用户名: 密码: 验证码:
新兴适配体在高效净化/诊断环境与生物体内污染物的特点及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适配体是一类新型识别分子,本质是一段单链的DNA或者RNA,从随机核苷酸文库中筛选而来。它能够通过自身三维构象的变化来特异性地捕捉靶分子,从而达到分离富集靶分子(污染物)的目的。适配体与其它分离富集材料相比,具有自己独特的优势,例如特异亲和性高、分子量小、体外合成、容易化学修饰、低毒性、生物兼容性好等。基于适配体的特性,其已经在化学、医学和生物学上引起了广泛的关注,但是在环境科学领域的相关研究比较匮乏。这个课题试图研究适配体在环境污染净化与健康上的应用及其机理。具体研究方法和结果如下:
     (1)适配体固定到琼脂糖颗粒上,然后装配到小柱内,用于饮用水中小分子污染物的净化。适配体不但可以高效净化污水,而且容易再生,达到重复利用的目的。在这部分内容中,我们首次探讨了适配体与小分子污染物的作用机理。适配体吸附小分子污染物符合假二级动力学,且为自发放热反应。适配体与小分子污染物的作用过程可以分为三个步骤,即活化步骤、吸附步骤和杂交步骤;又可以将整个反应过程分为三个阶段,即前期的化学动力学控速阶段,后期的热动力学控速阶段和中间的过渡阶段。这部分研究内容提供了一种净化废水中小分子污染物的新技术,并首次阐述了适配体作用小分子污染物的机理。
     (2)适配体通过氨基和羧基作用固定到氧化石墨烯上,增强了氧化石墨烯的水溶性和特异性亲和污染物的能力,并提高了适配体自身抵抗核酸酶降解的能力。我们进一步探讨了pH、温度、离子强度和天然有机质对适配体活性的影响。极端的pH和高浓度的天然有机质会导致适配体失活,从而降低适配体吸附污染物的能力。适配体在低温下具有较强的亲和污染物能力。随着温度升高,适配体吸附污染物的能力出现了轻微的降低。一定范围的离子强度,通过缓解静电排斥和连接架桥作用,增强适配体吸附污染物的能力。这部分研究内容首次详细地分析了环境因素对适配体净化污染物的影响,建立了一种稳定净化污染物的新方法。
     (3)适配体在固定到氧化石墨烯上之后,在可见光下促进了氧化石墨烯光催化降解生物型污染物-噬菌体的能力。课题深入地研究了适配体提高石墨烯催化降解生物型污染物的机制。首先噬菌体表面蛋白衣壳被破坏,然后包裹的核酸释放出来。随后,蛋白发生羰基化,核酸发生氧化修饰,氧化石墨烯被还原。在催化过程中,产生的可能活性物种包括羟基自由基、氧自由基和水解离前体物质等。催化过程包含了能量的转化和电子的转移。这部分研究内容提出了一种在可见光下催化降解生物型污染物的新方法,并探索了可能的反应机理。
     (4)适配体固定到纳米颗粒上,装载重金属的螯合剂,用来有效地缓解重金属在生物体内的毒性。实验以汞为例,研究了适配体对生物体内汞毒性的影响。适配体纳米颗粒减少了汞在动物肾和脑中的积累,增强了尿液中汞的排泄。行为试验表明了适配体可以缓解受汞污染动物的神经毒性,增强动物的学习和记忆功能。通过血液学研究,实验进一步证实了适配体纳米颗粒具有很好的生物兼容性。适配体纳米颗粒缓解汞毒性的机制包括氧化损伤的降低和关键酶活性的升高。这部分研究内容提出了一种缓解重金属在生物体内毒性的新方法,并探讨了可能的毒性机制。
     (5)实验通过溶胶-凝胶的方法将适配体固定到固相微萃取表面,用来快速准确地分析水溶液和和血浆中的生物标志物腺苷。实验首先优化了适配体–固相微萃取的解吸时间和解吸溶剂,然后探讨了温度和离子强度对适配体吸附靶分子的影响,进一步研究了适配体–固相微萃取的存贮和再生能力,最后用适配体固相微萃取成功地分析了血浆中低浓度的腺苷。考虑到固相微萃取具有in vivo取样的能力和在代谢物分析上的优势,生物兼容性的适配体–固相微萃取有望成为一种灵敏诊断环境污染与健康的新装置。
     上述的研究结果表明了适配体可以作为一种新型的生物材料用于污染物的分离、富集、净化以及缓解体内污染物毒性,甚至用于环境污染与健康的早期诊断。尽管适配体在环境污染净化与健康上的应用存在一些问题,例如适配体的不稳定性和轻微的毒副作用,但是它的应用潜力值得进一步深入研究。
Aptamers are a new class of single-stranded DNA/RNA molecules selected fromsynthetic nucleic acid libraries for molecular recognition. These single-strandDNA/RNA folded into their specific secondary or tertiary structures are mainlyresponsible for binding target molecules, leading to the separation and accumulationof target molecules (pollutants). Compared to other function materials, aptamer hasunique merits including high affinity, low molecule weight, easy to modification, lowtoxicity and excellent biocompatibility. Given the advantages, aptamer is attractive inchemical, medical, and biological fields, but the related research is rare inenvironmental science. In the present work, the applications and mechanisms ofaptamer were explored in environmental purification and health. The methods andresults are presented as following:
     (1) Aptamer was immobilized on CNBr-activated Sepharos and then packed in acolumn to remove low molecule weight polluntants in drinking water. The aptamercan effectively purity water and regenerate. In this section, the interactions of aptamerand pollutant were firstly studied. The adsorption data were fit well by the pseudo-second kinetics with an exothermic reaction. The reaction involved three steps:activation, adsorption and incubation. The whole reaction also could be divided intochemical kinetics control period, thermodynamic control period and transition period.The section provided a new technology to purity contaminated water and explored theinteraction mechanisms between aptamer and low molecule weight polluntants.
