用户名: 密码: 验证码:
新型金属氧化物纳米材料的制备及其脱除水中典型有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济和社会的发展,环境污染日益严重。目前,水污染已被称作“世界头号杀手”,引发了一系列负面效应。据报道,有机污染物是水体污染中最主要的污染物。染料废水是目前导致水体污染的最重要的污染源之一,其不仅引发视觉污染,还直接导致有机生物体中毒、影响水生生物生存,而且可经过生物积聚作用进入人体、最终影响人类健康。五氯酚(PCP)作为一种典型的有毒、难降解有机化合物,既是优先污染物,也是持久性有机污染物。因此,对这两种典型的水体有机污染物进行有效的处理,对于保护环境、维持生态平衡、实现可持续发展具有非常重大的意义。
     近几年的研究表明,处理水体中有机污染物的研究方法重点围绕着吸附法和光催化氧化技术,这两种方法分别作为物理脱除法和化学降解法而得到广泛的关注和研究。然而,这两种方法均存在一些问题需要解决。
     吸附法目前面临的一些挑战主要有:吸附剂分散性差、吸附容量较小、回收困难,甚至造成二次污染;对吸附脱除水中污染物的吸附机理尚缺系统研究;关于吸附法脱除水中重金属污染的研究比较多,而针对于水中有机污染物的处理则开展较少。因此,围绕着分散性好、吸附速率快、吸附效果好、且回收容易的吸附剂的研究和开发是目前吸附研究领域的重要方向。
     另一方面,光催化氧化技术也存在很多发展空间,例如:目前被广泛使用的光催化剂如TiO_2等只能吸收紫外线,且大多数光催化剂都是以纳米颗粒组成的粉体为主,在使用过程中回收困难。因此,开发具有可见光响应型的新型金属氧化物纳米催化剂非常必要;通过改变催化剂的形貌或物理性质使得其能被有利于回收也值得思考。
     针对以上问题,本课题在总结现有文献的基础上,制备了几种新型金属氧化物纳米材料,表征了各纳米材料的物理、化学性质,并应用物理吸附法和光催化氧化法脱除水中典型的有机污染物——亚甲基蓝(MB)染料和五氯酚(PCP)。本论文以实验研究为主,结合理论探讨,主要开展了以下几个方面的研究工作:
     1.采用溶胶-凝胶法结合静电纺丝技术合成了具有层状结构的赤铁矿(α-Fe_2O_3)纳米结构纤维,表征测试了其物理、化学结构,分析了层状结构的可能形成机理,考察了其在紫外光下催化降解亚甲基蓝(MB)水溶液的催化性能。对于初始浓度为10mg/L、初始pH为5.3的MB溶液,加入50mg/L的α-Fe_2O_3纤维后可在紫外光下催化降解MB高达99.2%,比直接光照的降解效率提高了40.2%,且明显优于自制的α-Fe_2O_3纳米粉体(降解效率为88.2%)及商业Fe_2O_3粉末(降解效率为80.5%)。同时,考察了各种实验条件(如MB溶液的初始pH、MB溶液的初始浓度、无机阴离子、光照强度等)对降解效果的影响,从UV-vis图谱和α-Fe_2O_3能带结构两个角度分析了α-Fe_2O_3纤维降解MB的机理。
     2.采用溶胶-凝胶结合静电纺丝技术制备了具有三维蠕虫状介孔结构的Ce掺杂TiO_2/SiO_2复合纳米结构纤维,采用TG、FT-IR、XRD、SEM、TEM及UV-VisDRS等手段对其进行了表征,探讨了其在模拟太阳光下催化降解MB水溶液的光催化性能。在最佳催化条件下,即Ce掺杂量为0.2%、纤维投加量为100mg/L、pH=11时,初始浓度为2.5mg/L的MB溶液在模拟太阳光下照射120min后,其光催化降解效率可达92.6%;无机阴离子NO3-、SO42-、Cl-的存在对MB的光催化降解效率均具有抑制作用。重复利用实验表明该催化剂具有良好的光催化稳定性。通过H_2O_2和叔丁醇的影响研究,结合掺杂理论及相关参考文献,分析和探讨了Ce-TiO_2/SiO_2纤维光催化降解MB的机理。
     3.利用溶剂热法制备了壳聚糖修饰的四氧化三铁(Fe_3O_4/CS)单分散磁性纳米绒球,且对其进行了结构和性能测试。比较了Fe_3O_4/CS与Fe_3O_4分别作为吸附剂、吸附脱除水中五氯酚(PCP)的效果,表明Fe_3O_4/CS吸附脱除PCP的优越性:吸附过程在30min内迅速实现了吸附平衡,PCP的脱除量高达91.5%。影响因素研究指出:Fe_3O_4/CS的最佳投加量为2.8g/L;当pH=6.5时PCP的吸附量最高;盐度对PCP的脱除影响不大。吸附等温线、吸附热力学和吸附动力学研究表明:Fe_3O_4/CS吸附脱除PCP的吸附过程是自发放热过程,遵循Langmuir吸附模型和Lagergren二级动力学方程。机理研究表明:Fe_3O_4/CS吸附脱除PCP的吸附过程很复杂,其吸附机理源于静电力、氢键和π-π键的共同作用,且这些作用力的相对强弱取决于实验条件。
     4.采用高效、节能的微波-水热法合成了Ag_2CrO_4纳米结构粉体。通过XRD、SEM及UV-Vis DRS等手段表征了样品的形貌和性质。通过比较不同水热pH条件下制备的Ag_2CrO_4对PCP的光催化降解效果,得出:于原始pH(即pH=9.5)条件下制备的Ag_2CrO_4在可见光下对PCP具有卓越的光催化降解活性,反应60min后PCP已经发生分解(直接光照对PCP几乎没有产生任何影响,P25在相同时间内对PCP的光催化降解效率仅为17.7%)。同时,在反应60min后TOC的降解效率达68.6%;当催化反应进行到300min的时候,TOC的降解效率高达98.2%,说明此时PCP分子已经基本实现完全矿化。优化实验条件结果表明:Ag_2CrO_4的最佳投加量为0.75g/L;PCP的降解效率随PCP初始浓度的增加而下降,随溶液初始pH的增加而降低。催化剂的重复利用实验表明Ag_2CrO_4具有良好的光催化稳定性。机理研究指出: OH和O_2是参与光催化反应的主要活性物种,Ag_2CrO_4特有的晶体结构和电子结构有利于其吸收更多可见光,从而有利于发挥高效的光催化反应活性。
With the development of the global society and economy, the environmentalpollution becomes more and more serious. Today, water pollution has become theNO.1killer to the world, causing many negative effects. According to the previousreports, the organic pollutants are the most important pollutants in the waterpollution. As a typical organic contaminant, textile dyes and other industrialdyestuffs are not only aesthetically unpleasant, but are also toxic to some organisms.And it also affects the human health by bio-accumulation. Pentachlorophenol (PCP)and sodium pentachlorophenate (PCP-Na), the most toxic representatives amongchlorophenols, have attracted great attention worldwide and have been listed aspriority pollutants by the U.S. Environmental Protection Agency owning to theirtoxicity, mutagenicity, carcinogenicity, bioaccumulation and endocrine disturbingeffect. Thus, it is urgent to to remove the dye and PCP from water, and it is of greatsignificance for protecting the environment, maintaining the ecological balance, andkeeping the sustainable development.
