导。
     在理论分析基础上,研究运行工况和结构参数对多孔隔板联箱的气液分离特性的影响。在自建的冷态实验台上,改变空气、水流速,空气压力,联箱直径,隔板与出口管间距,分液小孔直径,分液小孔数量,分液小孔的孔径和数量组合等参数,获得上述参数对分液隔板上液膜高度,漏液速率和分离效率的影响。采用PIV测速系统观测分液联箱内液体的流动轨迹,通过高速摄像的可视化结果分析流型对击穿临界和分离效率的影响。结果表明:在实验工况的条件下,多孔隔板气液分离联箱具有较好的气液分离性能;分离效率随流型变化,环状流入口和低液流速弹状流时,分离效率为45%~80%,分层流入口时,分离效率为100%。运用修正We数来讨论两个临界气液分离极限条件,获得预测临界状态下的无量纲拟合公式;液膜高度、漏液速率和分离效率随分液隔板与出口管间距增大、联箱直径增大和分液小孔直径减小、分液小孔数量减少而增加;用修正We数很好地解释了两个实验前未预测到的现象:一是增大联箱直径,气液分离联箱内的液膜高度升高,二是增加小孔的数量,漏液速率减小。
     通过对气液分离联箱冷态实验的结果分析,设计一体化联箱。基于维持全管程蒸汽流速基本不变,避免因蒸汽量减少造成换热弱化的优化原则,合理设计管路流程。根据漏液量与We的相关关系进行排液结构设计。
     在标准焓差实验室内进行分液冷凝器(LSC)对空调系统性能影响的实验研究。比较采用三个设计出来的LSC的系统的性能,将EER(制冷性能系数)最大的LSC系统与常规空调系统进行比较,并在变环境温度的条件下进一步探讨LSC系统的性能。实验结果表明多孔隔板上的小孔尺寸和多孔隔板在联箱中的位置对系统性能影响很大,三个LSC系统中,最佳的LSC的壁温分布最均匀而且进、出口压降最小,其系统的制冷量和EER分别比最差的LSC系统大8.04%和11.11%。与常规空调系统相比,虽然LSC的换热面积仅有常规L形空冷冷凝器的67%,但是在额定工况下,LSC系统的制冷量和EER仅比常规空调系统少1.6%和2.8%。
The contradiction between supply and demand of global energy becomes increasingly prominent at present. It is particularly important to research and apply energy saving technology. Recently, an innovatory idea called "Liquid-vapor separation condensing" was proposed to enhance the condensation heat transfer by separating liquid from gas-liquid mixture during condensing. This method realized the liquid separation of steam and condensate and timely discharge of the condensate by a special setting of the header with porous baffles. When the wet steam enter into the header, the condensate separate from the steam and flow down to the baffle due to the effects of the gravity and inertia force because the density difference between the gas and liquid is very large. Then a liquid film accumulates on the porous baffle plate and the liquid flows through the holes on the baffle. The liquid film could prevent gas to flow out from the holes, so the steam could better contact with the tube wall when flowed into the next tube pass. Higher heat transfer coefficient was obtained by using condensation heat transfer process, and then high performance of the heat exchanger would be achieved. Up till now, there was no systematical research of the phenomenon and process characteristics during liquid-gas separation process in this kind of header. In this study, liquid-gas separation and liquid discharged process were investigated in-depth to established the theory basis for the header design and the design of the liquid-vapor separation condenser (LSC), and the system characters of an air conditioning system with LSC was verified.
     Firstly, the basic principle of liquid-gas separation and liquid discharge process were explored. A visualization cold state test system was set up, using air and water as the working fluids. The header was manufactured from transparent acrylic resin. The method of dyeing tracer and high-speed camera were adopted to record the gas and water flow process in the header. The results of four kinds of flow pattern in the header were analyzed, and the mechanism of the effects of gas and liquid superficial velocities on the morphology and movement of the liquid film was revealed. Based on the change of the liquid level height, two limits (flooding limit and drain limit) were introduced and the working condition was divided into five situations. The dimensionless Re and modified We number were introduced by forces analyzing to describe the gas-liquid separation characteristics. The results could provide theoretical guidance for the header design.