     (2) Aptamer was immobilized on graphene oxide by the reaction of aminogroups and carboxyl groups. The complex improved the water solubility and thespecificity of graphene oxide as well as the protection of aptamer from nuclease.Furthermore, the effects of pH, temperature, ionic strength and natural organic matteron the activity of aptamer were studied.The affinity would reduce in extreme pH andhigh natural organic matter. The removal of pollutants slightly reduced with theincrease of temperature. A certain concentration of ionic strength enhanced theremoval of pollutants due to the decrease of electrostatic repel forces and development of connection bridge. The section discussed the influence ofenvironmental factors and provided a stable method to purify the pollutants incontaminated water.
     (3) Aptamer enhanced the photocatalytic activities of graphene oxide forbiological contaminantion-bacteriophage under broad visible-light spectrum.Moreover, the photocatalytic mechanisms were explored. The protein coating wasbroke, and then enveloped nucleic acid released. Subsequently, the proteins posedcarbonylation and the nucleic acid bases received oxidized modification. Finaly, thegraphene oxide was reduced. The active species generated during the photocatalyticprocess. The photocatalysis paths involved energy transfer (generation of singletoxygen), electron transfer (generation of anion radicals) and water dissociation(generation of the precursor to the hydrated electron). The section showed a new ideato enhance the photocatalytic activities of graphene oxide for biologic contaminantionunder broad visible-light spectrum and studied the possible mechanisms.
     (4) Aptamer was immobilized on nanoparticle as well as the antidote of mercurywas packed. The bioconjugates can diminish the toxicity of mercury in vivo. Thenanoparticle-aptamer markedly reduced the accumulation of mercury in both thebrain and kidney, and enhanced the excretion of urinary mercury. Thenanoparticle-aptamer ameliorated the neurotoxicity and improved the learning andmemory of animals. The toxicology of nanoparticle-aptamer was also studied byhematologic tests, and exhibited excellent biocompatibility. The section estabilished anew method to diminish the toxicity of heavy metals in vivo and expounded themechanisms.
     (5) Aptamer was immobilized on solid phase micro-extraction by sol-gel methodto quickly and accurately detect a biomarker-adenosine in water solution and plasma.The desorption time and desorption solution were optimized, and then the effects oftemperature and ionic strength were discussed. Finally, the storage and regenerationof aptamer were studied. Given the special assay of solid phase micro-extraction invivo and metabolomics, aptamer/solid phase micro-extraction can be a device todiagnose environmental contamination and health.