     Recently, for treating the organic pollutants in water, many studies have focusedon the adsorption and photocatalytic technology. The adsorption and photocatalysisare the main routes for the removal of such compounds, which have attracted muchattention. However, there are some problems to be solved.
     For the adsorption method, the dispersion and the adsorption capacity of theadsorbents are challenging. The recovery difficulty and long time required foradsorption equilibriums limit their practical applications. And the use of relativelyexpensive adsorbents such as activated carbons may pose a serious problem from theeconomic standpoint. Moreover, the adsorption mechanism is not yet available forremoving contaminants from water system. Furthermore, the adsorption method ismostly used to treat the heavy metal pollution, rather than the organic pollutants inwater.
     On the other hand, for the photocatalytic technology, titanium dioxide (TiO_2) has been extensively studied as an effective photocatalyst for widespread application.However, there are several disadvantages in using TiO_2to purify wastewater. Firstly,the wide band of TiO_2(3.2eV) inhibits the utilization of solar energy in thephotocatalytic process. Secondly, the fixation and recovery of nanometer-sizedphotocatalysts are very difficult and tortuous. Therefore, novel materials with narrowband gap should be studied extensively to develop efficient visible-light-activephotocatalysts. For help recovering, it is also worthy to modify the morphologies orphysical properties of the photocatalysts.
     In our study, several nanometer-sized metal oxides were prepared and werecharacterized by various ways. Many experiments were carried out to remove themethylene blue (MB) and PCP in water. This dissertation mainly contains foursections as follow.
     1. The a-Fe_2O_3fibers have been prepared by electrospinning the correspondingsol-gel precursor. The characteristics of the fibers were investigated, andexperiments were conducted to study the formation mechanism of hierarchicalstructures. Photocatalytic degradation of MB in water was carried out underultraviolet (UV) light, showing that the fibers had better efficiency for removing MBthan other catalysts. Only59%of the degradation efficiency was observed after60min of continuous UV light irradiation without catalyst. However, in the presence ofa-Fe_2O_3fibers with the same UV light irradiation,99.2%of the dye was degraded,showing the excellent photocatalytic activity of a-Fe_2O_3fibers under UV irradiation.For comparison, the degradation efficiencies of the self-prepared a-Fe_2O_3nanoparticles and commercial Fe_2O_3powder were88.2%and80.5%respectively.Moreover, several process parameters have also been studied, which showed that theremoval of MB was influenced by the process parameters, such as the initial dyeconcentration, catalyst amounts, inorganic anions, UV intensity and so on. Finally,the mechanism of the photocatalysis process was analysed based on the UV-visspectra of MB and the energy band of a-Fe_2O_3.
     2. Cerium-doped SiO_2/TiO_2nanostructured fibers were prepared by a facilesol-gel and electrospinning technology. The fibers, with worm-like mesoporousstructure, were as long as several centimeters with diameters of0.4-1.0μm. The fibers were evaluated as efficient photocatalysts to degrade MB aqueous solutionunder simulated sunlight irradiation. In the absence of photocatalysts, thephotodegradation efficiency of MB was38.04%. The removed MB with P25, pureTiO_2/SiO_2fibers,0.2%Ce-doped TiO_2fibers and0.2%Ce-doped TiO_2/SiO_2fibersunder irradiation for2h were62.18%,64.44%,38.06%and80.16%respectively.The0.2%Ce doping is proved to be the optimal concentration for the doping ofTiO_2/SiO_2, the highest photodegradation efficiency of which is92.6%. Severaloperative conditions were studied for their further practical application. Thephotodegradation efficiency decreased with the increase in dye concentration. Theoptimal solution pH was found to be equal to11. Negative ions (NO3-, SO42-and Cl-)showed inhibiting effects in MB degradation. The fibers can be easily recycled andtheir photocatalytic activity had good stability. Furthermore, electron acceptors andradical scavengers were used to study the mechanism of the photocatalytic process.We expect the as-prepared fibers to be utilized as promising photocatalysts in the dyeeffluents treatment and other wastewater treatment.
     3. Novel monodisperse magnetic pompon-like magnetite/chitosan (Fe_3O_4/CS)composite nanoparticles were successfully synthesized by a solvent-thermal method.The prepared Fe_3O_4/CS was used to remove PCP from aqueous solution. Themagnetic adsorbents can be well dispersed in the aqueous solution and be easilyseparated from the solution with a magnet after adsorption. The adsorptionequilibrium was achieved quite rapidly (within30min) and the prominent removal ofPCP (91.5%) was obtained at25℃and pH6.5. The PCP removal was stronglypH-dependent, and low concentration of NaCl hardly affected the adsorption. Thenegative values of ΔG and ΔH showed that the adsorption was a spontaneous andexothermic process. The adsorption process follows Langmuir isotherm andpseudo-second-order kinetics model. The adsorption mechanism can be summarizedas complex with electrostatic attraction, hydrogen bonding and π-π interactions. It isexpected that this new monodisperse magnetic Fe_3O_4/CS has great potential forremoval of contaminants from aqueous media.
     4. Novel visible-light-induced Ag_2CrO_4photocatalysts were successfullysynthesized via a facile and energy-efficient microwave-hydrothermal (MH) method. The photocatalysts prepared at different pH display diverse crystal structures andmorphologies. The Ag_2CrO_4samples prepared at natural conditions (pH=9.5) had thestrongest absorption in the visible light region and had obviously enhancedphotocatalytic activity in PCP-Na degradation. Moreover, the TOC reductiondemonstrated the mineralization of PCP-Na over Ag_2CrO_4photocatalysts. Severalprocess parameters have also been studied, showing that the removal of PCP wasinfluenced by the process parameters, such as the initial concentration, the initial pH,catalyst amounts, and so on. In addition, the possible photocatalytic mechanism wasproposed based on the energy band positions of the Ag_2CrO_4and the effects ofradical scavengers.