     On the basis of theoretical analysis, effects of operation conditions and structure parameters on the gas-liquid separation characteristics of the header were studied. The effects of the operation conditions and structure parameters on liquid level height, water seepage flow rate and liquid separation efficiency were discussed at different gas and liquid superficial velocities, air pressure, header diameter, space between the baffle and the outlet pipe, diameter of the liquid-gas separation hole, number of the liquid-gas separation hole, combined effects of the diameter and number of the liquid-gas separation holes on the self-built cold state test system. The flow characteristics in the header were observed by a PIV velocity measuring system to analyze the influence of flow patterns on the drain limit and the liquid separation. The results showed that under the experimental condition, the header showed capabilities of good liquid-gas separation; the liquid separation efficiency changed with different inlet flow patterns; it was higher than45%and80%respectively for annular flow inlet and for slug flow inlet at low liquid inlet superficial velocities, and close to100%for a stratified flow inlet. Modified We number were used to discuss the two limit conditions, and dimensionless correlations were obtained for predicting the limits. It was found that the liquid level height, water seepage flow rate and liquid separation efficiency increased with increased header diameter, spacing between baffle and outlet pipe and reduced diameter of the liquid-gas separation hole, number of the liquid-gas separation hole, The modified We number was suitable for analyzing two unexpected phenomenon:one was the increase of liquid level height with increasing header diameter at the same inlet conditions. The other was the decrease of water seepage flow rate with increasing the number of the liquid-gas separation holes.
     Headers were designed according to the analysis of the results of gas-liquid separation characteristics of the header in the cold state experiments. The tube path was reasonable designed based on the principle that maintaining all the steam flow rates basically remain unchanged to avoid heat transfer weakening caused by reduced steam. The baffles with liquid-gas separation holes were designed according to the relationship between water seepage flow rate and modified We number.
     The system performance characteristics of air conditioning systems with liquid-vapor separation condenser (LSC) were invested in a standard air enthalpy difference test room. The results indicate that, the designs of refrigerant flow path and the holes in the baffles of the LSC affected the system performance, among three tested LSC systems, the best LSC had the most uniform wall temperature distribution and the smallest pressure drop. The cooling capacity and EER(Energy Efficiency Ratio) of the best LSC system were8.04%and11.11%higher than those of the worst of the three tested LSC systems. Compared to the baseline system, although the LSC had only67%of the heat transfer area of the baseline condenser, the cooling capacity and EER of the LSC system were only1.6%and2.8%less than those of the baseline system at the nominal operating condition.
引文