引文
[1] Keith L H, Telliard W A.ES&T special report: priority pollutants.I.A perspectiveview.Environ Sci Technol,1979,13:416-423
    [2]董玉瑛.水体中典型有机污染物的分析和生态效应研究:[博士学位论文].江苏:南京大学,2000
    [3]金相灿.中国湖泊环境.北京:海洋出版社,1995.303-323
    [4]程云,周启星,马奇英,等.染料废水处理技术的研究与进展.环境污染治理技术与设备,2003,3(6):56-60
    [5]薛方亮,张雁秋.染料废水处理技术最新研究进展.水科学与工程技,2007,2:26-29
    [6] Cluas H,Faber G,Konig H.Redox-mediated decolorization of synthetic dyes by fungallaccases.Appl Microbiol Biotechnol,2002,59:672-678
    [7]周琪,赵由才.染料对人体健康和生态环境的危害.环境与健康杂志,2005,22(3):229-231
    [8]胥维昌.染料行业废水处理现状和展望.染料工业,2002,39(6):35-39
    [9] Al-Degs Y,Khraisheh M A M,Allen S J,et al.Sorption behavior of cationic and anionic dyesfrom aqueous solution on different types of activated carbon.Sep Sci Technol,2001,36(1):91-102
    [10]张小漩,叶李艺,沙勇,等.活性炭吸附法处理染料废水.厦门大学学报(自然科学版),2005,44(4):542-545
    [11]占新民,王建龙,吴立波,等.沉淀-树脂吸附法处理对氨基偶氮苯盐酸盐生产废水的研究,环境工程,1998,16(3):7-10
    [12]沈丽娜,完颜华,廖志成.海绵铁对印染废水脱色研究.环境科学与技术,2004,27(6):18-20
    [13]龚兵丽.吸附光催化联合处理亚甲基蓝的研究:[硕士学位论文].上海:华东师范大学,2009
    [14] Garg V K,Amita M,Kumar R,et al.Basic dye(methylene blue)removal from simulatedwastewater by adsorption using Indian Rosewood sawdust: a timber industry waste.DyesPigments,2004,63:243-250
    [15] Ho Y S,McKay G.Sorption of dyes and copper ions onto biosorbents.Process Biochem,2003,38(7):1047-1061
    [16] Ho Y S,Chiu W T,Wang C C.Regression analysis for the sorption isotherms of basic dyeson sugarcane dust.Bioresour Technol,2005,96(11):1285-1291
    [17] Frank P,Villaverde S.Combined anaerobic-aerobic treatment of azo dyes-A short review ofbioreactor studies.Water Res,2005,39(8):1425-1440
    [18] Frijters C T M J,Vos R H,Scheffer G,et al.厌氧-好氧法处理漂白和染色废水.印染,2005,2:47-51
    [19]洪俊明,洪华生.厌氧-好氧MBR组合工艺处理蒽醌活性染料废水.中国给水排水,2008,24(1):51-53
    [20] Sponza D T,Isik M.Decolorization and azo dye degradation by anaerobic/aerobicsequential process.Enzyme Microb Technol,2002,31(1-2):102-110
    [21]董振海,青维昌.光催化降解染料废水的研究现状及展望.染料与染色,2003,40(3):175-178
    [22] Han F,Kambala V S R,Srinivasan M,et al.Tailored titanium dioxide photocatalysts forthe degradation of organic dyes in wastewater treatment:A review.Appl Catal A-Gen,2009,359(1-2):25-40
    [23] Aguedach A,Brosillon S,Morvan J,et al.Photocatalytic degradation of azo-dyes reactiveblack5and reactive yellow145in water over a newly deposited titanium dioxide.ApplCatal B-Environ,2005,57:55-62
    [24] Daneshvar N,Salari D,Khataee A R.Photocatalytic degradation of azo dye acid red14inwater:investigation of the effect of operational parameters.J Photochem Photobiol A,2003,157:111-116
    [25]党丽萍,赵彬侠,孙圆媛.二氧化钛复合光催化剂降解染料废水的性能.化工进展,2011,30:359-361
    [26] Mills A,Hill G,Bhopal S,et al.Thick titanium dioxide films for semiconductorphotocatalysis.J Photochem Photobiol A,2003,160(3):185-194
    [27] Chen L J,Tian J T,Qiu H,et al.Preparation of TiO2nanofilm via sol-gel process and itsphotocatalytic activity for degradation of methyl orange.Ceram Int,2009,35(8):3275-3280
    [28] Muir J,Eduljee G.PCP in the freshwater and marine environment of the EuropeanUnion.Sci Total Environ,1999,236:41-56
    [29] Jorens P G,Schepens P J C.Human pentachlorophenol poisoning.Hum Exp Toxicol,1993,12(6):479-495
    [30]杨淑贞,韩晓冬,陈伟.五氯酚对生物体的毒性研究进展.环境与健康杂志,2005,22(5):396-398
    [31] Agency for toxic substances and disease registry.ToxFAQsTMforpentaehlomPhenol.http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=401&tid=70
    [32] Harnly M E,Petreas M X,Flattery J,et al.Polychlorinated dibenzo-p-dioxin andpolychlorinated dibenzofuran contamination in soil and home-produced chicken eggs nearpentachlorophenol sources.Environ Sci Technol,2000,34:1143-1149
    [33]陈金龙,许昭怡,赵玉明,等.树脂吸附法处理五氯酚钠生产废水.离子交换与吸附,1996,12(2):129-135
    [34]曾普,李梦耀,潘珺,等.D311A树脂吸附五氯苯酚钠的研究.应用化工,2008,37(1):86-89
    [35]张庆云,张静,杨秀云,等.几种吸附树脂对五氯酚钠吸附性能的研究.离子交换与吸附,2001,17(5):357-362
    [36] Jung M W,Ahn K H,Lee Y,et al.Adsorption characteristics of phenol and chlorophenolson granular activated carbons(GAC).Microchem J,2001,70:123-131
    [37] Leyva-Ramos R,Bernal-Jacome L A,Mendoza-Barron J,et al.Kinetic modeling ofpentachlorophenol adsorption onto granular activated carbon.J Taiwan Inst Chem E,2009,40:622-629
    [38]王琳玲,胡睿,陆晓华.活性碳纤维对水中五氯酚的吸附性能研究.环境科学与技术,2008,31(10):19-25
    [39] Diaz-Flores P E, Leyva-Ramos R, Guerrero-Coronado R M, et al.Adsorption ofPentachlorophenol from Aqueous Solution onto Activated Carbon Fiber.Ind Eng Chem Res2006,45:330-336
    [40] Domínguez-Vargas J R,Navarro-Rodríguez J A,Jesús Beltrán de Heredia,et al.Removalof chlorophenols in aqueous solution by carbon black low-cost adsorbents.Equilibriumstudy and influence of operation conditions.J Hazard Mater,2009,169:302-308
    [41] Stapleton M G,Sparks D L,Dentel S K.Sorption of pentachlorophenol to HDTMA-Clay asa function of ionic strength and pH.Environ Sci Technol,1994,28:2330-2335
    [42]池伟林,李伟,胡荣,等.壳聚糖/壳聚糖季铵盐共混微球吸附五氯酚钠.孝感学院学报,2008,28(3):38-41
    [43] Marouf-Khelifa K,Khelifa A,Belhakem A,et al.The adsorption of pentachlorophenol fromaqueous solutions onto exchanged Al-MCM-41materials.Adsorpt Sci Technol,2004,22(1):1-12
    [44]方继敏,李山虎,龚文琪,等.赤铁矿对五氯苯酚的吸附特性及机理研究.武汉理工大学学报,2008,30(9):57-60
    [45]吴大清,刁桂仪,袁鹏,等.氧化铁矿物对五氯苯酚表面吸附实验及其反应模式.地球化学,2005,34(3):297-302
    [46] Zheng S,Yang Z,Jo D H,et al.Removal of chlorophenols from groundwater by chitosansorption.Water Res,2004,38:2315-2322
    [47]薛建良,李金春子,刘广民.UASB系统不同高度层污泥降解五氯酚能力研究.环境工程学报,2011,5(6):1289-1293
    [48]李小明,杨朝晖,李海英,等.固定化厌氧微生物处理含五氯酚废水.湖南大学学报,2001,28(2):95-100
    [49] Majumder P S,Gupta S K.Removal of chlorophenols in sequential anaerobic-aerobicreactors.Bioresour Technol,2007,98:118-129
    [50]郝丽芳,周岳溪,张寒霜.厌氧颗粒污泥对五氯酚(PCP)的吸附、解吸及生物降解.中国环境科学,1999,19(1):5-8
    [51] Atuanya E I,Purohit H J,Chakrabarti T.Anaerobic and aerobic biodegradation ofchlorophenols using UASB and ASG bioreactors.World J Microbiol Biotechnol,2000,16:95-98
    [52] Hu Z C, Korus R A, Levinson W E, et al.Adsorption and biodegradation ofpentachlorophenol by polyurethane-immobilized Flavobacterium.Environ Sci Technol,1994,28:491-496
    [53]刘和,李光伟,云娇,等.好氧颗粒污泥和活性污泥细菌种群结构对五氯酚污染的响应研究.环境科学学报,2006,26(9):1445-1450
    [54] Liu X W,He R,Shen D S.Studies on the toxic effects of pentachlorophenol on thebiological activity of anaerobic granular sludge.J Environ Manage,2008,88(4):939-946
    [55] Arnold W A,Roberts A L.Pathways and kinetics of chlorinated ethylene and chlorinatedacetylene reaction with Fe0particles.Environ Sci Technol,2000,34:1794-1805
    [56] Kim Y H,Carraway E R.Dechlorination of pentachlorophenol by zero valent iron andmodified zero valent irons.Environ Sci Technol,2000,34:2014-2017
    [57]戴友芝,吴兰艳,田凯勋,等.超声波/零价铁体系降解五氯酚的机理.环境科学学报,2008,28(2):331-336
    [58] Zhang W,Quan X,Wang J,et al.Rapid and complete dechlorination of PCP in aqueoussolution using Ni-Fe nanoparticles under assistance of ultrasound.Chemosphere,2006,65:58-64
    [59] Jou C J.Degradation of pentachlorophenol with zero-valence iron coupled with microwaveenergy.J Hazard Mater,2008,152:699-702
    [60]赵玲,彭平.安二氧化锰氧化降解五氯酚的动力学模拟研究.环境科学,2008,29(4):972-977
    [61] Fukushima M,Tatsumi K.Degradation pathways of pentachlorophenol by photo-fentonsystems in the presence of iron(III),humic acid,and hydrogen peroxide.Environ SciTechnol,2001,35:1771-1778
    [62]周琳琳,孟长功,周硼.臭氧氧化-光催化降解水中的五氯酚.石油化工,2007,36(7):739-743
    [63] Yang S,Fu H,Suna C,et al.Rapid photocatalytic destruction of pentachlorophenol inF-Si-comodified TiO2suspensions under microwave irradiation.J Hazard Mater,2009,161:1281-1287
    [64] Xi B D,Liu H L.Photocatalytic degradation of PCP-Na with TiO2photocatalysis loadedwith platinum.J Environ Sci-China,2002,14:428-432
    [65] Liu J,Han R,Zhao Y,et al.Enhanced photoactivity of V-N codoped TiO2derived from atwo-step hydrothermal procedure for the degradation of PCP-Na under visible lightirradiation.J Phys Chem C,2011,115:4507–4515
    [66]席北斗,刘纯新,孔欣,等.负载型催化剂光催化氧化五氯苯酚钠的效果.环境科学,2001,22(1):41-44
    [67] Guo Y,Quan X,Lu N,et al.High photocatalytic capability of self-assembled nanoporousWO3with preferential orientation of(002)planes.Environ Sci Technol,2007,41:4422-4427
    [68] Chang X,Ji G,Sui Q,et al.Rapid photocatalytic degradation of PCP-Na over NaBiO3driven by visible light irradiation.J Hazard Mater,2009,166(2-3):728-733
    [69] Chang X,Huang J,Tan Q,et al.Photocatalytic degradation of PCP-Na over BiOInanosheets under simulated sunlight irradiation.Catal Commun,2009,10:1957-1961
    [70] L Yin,J Niu,Z Shen,et al.Mechanism of reductive decomposition of pentachlorophenol byTi-Doped-Bi2O3under visible light irradiation.Environ Sci Technol,2010,44:5581-5586
    [71]刘新征.硫化物纳米和微晶材料的溶剂热合成及其机理研究:[博士学位论文].合肥:中国科技大学,2006
    [72]尉国栋.微波辅助法合成碳化硅一维纳米材料及其性质的研究:[博士学位论文].长春:吉林大学,2009
    [73] Formhals A.Process and apparatus for preparing artificial threads.US Patent,1975,504:1934
    [74] Wu H,Pan W.Preparation of zinc oxide nanofibers by electrospinning.J Am Ceram Soc,2006,89:699-701
    [75] Zhan S H,Chen D R,Jiao X L,et al.Long TiO2hollow fibers with mesoporouswalls:sol-gel combined electrospun fabrication and photocatalytic properties.J Phys ChemB,2006,110:11199-11204
    [76] Jaworek A, Krupa A, Lackowski M, et al.Nanocomposite fabric formation byelectrospinning and electrospraying technologies.J Electrost,2009,67:435-438
    [77] Formo E,Lee E,Campbell D,et al.Functionalization of electrospun TiO2nanofibers withPt nanoparticles and nanowires for catalytic applications.Nano Lett,2008,8:668-672
    [78] Zhan S H,Yang J Y,Liu Y,et al.Mesoporous Fe2O3-doped TiO2nanostructured fibers withhigher photocatalytic activity.J Colloid Interface Sci,2011,355:328-333
    [79]施尔畏.水热法的应用与发展.无机化学学报,1996,11(2):193-206
    [80]张庆军.水热与微波水热法合成形貌可控纳米氧化钨粉体:[硕士学位论文].乌鲁木齐:新疆大学,2008
    [81]候荣.钴铁氧体磁性空心球的可控制备及应用研究:[硕士学位论文].北京:北京化工大学,2009
    [82] Yu J G,Xiong J F,Cheng B,et al.Hydrothermal preparation and visible-light photocatalyticactivity of Bi2WO6powders.J Solid State Chem,2005,178:1968-1972
    [83] Li X,Zang J L.Facile hydrothermal synthesis of sodium tantalate(NaTaO3)nanocubes andhigh photocatalytic properties.J Phys Chem C,2009,113:19411-19418
    [84] Ye M M,Chen Z L,Wang W S,et al.Hydrothermal synthesis of TiO2hollow microspheresfor the photocatalytic degradation of4-chloronitrobenzene.J Hazard Mater,2010,184:612-619
    [85] Baghurst D R, Cgippirdate A M. Microwave syntheses for super conductingceramics.Nature,1988,33:33-39
    [86] Komarneni S, Katsuki H.Nanophase materials by a novel microwavehydrothermalprocess.Pure Appl Chem,2002,74(9):1537-1543
    [87] Sczancoski J C,Cavalcante L S,Joya M R,et al.SrMoO4powders processed inmicrowave-hydrothermal:Synthesis,characterization and optical properties.Chem Eng J,2008,140(1-3):632-637
    [88] Zhang W,Li D,Sun M,et al.Microwave hydrothermal synthesis and photocatalytic activityof AgIn5S8for the degradation of dye.J Solid State Chem,2010,183(10):2466-2474
    [89] Komarneni S.Nanophase materials by hydrothermal, microwavehydrothermal andmicrowave-solvothermal methods.Curr Sci,2003(85):1730-1734
    [90]储金宇.可见光光催化剂制备、表征及光催化效果研究:[博士学位论文].江苏:江苏大学,2011
    [91] Wang D,Tang J,Zou Z,et al.Photophysical and photocatalytic properties of a new seriesof visible-light-driven photocatalysts M3V2O8(M=Mg,Ni,Zn).Chem Mater,2005,17(20):5177-5182