[1]C.C. Wang, Technology review-a survey of the recent progress of the patents of fin-and-tube heat exchangers[J]. J.Enhanced Heat Transfer,2000,7:333-345
    [2]M. Fibig. Vortices and heat transfer[J], ZAMM Z. Angew Math. Mech,1997,77(1): 3-18
    [3]F.J. Edwards, G.J. Rer. The improvement of forced convection surface heat transfer using surfaces protusions in the form of (A)cubes and (B)vortex generators[C]. Proceedings of the 5th International Heat Transfer Conference. Tokyo:1974,2: 244-248
    [4]M. Fibig. Vortices generators and heat transfer[J]. Trans. IChemE 76 (PartA),1998: 108-123
    [5]胡俊伟,丁国良.开缝翅片压降和换热特性的数值模拟[J].上海交通大学学报,2004,38(10):1639-1642
    [6]何江海,陈蕴光,徐正本等.风冷式平直翅片管换热器的数值分析[J].制冷与空调,2003,3(4):26-28。
    [7]唐凌虹,谢公南,闫孝红等.三种翅管式换热器传热与阻力特性的试验研究[J].化工进展,2006,25增刊:310-314
    [8]唐凌虹,谢公南,曾敏等.三种大管径翅管式换热器传热与阻力特性的试验研究[J].西安交通大学学报,2007,41:521-525
    [9]康海军,李妩,李慧珍等.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报,1994,28(1):91-98
    [10]宋富强,屈治国,何雅玲等.低速下空气横掠翅片管换热规律的数值模拟[J].西安交通大学学报,2002,3(9):899-902
    [11]W.R. Chang, C.C. Wang, W.C. Tsi et al.. Air-side performance of louver fin heat exchanger[C].4th ASME/JSME Thermal Engineering Joint Conference 4,1985: 3467-3472
    [12]C.C. Wang, W.H. Tao, C.J. Chang. An investigation of the airside performance of the slit fin-and-tube heat exchangers[J]. Int. J. Refrig,1999,22:595-603
    [13]J.Y. Jang, M.C. Wu. Numerical and experimental studies of three dimensional plate fin and tube heat exchangers [J]. Int. J. Heat Mass Transfer,1996,39:3057-3066
    [14]J. Dong, J. Chen, Z. Chen et al.. Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers [J]. Appl. Thermal Eng,2007,27:2066-2073
    [15]J.Y. Yun, K.S. Lee. Investigation of heat transfer characteristics on various kinds of fin and tube heat exchangers with interrupted surfaces[J]. Int. J. Heat Mass Transfer, 1999,42:2375-2385
    [16]Rose J.W.. Fundamentals of condensation heat transfer:laminar film condensation[J]. JSME International Journal,1988,31:357-375
    [17]Cavallini A, Del Col D, Doretti L et al.. Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes[J]. Int J Refrig,2000, 23:4-25
    [18]Tang L. Empirical study of new refrigerant flow condensation inside horizontal smooth and micro-fin tubes[D]. University of Maryland at College Park,1997
    [19]Zhang M. A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes[D]. The Pennsylvania State University,1998
    [20]Chitti M.S., Anand N.K.. Condensation heat transfer inside smooth horizontal tubes for R-22 and R-32/125 mixture[J]. HVAC&R Research,1996,2:79-101
    [21]Wijaya H, Spatz M.W. Two-phase flow heat transfer and pressure drop characteristics of R-22 and R-32/125[J]. ASHRAE Trans,1995,1 (1):2-7
    [22]Kim MS, Chang YS, Ro ST. Performance and heat transfer of hydrocarbon refrigerants and their mixtures in a heat pump system[R]. In:Proc. IIF-IIR Commissions B1, B2, E1 and E2 Meeting, Aarhus,1996
    [23]Cavallini A, Censi G, Del Col D et al. Intube condensation of halogenated refrigerants[C]. ASHRAE Trans,2002,108
    [24]Haraguchi H, Koyama S, Fujii T. Condensation of refrigerants HCFC 22, HFC 134a and HCFC 123 in a horizontal smooth tube[R].2nd report, proposal of empirical expressions for local heat transfer coefficient, Trans JSME,1994,60(574):245-52