    [92]骆凡.铝酸盐尖晶石的制备及光催化性能研究:[硕士学位论文].福建:华侨大学,2007
    [93] Lv W,Liu B,Qiu Q,et al.Synthesis,characterization and photocatalytic properties of spinelCuAl2O4nanoparticles by a sonochemical method.J Alloy Compd,2009,479:480-483
    [94] Zhang L,Fu H,Zhang C,et al.Synthesis,characterization,and photocatalytic propertiesof InVO4nanoparticles.J Solid State Chem,2006,179(3):804-811
    [95] Yu J Q,Kudo A.Effects of struetural variation on the photocatalytic Performance ofhydrothermally synthesized BIVO4.Adv Funct Mater,2006,16(16):2163-2169
    [96] Wang C,Zhang H,Li F,et al.Degradation and mineralization of bisphenol A bymesoporous Bi2WO6under simulated solar light irradiation.Environ Sci Technol,2010,44:6843-6848
    [97]曹枫,唐培松,陈海锋,等.溶胶-凝胶法制备铁酸铋及其可见光催化性能.稀有金属材料与工程,2010,39(2):422-425
    [98] Bulte J W M,Douglas T,Witwer B,et al.Magnetodendrimers allow endosomal magneticlabeling and in vivo tracking of stem cells.Nat Biotechnol,2001,19:1141-1147
    [99] Nam J M,Thaxton C S,Mirkin C A.Nanoparticle-based bio-bar codes for the ultrasensitivedetection of proteins.Science,2003,301:1884-1886
    [100] Tanaka T,Matsunaga T.Fully automated chemiluminescence immunoassay of insulin usingantibody-protein a-bacterial magnetic particle complexes.Anal Chem,2000,72:3518-3522
    [101] Hu J,Chen G,Lo I M C.Removal and recovery of C(rVI)from wastewater by maghemitenanoparticles.Water Res,2005,39:4528-4536
    [102]刘桂秋,唐永利,张鹤飞.尖晶石型铁锰氧化物吸附水体中As的特性研究.中国给水排水,2010,26(21):137-140
    [103] Ngomsik A F,Bee A,Draye M,et al.Magnetic nano-and microparticles for metal removaland environmental applications:a review.C R Chimie,2005,8:963-970
    [104] Liu J F,Zhao Z S,Jiang G B.Coating Fe3O4magnetic nanoparticles with humic acid forhigh efficient removal of heavy metals in water.Environ Sci Technol,2008,42:6949-6954
    [105]黄阳,冯启明,董发勤,等.CuFe2O4/海泡石磁性吸附剂的制备及性能.功能材料,2011,4(42):760-76
    [106] Eggleston C M.The surface structure of alpha-Fe2O3(001)by scanning tunnelingmicroscopy;implications for interfacial electron transfer reactions.Am Miner,1999,84(7-8):1061-1070
    [107] Li L L,Chu Y,Liu Y,et al.Template-free synthesis and photocatalytic properties of novelFe2O3hollow spheres.J Phys Chem C,2007,111(5):2123-2127
    [108] Wu C Z,Yin P,Zhu X,et al.Synthesis of hematite(α-Fe2O3)nanorods: diameter-sizeand shape effects on their applications in magnetism,lithium ion battery,and gas sensors.JPhys Chem B,2006,110(36):17806-17812
    [109] Hu X, Yu J C, Gong J.Fast production of self-assembled hierarchicalα-Fe2O3Nanoarchitectures.J Phys Chem C,2007,111(30):11180-11185
    [110] Xu Y Y,Rui X F,Fu Y Y,et al.Magnetic properties of [alpha]-Fe2O3nanowires.ChemPhys Lett,2005,410(1-3):36-38
    [111] Xiong Y,Li Z,Li X,et al.Thermally stable hematite hollow nanowires.Inorg Chem,2004,43(21):6540-6542
    [112] Jayasinghe S N,Sullivan A C.Electrohydrodynamic atomization: an approach to growingcontinuous self-supporting polymeric fibers.J Phys Chem B,2006,110:2522-2528
    [113] Dzenis Y.Spinning continuous fibers for nanotechnology.Science,2004,304:1917-1919
    [114] Bognitzki M,Czado W,Frese T,et al.Nanostructured fibers via electrospinning.AdvMater,2001,13:70-72
    [115]展思辉.具有多级结构的功能性氧化物纳米纤维的制备和表征:[博士学位论文].山东:山东大学,2007
    [116] Chen D H,Chen D R,Jiao X L,et al.Hollow-structured hematite particles derived fromlayered iron (hydro) oxyhydroxide-surfactant composites.J Mater Chem,2003,13:2266-2270
    [117] Li X,Yu X,He J H,et al.Controllable fabrication,growth mechanisms,and photocatalyticproperties of hematite hollow spindles.J Phys Chem C,2009,113:2837-2845
    [118] Kisch H,Sakthivel S,Janczarek M,et al.A low-band gap, nitrogen-modified titaniavisible-light photocatalyst.J Phys Chem C,2007,111:11445-11449
    [119] Liu H M,Imanishi A,Nakato Y.Mechanisms for photooxidation reactions of water andorganic compounds on carbon-doped tyitanium dioxide, as studied by photocurrentmeasurements.J Phys Chem C,2007,111:8603-8610
    [120] Yu J C,Ho W K,Yu J G,et al.Efficient visible-light-induced photocatalytic disinfectionon sulfur-doped nanocrystalline titania.Environ Sci Technol,2005,39:1175-1179
    [121] Hattori A,Tada H.High photocatalytic activity of F-doped TiO2film on glass.J Sol-GelSci Technol,2001,22:47-52
    [122] Hong X T,Wang Z P,Cai W M,et al.Visible-light-activated nanoparticle photocatalystof iodine-doped titanium dioxide.Chem Mater,2005,17:1548-1552
    [123] Gong C R,Chen D R,Jiao X L,et al.Continuous hollow α-Fe2O3and α-Fe fibers preparedby the sol–gel method.J Mater Chem,2002,12:1844-1847
    [124] Aizawa M,Nakagawa Y,Nosaka Y,et al.Preparation of hollow TiO2fibers.J Non-CrystSolids,1990,124(1):112-115
    [125] Erdemo lu S,Aksu SK,Say lkan F,et al.Photocatalytic degradation of congo red byhydrothermally synthesized nanocrystalline TiO2and identification of degradation productsby LC-MS.J Hazard Mater,2008,155:469-476
    [126] Neppolian B,Choi H C,Sakthivel S,et al.Solar light induced and TiO2assisteddegradation of textile dye reactive blue4.Chemosphere,2002,46:1173-1181
    [127] Walling C.Fenton's reagent revisited.Accounts Chem Res,1975,8(4):125-131
    [128] Liu C C,Hsieh Y H,Lai P F,et al.Photodegradation treatment of azo dye wastewater byUV/TiO2process.Dyes Pigments,2006,68:191-195
    [129] Garcell L,Morales M P.Interfacial and rheological characteristics of maghemite aqueoussuspensions.J Colloid Interface Sci,1998,205:470-475
    [130] Pan Z,Somasundaran P,Turro N J,et al.Interactions of cationic dendrimers with hematitemineral.Colloid Surf A,2004,238:123-126