    [25]Dobson M.K., Chato J.C.. Condensation in smooth horizontal tubes[J]. ASME J Heat Transfer,1998,120:193-213
    [26]Akio Miyara, Kengo Nonaka, Mitsunori Taniguchi. Condensation heat transfer and flow pattern inside a herringbone-type micro-fin tube[J]. International Journal of Refrigeration,2000,23:141-152
    [27]D.W. Shao, E.G. Granryd. Flow pattern, heat transfer and pressure drop in flow condensation, Part 1:Pure and azeotropic refrigerants [J]. Int. J. HVAC&R Res,2000, 6(2):175-195
    [28]Rabas T.J., Arman B.. Effect of the exit condition in the performance of the in-tube condenser[J]. Heat Transfer Engineering,2000,21:4-14
    [29]John.W.Coleman, Srinivas Garimella, Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a[J]. International Journal of Refrigeration,2003,26:117-128
    [30]H.Y. Wu, P. Cheng. Condensation flow patterns in silicon microchannels[J]. International Journal of Heat and Mass Transfer,2005,48:2186-2197
    [31]Beatty K. O., Katz D. L.. Chemical Engineering Progress[M],1948,44(1):55-70
    [32]文教伟,蔡义汉.锯齿形低肋管冷凝换热机理分析及实验研究[J].中南矿冶学院学报,1991,22(1):54-60
    [33]Webb. R.L., Murawski. C.G.. Row effect for R-11 condensation on enhanced tubes[J]. Journal of Heat Transfer,1990,112(3):768-776
    [34]Ding-Cai Zhang, Wen-Tao Ji, Wen-Quan Tao. Condensation heat transfer of HFC 134a on horizontal low thermal conductivity tubes[J]. International Communications in Heat and Mass Transfer,2007,34(8):917-923
    [35]尹清华,王世平,邓颂九.径向辐射状肋翅片管强化冷凝传热研究[J].高校化学工程学报,1986,1(1):33-44
    [36]张正国,王世平,耿建军等.非共沸混合工质在水平管束上的冷凝传热及强化[J].化工学报,1996,47(5):642-644
    [37]李艳,张书超,梅宁等.水平螺旋槽管降膜流动和传热特性研究[J].热科学与技术,2011,10(1):95-102
    [38]黄维军,邓先和,黄德斌.横纹槽管结构优化的正交数值模拟试验研究[J].化 工学报,2005,56(8):1445-1450
    [39]王国栋.V型波纹管表面冷凝传热凝液量与临界管长计算的研究[J].吉林工学院学报,1991,12(1):63-69
    [40]汤勇,周德明.王威等.内螺旋翅片管应用于电喷射加热器的研究[J].华南理工大学学报(自然科学版),2001,29(6):97-99
    [41]唐上朝,刘星,陶文铨.R22在水平微肋管和光管内凝结换热的实验研究[J].郑州轻工业学院学报(自然科学版),2007,22(1):42-45
    [42]辛明道,王志军.水蒸汽在水平三维微肋管内的凝结换热及阻力特性[J].工程热物理学报,1998,19(4):463-468
    [43]Akio Miyara, Kengo Nonaka, Mitsunori Taniguchi. Condensation heat transfer and flow pattern inside a herringbone-type micro-fin tube[J]. International Journal of Refrigeration,2000,23:141-152
    [44]Coleman, J.W., Garimella, S.. Characterization of two-phase flow patterns in small diameter round and rectangular tubes[J]. International Journal of Heat and Mass Transfer,1999,42(15):2869-2881
    [45]Wei W.J., Ding G.L., Wang K.J.. Measurement and correlation of two-phase frictional performance of refrigerant-oil mixture inside small tubes[J]. HVAC & R Research,2007,13 (2):397-411
    [46]胡海涛,丁国良,黄翔超.R410A-油在5mm小管径光管内流动沸腾的阻力特性[J].上海交通大学学报,2008,42(3):394-398
    [47]Peng X.F., Wu D., Zhang Y.. Applications and principle of high performances condensers[J]. Chemical Industry and Engineering Progress,2007,26:97-104
    [48]Y. Chen, N. Hua, L.S.Deng. Performances Of A Split-Type Air Conditioner Employing A Condenser With Liquid-Vapor Separation Baffles[J]. International Journal of Refrigeration,2012,35(2):278-289
    [49]Marchitto A, Fossa M, Guglielmini G. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry[J]. Experimental Thermal and Fluid Science,2009,33(5):895-902
    [50]Shi J, Qu X, Qi Z, et al. Effect of inlet manifold structure on the performance of the heater core in the automobile air-conditioning systems[J]. Applied Thermal Engineering,2010,30(8):1016-1021