    [131] Abdullah M,Low G K C,Matthews R W.Effects of common inorganic anions on rates ofphotocatalytic oxidation of organic carbon over illuminated titanium dioxide.J Phys Chem,1990,94:6820-6825
    [132] Chang J S,Kuo T S.Kinetics of bacterial decolorization of azo dye with Escherichia coliNO3.Bioresour Technol,2000,75(2):107-111
    [133] Zepp R G,Holgnd J,Bader H,et al.Nitrate-induced photooxidation of trace organicchemicals in water.Environ Sci Technol,1987,21(5):443-450
    [134] Yu Z,Chuang S S C.The effect of Pt on the photocatalytic degradation pathway ofmethylene blue over TiO2under ambient conditions.Appl Catal B-Environ,2008,83:277-285
    [135] Epling G A, Lin C.Investigation of retardation effects on the titanium dioxidephotodegradation system.Chemosphere,2002,46:937-944
    [136] Mohammad T,Morrison H.Simultaneous photoconjugation of methylene blue and cis-Rh(phen)+2Cl2to DNA via a synergistic effect.Photochem Photobiol,2000,71:369-381
    [137] Zhang T Y,Oyama T,Aoshima A,et al.Photooxidative N-demethylation of methyleneblue in aqueous TiO2dispersions under UV irradiation.J Photochem Photobiol A,2001,140:163-172
    [138] Takirawa T,Watanabe T,Honda K.Photocatalysis through excitation of adsorbates.2.Acomparative study of rhodamine B and methylene blue on cadmium sulfide.J Phys Chem,1978,82(12):1391-1396
    [139] Sharma S D,Saini K K,Kant C,et al.Photodegradation of dye pollutant under UV lightby nano-catalyst doped titania thin films.Appl Catal B-Environ,2008,84:233-240
    [140]王丽丽.纳米氧化铁、半导体量子点及其复合粒子的制备与性能研究:[博士学位论文].上海:华东师范大学,2011
    [141]王韶华.改性纳米TiO2光催化剂的制备及其去除水中染料污染物的研究:[博士学位论文].广州:华南理工大学,2010
    [142] Wang X,Zhang L,Ni Y,et al.Fast preparation,characterization,and property study ofα-Fe2O3nanoparticles via a simple solution-combusting method.J Phys Chem C,2009,113:7003-7008
    [143] Mohapatra S K,John S E,Banerjee S,et al.Water photooxidation by smooth and ultrathinα-Fe2O3nanotube arrays.Chem Mater,2009,21:3048-3055
    [144] Zheng Y,Cheng Y,Wang Y,et al.Quasicubic α-Fe2O3nanoparticles with excellentcatalytic performance.J Phys Chem B,2006,110:3093-3097
    [145] Fang Y F, Huang Y P, Liu D F, et al.Photocatalytic degradation of the dyesulfurhodamine-B:A comparative study of different light sources.J Environ Sci-China,2007,19(1):97-102
    [146] Fujishima A, Zhang X T, Tryk D A.TiO2photocatalysis and related surfacephenomena.Surf Sci Rep,2008,63(12):515-582
    [147] Mahmood T,Chen C C,Liu L L,et al.Effect of dye-metal complexation on photocatalyticdecomposition of the dyes on TiO2under visible irradiation.J Environ Sci-China,2009,21(2):263-267
    [148] Muruganandham M,Swaminathan M.Photocatalytic decolourisation and degradation ofReactive Orange4by TiO2-UV process.Dyes Pigments,2006,68(2-3):133-142
    [149] El-Sharkawy E A,Soliman A Y,Al-Amer K M.Comparative study for the removal ofmethylene blue via adsorption and photocatalytic degradation.J Colloid Interface Sci,2007,310(2):498-508
    [150] Peng T Y,Zhao D,Dai K,et al.Synthesis of titanium dioxide nanoparticles withmesoporous anatase wall and high photocatalytic activity.J Phys Chem B,2005,109(11):4947-4952
    [151] Dutoit D C M,Schmeider M,Baiker A.Titania-silica mixed oxides I.Influence of sol-geland drying conditions on structural properties.J Catal,1995,153(1):165-176
    [152] Gao X T,Wachs I E.Titania-silica as catalysts:molecular structural characteristics andphysico-chemical properties.Catal Today,1999,51(2):233-254
    [153] Huang M L,Xu C F,Wu Z B,et al.Photocatalytic discolorization of methyl orangesolution by Pt modified TiO2loaded on natural zeolite.Dyes Pigments,2008,77(2):327-334
    [154]征茂平,金燕苹,吴桢干,等.Sol-gel法制备TiO2/PVP纳米复合材料及其表征.金属学报,1999,35(11):1224-1228
    [155]许晶晶,朱平武,赵丽,等.Ag/TiO2中空纳米纤维光催化材料的制备及表征.化学学报,2011,69(5):585-590
    [156] Anderson C,Bard A J.Improved photocatalytic activity and characterization of mixedTiO2/SiO2and TiO2/Al2O3materials.J Phys Chem B,1997,101(14):2611-2616
    [157]朱振峰,张建权,李军奇,等.Ce掺杂对TiO2晶型转变的影响.功能材料,2010,2(41):214-217
    [158] Arabatzis I M,Stergiopoulou T,Bernard M C,et al.Silver-modified titanium dioxide thinfilms for efficient photodegradation of methyl orange.Appl Catal B-Environ,2003,42(2):187-201
    [159] Wei C H,Tang X H,Liang J R,et al.Preparation, characterization and photocatalyticactivities of boron and cerium-codoped TiO2.J Environ Sci-China,2007,19(1):90-96
    [160] Maruska H P,Ghosh K.Transition-metal dopants for extending the response of titanatephotoelectrolysis anodes.Sol Energy Mater,1979,1(3-4):237-247
    [161] Liang J S,Liang G C,Qi H F,et al.Influence of composite phosphate inorganicantibacterial materials containing rare rarth on activated water property of ceramics.J RareEarths,2002,22(3):436-439
    [162] Yu T,Tan X,Zhao L.Characterization,activity and kinetics of a visible light drivenphotocatalyst:Cerium and nitrogen co-doped TiO2nanoparticles.Chem Eng J,2010,157(2):86-92
    [163] Xie Y,Yuan C.Visible-light responsive cerium ion modified titania sol and nanocrystallitesfor X-3B dye photodegradation.Appl Catal B-Environ,2003,46(11):251-259
    [164]吴树新,马智,秦永宁,等.掺杂纳米二氧化钛光催化性能的研究.物理化学学报,2004,20(2):138-143
    [165] Gole J L,Stout J D,Burda C,et al.Highly efficient formation of visible light tunableTiO2-xNxphotocatalysts and their tranaformation at the nanoscale.J Phys Chem B,2004,108(4):1230-1240
    [166]姜承志,苏会东,卢旭东.混晶纳米TiO2薄膜光催化降解亚甲基蓝.环境科学与技术,2008,31(3):26-30
    [167] Barka N,Assabbane A,Nounah A.Photocatalytic degradation of indigo carmine inaqueous solution by TiO2-coated non-woven fibres.J Hazard Mater,2008,152(4):1054-1059
    [168] Hu C,Wang Y Z,Tang H X.Preparation and characterization of surface bond-conjugatedTiO2/SiO2and photocatalysis for azo dyes.Appl Catal B-Environ,2001,30(3-4):277-285