    [51]Mishra M, Das P K, Sarangi S. Effect of temperature and flow nonuniformity on transient behaviour of crossflow heat exchanger[J]. International Journal of Heat and Mass Transfer,2008,51(9):2583-2592
    [52]Jiao A, Baek S. Effects of distributor configuration on flow maldistribution in plate-fin heat exchangers[J]. Heat transfer engineering,2005,26(4):019-025
    [53]Shi J, Qu X, Qi Z, et al. Effect of inlet manifold structure on the performance of the heater core in the automobile air-conditioning systems [J]. Applied Thermal Engineering,2010,30(8):1016-1021
    [54]R. A. Bajura, JR. E. H. Hones. Flow distribution manifolds[J]. Journal of Fluid Engineering, Transactions of ASME.1976,30(6):654-666
    [55]Kubo. T, Ueda. T.. Study of header for flow distribution and concentration[J]. In: Trans. JSME,1968,34(268):2133-2138
    [56]廖正清.Z型联箱连接系统单相流体的流动特性[J].上海交通大学学报,1998,32(7):81-85
    [57]廖正清,王恩禄,田子平.电站锅炉分配联箱系统单相流体流动特性的研究[J].动力工程,1998,18(1):43-47
    [58]廖正清,田子平,王恩禄.电站锅炉汇集联箱系统单相流体流动特性的研究[J].动力工程,1998,18(2):46-49
    [59]袁益超,陈之航.单相流体在锅炉并联管组中流量分配规律研究[J].华东工业大学学报,1995,17(3):17-24
    [60]Masahiro Osakabe, Tomoyuki Hamada, Sachiyo Horiki. Water flow distribution in horizontal header contaminated with bubbles[J]. International Journal of Multiphase Flow,1999, (25):827-840
    [61]Jun Kyoung Lee. Two-phase flow behavior inside a header connected to multiple parallel channels[J]. Experimental Thermal and Fluid Science,2009, (33):195-202
    [62]朱玉琴,毕勤成,陈听宽.超临界变压运行直流锅炉中间集箱分配特性的试验研究.热能动力工程,2009,24(1):81-84
    [63]Siver Vist, Jostein Pettersen. Two-phase flow distribution in compact heat exchanger manifolds[J]. Experimental Thermal and Fluid Science,2004, (28):209-215
    [64]徐保全.水平并联管系统中的两相流流量分配特性研究[D].西安交通大学,1992
    [65]程卓明,周云龙.分配联箱气液两相流流型对垂直并联管分配特性的影响[J].热能动力工程,1997,14:270-272
    [66]P. Vlasogiannis, G. Karagiannis, P. Argyropoulos, et al..Air-water two-phase flow and heat transfer in a plate heat exchanger[J]. International Journal of MultiphaseFlow,2002,(28):757-772
    [67]Nae-Hyun Kim, Tae-Ryong Sin. Two-phase flow distribution of air-water annular flow in a parallel flow heat exchanger[J]. International Journal of Multiphase Flow,2006,(32):1340-1353
    [68]Kim S., Choi E., Cho Y. I.. The effect of header shapes on the flow distribution in a manifold for electric packaging applications. Heat Mass Transfer,1995, 22(3):329-341
    [69]Jun Kyoung Lee, Sang Yong Lee. Distribution of two-phase annular flow at header-channel junctions[J]. Experimental Thermal and Fluid Science,2004,(28):217-222
    [70]Z. Teclemariam, H. M. Soliman, G. E. Sims, et al..Experimental investigation of the two-phase flow distribution in the outlets of a horizontal multi-branch header. Nuclear Engineering and Design,2003,222:29-39
    [71]N. Ablanque, C. Olist, J. Rigola, et al..Two-phase flow distribution in mutiple parallel tubes[J]. International Journal of Thermal Science,2010, (49):909-921
    [72]T. J. Honan, R. T. Lahey Jr. The measurement of phase separation in wyes and tees[J]. Nuclear Engineering and Design,1981,64:93-102
    [73]Kim. N.H., Kim D. Y., Byun H. W..Effect of inlet configfuration on the refrigerant distribution in a parallel flow minichannel heat exchanger[J]. International Journal of Refrigeration,2011,34(5):1209-1221.