    [169] Guillard C,Lachheb H,Houas A,et al.Influence of chemical structure of dyes, of pH andof inorganic salts on their photocatalytic degradation by TiO2comparison of the efficiencyof powder and supported TiO2.J Photochem Photobiol A,2003,158:27-36
    [170] Fernández J,Kiwi J,Lizama C,et al.Factorial experimental design of Orange IIphotocatalytic discolouration.J Photochem Photobiol A,2002,151(1-3):213-219
    [171] Wang C C,Lee C K,Lyu M D,et al.Photocatalytic degradation of C.I. Basic Violet10using TiO2catalysts supported by Y zeolite:An investigation of the effects of operationalparameters.Dyes Pigments,2008,76(3):817-824
    [172] S kmen M, zkan A.Decolourising textile wastewater with modified titania: the effects ofinorganic anions on the photocatalysis.J Photochem Photobiol A,2002,147(1):77-81
    [173] Senthilkumaar S,Porkodi K,Gomathi R,et al.Sol-gel derived silver doped nanocrystallinetitania catalysed photodegradation of methylene blue from aqueous solution.DyesPigments,2006,69:22-30
    [174] Hu C,Yu J C,Hao Z,et al.Effects of acidity and inorganic ions on the photocatalyticdegradation of different azo dyes.Appl Catal B-Environ,2003,46(1):35-47
    [175] Rao K V S,Subrahmanyam M,Boule P.Immobilized TiO2photocatalyst during long-termuse: Decrease of its activity.Appl Catal B-Environ,2004,49(4):239-249
    [176] Khataee A R.Photocatalytic removal of C.I.Basic Red46on immobilized TiO2nanoparticles:Artificial neural network modeling.Environ Technol,2009,30(11):1155-1168
    [177] Zhao L,Ma J,Sun Z,et al.Catalytic ozonation for the degradation of nitrobenzene inaqueous solution by ceramic honeycomb-supported manganese.Appl Catal B-Environ,2008,83(3-4):256-264
    [178] Rezaee A,Ghaneian M T,Hashemian S J,et al.Decolorization of Reactive Blue19dyefrom textile wastewater by the UV/H2O2process.Journal of Applied Science,2008,8(6):1108-1112
    [179] Hou Y D,Wang X C,Wu L,et al.N-Doped SiO2/TiO2mesoporous nanoparticles withenhanced photocatalytic activity under visible-light irradiation.Chemosphere,2008,7(23):414-421
    [180] Fu X Z,Clark L A,Yang Q,et al.Enhanced photocatalytic performance of titania-basedbinary metal oxides:TiO2/SiO2and TiO2/ZrO2.Environ Sci Technol,1996,30(2):647-653
    [181] Anderson C,Bard A J.Improved photocatalytic activity and characterization of mixedTiO2/SiO2and TiO2/Al2O3materials.J Phys Chem B,1997,101(14):2611-2616
    [182]Li Z J,Hou B,Xu Y,et al.Hydrothermal synthesis, characterization, and photocatalyticperformance of silica-modified titanium dioxide nanoparticles.J Colloid Interface Sci,2005,288:149-154
    [183] Itoh M,Hattori H,Tanabe K.The acidic properties of TiO2-SiO2and its catalytic activitiesfor the amination of phenol,the hydration of ethylene and the isomerization of butane.JCatal,1974,35(2):225-231
    [184]Imamura S, Tarumoto H, Ishida S.Decomposition of1, a-Dichloroethane onTiO2/SiO2.Ind Eng Chem Res,1989,28:1449-1452
    [185] Do Y R,Lee W,Dwight K,et al.The effect of WO3on the photocatalytic activity ofTiO2.J Solid State Chem,1994,108(1):198-201
    [186] Papp J,Soled S,Dwight K,et al.Surface acidify and photocatalytic activity of TiO2,WO3/TiO2,and MoO3/TiO2photocatalysts.Chem Mater,1994,6(4):496-500
    [187] Akbal F.Sorption of phenol and4-chlorophenol onto pumice treated with cationicsurfactant.J Environ Manage,2005,74:239-244
    [188] Kuleyin A.Removal of phenol and4-chlorophenol by surfactant-modified natural zeolite.JHazard Mater,2007,144:307-315
    [189] Maity D,Agrawal D C.Synthesis of iron oxide nanoparticles under oxidizing environmentand their stabilization in aqueous and non-aqueous media.J Magn Magn Mater,2007,308:46-55
    [190]胡林林.表层沉积物及其主要组分吸附五氯酚的特征及Cu2+的影响:[硕士学位论文].吉林:吉林大学,2007
    [191] Kolhe P,Kannan R M.Improvement in ductility of chitosan through blending andcopolymerization with PEG: FTIR investigation of molecularinteractions.Biomacromolecules,2003,4:173-180
    [192] Lawrie G,Keen I,Drew B,et al.Interactions between alginate and chitosan biopolymerscharacterized using FTIR and XPS.Biomacromolecules,2007,8:2533-2541
    [193] Ge J P,Hu Y X,Biasini M,et al.Superparamagnetic magnetite colloidal nanocrystalclusters.Angew Chem Int Ed,2007,46:4342-4345
    [194] Hu J,Lo I M C,Chen GH.Comparative study of various magnetic nanoparticles for Cr(VI)removal.Sep Purif Technol,2007,56:249-256
    [195] Wang J L,Qian Y,Horan N,et al.Bioadsorption of pentachloropheno(lPCP)from aqueoussolution by activated sludge biomass.Bioresour Technol,2000,75:157-161
    [196] Marouf R,Khelifa N,Marouf-Khelifa K,et al.Removal of pentachlorophenol fromaqueous solutions by dolomitic sorbents.J Colloid Interface Sci,2006,297:45-53
    [197] Khezami L,Capart R.Removal of chromium(VI)from aqueous solution by activatedcarbons:kinetic and equilibrium studies.J Hazard Mater B,2005,123:223-231
    [198] ztürk N,Kavak D.Adsorption of boron from aqueous solutions using fly ash: Batch andcolumn studies.J Hazard Mater,2005,127:81-88
    [199] Shihabudheen M M,Antony K R,Pradeep T.High yield combustion synthesis ofnanomagnesia and its application for fluoride removal.Sci Total Environ,2010,408:2273-2282
    [200] Li X,Liu R,Wu S,et al.Efficient removal of boron acid by N-methyl-D-glucaminefunctionalized silica-polyallylamine composites and its adsorption mechanism.J ColloidInterface Sci,2011,361:232-237
    [201] Tanis E,Hanna K,Emmanuel E.Experimental and modeling studies of sorption oftetracycline onto iron oxides-coated quartz.Colloid Surf A,2008,327:57-63
    [202] Jin L, Bai R B.Mechanisms of lead adsorption on chitosan/PVA hydrogelbeads.Langmuir,2002,18:9765-9770