    [74]Annalisa Marchitto, Marco Fossa, Giovanni Guglielmini. Distribution of air-water mixtures in parallel verital channels as an effect of the header geometry[J]. Experimental Thermal and Fluid Science,2009,(33):895-902
    [75]A. Marchitto, F. Devia, M. Fossa, et al.. Experiments on two-phase flow distribution inside parallel channels od compact heat exchangers[J]. International Journal of Multiphase Flow,2008,(34):128-144
    [76]Wen M. Y., Lee C. H., Tasi J. C.. Improving two-phase refrigerant distribution in the manifold of the refrigeration system[J]. Applied Thermal Engineering,2008,28(17): 2126-2135.
    [77]徐保全,王妍梵,章燕谋等.水平U型和Z型集箱系统的两相流流量分配特性实验研究.动力工程,1997,17(4):33-39
    [78]Li Y, Xu Q. Experimental research on the effects of distributor configuration on flow distribution in plate-fin heat exchangers [J]. Heat Transfer-Asian Research,2004, 33(6):402-410
    [79]汪军.分配集箱中的气液两相流流动及分配特性研究[D].西安交通大学,1987
    [80]HONG K. C..Two phase flow splitting at a pipe tee[J]. J PctrulemnTechnology, 1979,30:290-295
    [81]Nematollah Saba, Richard T. Jr. Lahey. The Analysis of phase separation phenomena in branching conduits[J]. International Journal of Multiphase Flow,1984, 10(1):1-20
    [82]T. J. Honan, R. T. Lahey Jr.. The measurement of phase separation in wyes and tee[J]. Nuclear Engineering and Design,1981,64:93-102
    [83]R. T. Lahey. Current Understanding of Phase Separation Mechanisms in Branching Conduits[J]. Nuclear Engineering and Design,1986,55(1):145-161
    [84]Hwang S. T., Soliman H. M., Lahey R. T. Jr. Phase separation in dividing two-phase flows[J]. International Journal of Multiphase Flow,1988,14(2):439-458
    [85]C. Y. Mak, N. K. Omenere-Iyari, B. J. Azzopardi. The spilt of vertical two-phase flow at a small diameter T-junction [J]. Chemical Engineeriong Science,2006, (61):6261-6272
    [86]Sang-Jin Taea, Keumnam Chob. Two-phase split of refrigerants at a T-junction[J]. International Journal of Refrigenration,2006,(29):1128-1137
    [87]A.M.F. El-Shaboury, H.M.Soliman, G. E. Sims.Two-phase flow in a horizontal equal-sided impacting tee junction[J]. International Journal of Multiphase Flow, 2007,33:411-431
    [88]J. G. Collier. Single-phase and two-phase behavior in primary circuit components[C]. Proc. N.A.T.O Advanced Study Institute on Two-phase Flow and Heat Transfer, Washington D.C.,1976,322-333
    [89]P. B. Whafey, B.J. Azzopardi. Two-phase flow in a "T" junction[C]. The winter annual meeting of The American Society of Mechanical Engineers
    [90]B.J. Azzopardi. The effect of the side arm diameter on the teo-phase flow split at a "T" junction[J]. International Journal of Multiphase Flow,1984,10(4):509-512
    [91]Bull J. R., Soloman H. M.,Sims G. E. Two-phase pressure drop and phase distribution at a horizontal tee junction[J]. International Journal of Multiphase Flow.1994,20:819-836
    [92]齐鹏程,杨利民.气液两相流在T形管处相分离的研究[J].常州大学学报,2010,22(2): 34-37
    [93]W. Seeger, J rimann and U muller. Two phase flow in a T-junction with a Horizontal Inlet Part I:phase separation[J]. International Journal of Multiphase Flow,1986, 2(4):575-585
    [94]B.J. Azzopardi. The effect of the side arm diameter on the teo-phase flow split at a "T" junction[J]. International Journal of Multiphase Flow,1984,10(4):509-512