    [203] Inoue K,Yoshizuka K,Ohto K.Adsorptive separation of some metal ions by complexingagent types of chemically modified chitosan.Anal Chim Acta,1999,388:209-218
    [204] Claesson P M,Ninhami B W.pH-dependent interactions between adsorbed chitosanlayers.Langmuir,1992,8:1406-1412
    [205] Yan W L,Bai R.Adsorption of lead and humic acid on chitosan hydrogel beads.WaterRes,2005,39:688-698
    [206] DiVincenzo J P, Sparks D L.Sorption of the neutral and charged forms ofpentachlorophenol on soil:evidence for different mechanisms.Arch Environ ContamToxicol,2001,40:445-450
    [207]韩德刚,高执棣,高盘良.物理化学.北京:高等教育出版社,2003
    [208] El-Sheikh AH,Newman AP,Al-Daffaee HK,et al.The use of activated carbons with basicproperties for the treatment of2-chlorophenols.Adsorpt Sci Technol,2004,22:451-465
    [209] Kako T,Kikugawa N,Ye J.Photocatalytic activities of AgSbO3under visible lightiIrradiation.Catal Today,2008,131:197-202
    [210] Hu X,Hu C,Qu J.Preparation and visible-light activity of silver vanadate for thedegradation of pollutants.Mater Res Bull,2008,43:2986-2997
    [211] Konta R,Kato H,Kobayashi H,et al.Photophysical properties and photocatalytic activitiesunder visible light irradiation of silver vanadates.Phys Chem Chem Phys,2003,5:3061-3065
    [212] Li X,Ouyang S,Kikugawa N,et al.Novel Ag2ZnGeO4photocatalyst for dye degradationunder visible light iIrradiation.Appl Catal A-Gen,2008,334:51-58
    [213] Ouyang S,Li Z,Ouyang Z,et al.Correlation of crystal structures,electronic structures,and photocatalytic properties in a series of Ag-based oxides:AgAlO2,AgCrO2,andAg2CrO4.J Phys Chem C,2008,112:3134-3141
    [214] Kato H,Kobayashi H,Kudo A.Role of Ag+in the band structures and photocatalyticproperties of AgMO3(M:Ta and Nb)with the perovskite structure.J Phys Chem B,2002,106:12441-12447
    [215] Maruyama Y,Irie H,Hashimoto K.Visible light eensitive photocatalyst, delafossitestructured α-AgGaO2.J Phys Chem B,2006,110:23274-23278
    [216] Kim D W,Cho I S,Lee S,et al.Photophysical and photocatalytic properties of Ag2M2O7(M=Mo,W).JAm Ceram Soc,2010,93:3867-3872
    [217] Huang H,Li X,Kang Z,et al.Tuning metal@metal salt photocatalytic abilities by differentcharged anions.Dalton Trans,2010,39:10593-10597
    [218] Cho I S,Kim D W,Lee S,et al.Synthesis of Cu2PO4OH hierarchical superstructures withphotocatalytic activity in visible light.Adv Funct Mater,2008,18:2154-2162
    [219] Kudo A,Tsuji I,Kato H.AgInZn7S9solid solution photocatalyst for H2evolution fromaqueous solutions under visible light irradiation.Chem Commun,2002:1958-1959
    [220] Wang X,Li S,Yu H,et al.Ag2O as a new visible-light photocatalyst:self-stability andhigh photocatalytic activity.Chem Eur J,2011,17:7777-7780
    [221] Eithiraj R D,Jaiganesh G,Kalpana G.Electronic structure and ground-state properties ofalkali-metal oxides-Li2O,Na2O,K2O and Rb2O:A first-principles study.Physica B:Condensed Matter,2007,396:124-131
    [222] Liu J W,Han R,Wang H T,et al.Degradation of PCP-Na with La-B co-doped TiO2seriessynthesized by the sol-gel hydrothermal method under visible and solar light irradiation.JMol Catal A-Chem,2011,344:145-152
    [223] Zhang H, Liang C, Liu J.Defect-mediated formation of Ag cluster-doped TiO2nanoparticles for efficient photodegradation of pentachlorophenol.Langmuir,2012,28:3938-3944
    [224] Qiu Y F,Wang L,Leung C F,et al.Preparation of nitrogen doped K2Nb4O11with highphotocatalytic activity for degradation of organic pollutants.Appl Catal A,2011,402:23-30
    [225] Jardim W F,Moraes S G,Takiyama M M K.Photocatalytic degradation of aromaticchlorinated compounds using TiO2:toxicity of intermediates.Water Res,1997,31:1728-1732
    [226] Yang S G,Quan X,Li X Y,et al.Photoelectrocatalytic treatment of pentachlorophenol inaqueous solution using a rutile nanotube-like TiO2/Ti electrode.Photochem Photobiol Sci,2006,5:808-814
    [227] Zhu H Y,Jiang R,Xiao L,et al.Photocatalytic decolorization and degradation of CongoRed on innovative crosslinked chitosan/nano-CdS composite catalyst under visible lightirradiation.J Hazard Mater,2009,169:933-940
    [228] Zhao H,Xu S H,Zhong J B,et al.Kinetic study on the photo-catalytic degradation ofpyridine in TiO2suspension systems.Catal Today,2004,94:857-961
    [229] Yang S G,Liu Y Z,Sun C.Preparation of anatase TiO2/Ti nanotube-like electrodes andtheir high photoelectrocatalytic activity for the degradation of PCP in aqueoussolution.Appl Catal A-Gen,2006,301:284-291
    [230] Hidaka H,Nagaoka H,Nohara K.A mechanistic study of the photoelectrochemicaloxidation of organic compounds on a TiO2/TCO particulate film electrode assembly.JPhotochem Photobiol A,1996,98:73-78
    [231] Subramanian S,Noh J S,Schwarz J A.Determination of the point of zero charge ofcomposite oxides.J Catal,1988,114(2):433-439
    [232] Mahmoodi N M,Arami M,Limaee N Y.Decolorization and aromatic ring degradationkinetics of Direct Red80by UV oxidation in the presence of hydrogen peroxide utilizingTiO2as a photocatalyst.Chem Eng J,2005,112:191-196
    [233] So C M,Cheng M Y,Yu J C,et al.Degradation of azo dye Procion Red MX-5B byphotocatalytic oxidation.Chemosphere,2002(46):905-912
    [234] Wang Y, Hong C S.Effect of hydrogen peroxide, periodate and persulfate onphotocatalysis of2-chlorobiphenyl in aqueous TiO2suspensions.Wat Res,1999,33:2031-2036
    [235] Malato S, Blanco J, Richter C.Enhancement of the rate of solar photocatalyticmineralization of organic pollutants by inorganic oxidizing species.Appl Catal-B,1998,17:347-356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700