    [95]B.J. Azzopardi. Two-phase flow in junctions[P]. London:Gulf Publishing Co.,1986
    [96]B.J. Azzopardi, A. Purvis, A. H. Govan. Annular two-phase flow split at an impacting T. International Journal of Multiphase Flow,1987,13(5):605-614
    [97]K. C. Hong. Two-phase flow splitting in pipe tee[J]. J. of Petroleum Technologu, 1987(2):290-296
    [98]W. Seeger, J rimann and U muller. Two phase flow in a T-junction with a Horizontal Inlet Part I:phase separation[J]. International Journal of Multiphase Flow,1986, 2(4):575-585
    [99]Seeger W, Retmann J, Muller U. Two-phase in a tee junction with a horizontal inlet, Part I:phase separation[J]. International Journal of Multiphase Flow,1986, 12(4):575-586
    [100]Azzopardi B. J.,Smith P. A. Two-phase flow split at T junctions:effect of side arm orientation and downstream geometry[J]. International Journal of Multiphase Flow,1992,18(6):861-875
    [101]B. J. Azzopardi, Whalley P. B.. The effect of flow patterns on two-phase flpw in a T-junction. International Journal of Multiphase Flow,1982,8:491-507
    [102]L. C. Walters, H.M. Soliman,G.E.Sims. Two-phase pressure drop and phase distribution at reduced tee junctions [J].International Journal of Multiphase Flow,1998,(24):775-792
    [103]Nematollah Saba, Richard T. Jr. Lahey. The analysis of phase separation phenomena in branching conduits[J].International Journal of Multiphase Flow,1984,10(1):1-20
    [104]Y. Charron, P.B.Whalley. Gas-liquid annular flow at a vertical Tee junction-Part I, flow separation[J].International Journal of Multiphase Flow,1995,21(4):569-589
    [105]王栋,林宗虎.一种新的气液两相流体流量计——三通管型分流分相式两相流体流量计[J].工程热物理学报,2001,22(4):488-491
    [106]Morikaway, Kondo T. Hiramoto T. Pressure drop and solids distribution of air-solids mixture in a horizontal unsymmetric branches[J].International Journal of Multiphase Flow,1978,4:397-404
    [107]Hwang S. T., Soliman H. M. Phase separation in dividing two-phase flow[J].International Journal of Multiphase Flow,1988,14:439-458
    [108]Azzopardi B. J. T junctions as phase separators for gas liquid flows: possibilities and problems[J].Chem. Eng. Res. Design,1993,71:273-281
    [109]Azzopardi B. J., Colman D A, Nicholson D. Plant application of a T junction as a partial phase separatoe. [J].Chem. Eng. Res. Design,2002,80:87-96
    [110]陶开蓉.欠平衡钻井液气分离器[P].中国,102392612A.2012
    [111]庞力平,吕玉贤,张文妍等.一种高干度T型三通气液两相流分离装置[P].中国,103272442A.2013
    [112]E. Wren, Azzopardi B. J.. The phase separation capabilities of two T-junctions placed in seres[J]. Chemical Engineering Reaearch and Design. 2004, 82(A3):364-371
    [113]E. Wren, Azzopardi B. J.. Affecting the phase split at a large diameter T-junction by using baffles[J]. Experimental Thermal and Fluid Science.2004,(28):835-841
    [114]秦晓霞,李自力.T型连接器处的气液两相流分离模型[J].石油石化节能,2008,(4):49-54
    [115]杨利民.一种多相流分离的复合T形管分离器及其分离方法[P].中国,200910029249.4.2009
    [116]L. C. Walters, H.M. Soliman,G.E.Sims. Two-phase pressure drop and phase distribution at reduced tee junctions [J].International Journal of Multiphase Flow,1998,(24):775-792
    [117]Nematollah Saba, Richard T. Jr. Lahey. The analysis of phase separation phenomena in branching conduits [J]. International Journal of Multiphase Flow,1984,10(1):1-20
    [118]Y. Charron, P.B.Whalley. Gas-liquid annular flow at a vertical Tee junction-Part I, flow separation[J].International Journal of Multiphase Flow,1995,21 (4):569-589
    [119]E. Wren, B. J. Azzopardi. The phade separation capabilities of two T-junctions placed in series [J].Chem. Eng. Res. Design,2004,82(A3):364-371
    [120]E. Wren, B. J. Azzopardi. Affecting the phase split at a large diameter T-junction by using baffles [J]. Experimental Thermal and Fluid Science,2004,(28):835-841
    [121]秦晓霞等编辑.T型连接器处的气液两相流分离模型,资料来源于美国《Chemical Engineering and processing》,2007
    [122]杨利民.一种多相流分离的复合T形管分离器及其分离方法[P].中国200910029249,2009
    [123]刘乐柱,张天平.空间气液分离技术及其应用[J].真空与低温,2010,16(1):6-11
    [124]任相军,王振波,金有海.气液分离技术设备进展[J].过滤与分离,2008,18(3):43-47
    [125]F. F. Krull, C. Fritzmann, T. Melin. Liquid membranes for gas/vapor separetion[J]. Jourinal of Membrance Science[J],2008,325:509-519
    [126]熊伟.叶轮式除雾器气液分离过程的数值模拟[D].武汉:武汉科技大学,2007
    [127]王中海,罗小苟,刘亮等.新型分离技术的应用级研究现状[J].矿业快报,2007,(461):27-30
    [128]余美琼.液膜分离技术[J].化工过程与装备,2007,(5):57-62
    [129]Miyoshi T, Itoh M,Akiyama S,et al.. Porous and cellular materials for structural application[J]. MRS Symp Proc,1998,521:133
    [130]John Banhart. Manufacture, characterization and application of cellular metals and metal foams[J]. Mater Sci Proc,2001,46:582
    [131]Hartmann M, Singer R. F. Metallschaume. In Proc.Symp. Metallschaume (edited Banhart [J], Bremen, Germany,1997,39
    [132]汤慧萍,谈萍,系正平等.烧结金属多孔材料研究进展[J].稀有金属材料与工程,2006,35:428-431
    [133]梁永仁等.金属多孔材料应用及制备的研究进展[J].金属材料与工程,2006,35:30-33
    [134]余培良.烧结金属过滤材料的生产现状[C].全国粉末冶金学术会议论文集,中南大学出版社,2003
    [135]Kammer C. I:Metallschaume. Aluminiumzentrale Dusseldorf[C].Germany,1998
    [136]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997
    [137]宝鸡有色金属所.粉末冶金多孔材料[M],北京,1997
    [138]J贝尔著, 李竞生,陈崇希译.多孔介质流体动力学[M].中国建筑工业出版社,1983
    [139]Yu B.M., Lee L.J.. A Simplified In-plane permeability model for textile fabrics[J]. Polymer Composites Polymer.21(5),2000:660-685
    [140]Ahn K.J., SEFERIS J.C.. Simultaneous Measurements of Permeability and CapillaryPressure of Thermosetting Matrices in Woven Fabric Reinforcements [J]. Polymer Compo. (12),1991:146-152
    [141]Gauvin R., Trochu F., Lemenn Y., Diallo L., Permeability measurement and flowsimulation through fiber reinforcement[J]. Polymer Composites.17,1996,34-42
    [142]Masalmeh S.K.. The effect of wettability heterogeneity on capillary pressure andrelative permeability [J]. J. of Petroleum Sci. and Eng.39,2003:399-408
    [143]Behzad. Ataie-Ashtiani. "Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships"[J]. Journal of Contaminant Hydrology,56,2002.175-192.
    [144]Yu B.M., Cheng P., A fractal model for permeability of bi-dispersed porous media[J]. Int.J. of Heat and Mass Transfer.2002.45,2983-2993.
    [145]彭晓峰,贾力,流速汽-水换热器[P].中国,02130914.0,2004
    [146]彭晓峰,贾力,郑治石.等流速汽-液换热器[P].中国台湾,188060,2003
    [147]彭晓峰,吴迪,陆规等.分液式空气冷凝器[P].中国,200610113304,2006
    [148]陈二雄,陈颖,陈雪清.分液冷凝器的管程理论设计及热力性能评价[J].制冷学报,2012,33(6):19-25
    [149]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003
    [150]Cavallini. In-tube Condensation Performance of Refrigerants[C].11th International Refrigeration and Air Conditioning Conference, Purdue,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700