     The above results suggest aptamer can be a novel material for the separation, accumulation and purification of pollutants, and the development the toxicity ofheavy metals in vivo, even the diagnosis of environmental contamination and health.Although there are some challenges for the application of aptamer, such as the lowstability and adverse effect, it is worth to conduct the related research of aptamerfurthermore.
引文
[1] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands.Nature,1990,346:818-822.
    [2] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligandsto bacteriophage T4DNA polymerase. Science,1990,249:505-510.
    [3] Robertson D L, Joyce G F. Selection in vitro of an RNA enzyme that specifically cleavessingle-stranded DNA. Nature,1990,344:467-468.
    [4] Ng E W M, Shima D T, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocularvascular disease. Nat Rev Drug Discov,2006,5:123-132.
    [5] Mayer G. The chemical biology of aptamers. Angew Chem Int Ed Engl,2009,48:2672-2689.
    [6] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA.Science,1994,263:1425-1429.
    [7] Yang C, Yan N, Parish J, et al. RNA aptamers targeting the cell death inhibitor CED-9induce cell killing in Caenorhabditis elegans. J Biol Chem,2006,281:9137-9144.
    [8] Wlotzka B, Leva, S. Eschgfaller B, et al. In vivo properties of an anti-GnRH Spiegelmer: anexample of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A,2002,99:8898-8902.
    [9] Presta L G. Engineering of therapeutic antibodies to minimize immunogenicity and optimizefunction. Adv Drug Deliv Rev,2006.58:640-656.
    [10] Ciesiolka J, Gorski J, Yarus M. Selection of an RNA domain that binds Zn2+. RNA,1995,1:538-550.
    [11] Hofmann H P, Limmer S, Hornung V, et al. Ni2+-binding RNA motifs with an asymmetricpurine-rich internal loop and a G-A base pair. RNA,1997,3:1289-1300.
    [12] Klussmann S, Nolte A, Bald R, et al. Mirror-image RNA that binds D-adenosine. NatBiotechnol,1996,14:1112-1115.
    [13] Lato S M, Ozerova N D, He K, et al. Boroncontaining aptamers to ATP. Nucleic Acids Res,2002,30:1401-1407.
    [14] Kiga D, Futamura Y, Sakamoto K, et al. An RNA aptamer to the xanthine/guanine base witha distinctive mode of purine recognition. Nucleic Acids Res,1998,26:1755-1760.
    [15] Lin C H, Patel D J. Encapsulating an amino acid in a DNA fold. Nat Struct Biol,1996,3:1046-1050.
    [16] Famulok M, Szostak J. Stereospecific recognition of tryptophan agarose by in vitro selectedRNA. J Am Chem Soc,1992,114:3990-3991.
    [17] Majerfeld I, Puthenvedu D, Yarus M. RNA affinity for molecular L-histidine; genetic codeorigins. J Mol Evol,2005,61:226-235.
    [18] Berens C, Thain A, Schroeder R. A tetracycline-binding RNA aptamer. Bioorg Med Chem,2001,9:2549-2556.
    [19] Burke D H, Hoffman D C, Brown A, et al. RNA aptamers to the peptidyl transferaseinhibitor chloramphenicol. Chem Biol,1997,4:833-843.
    [20] Wallace S T, Schroeder R. In vitro selection and characterization of streptomycinbindingRNAs: recognition discrimination between antibiotics. RNA,1998,4:112-123.
    [21] Doudna J A, Cech T R, Sullenger B A. Selection of an RNA molecule that mimics a majorautoantigenic epitope of human insulin receptor. Proc Natl Acad Sci U S A,1995,92:2355-2359.
    [22] Wiegand T W, Williams P B, Dreskin SC, et al. Highaffinity oligonucleotide ligands tohuman IgE inhibit binding to Fc epsilon receptor I. J Immunol,1996,157:221-230.
    [23] Ferreira C S, Papamichael K, Guilbault G, et al. DNA aptamers against the MUC1tumourmarker: Design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelialtumours. Anal Bioanal Chem,2007,390:1039-1050.
    [24] Lupold S E, Hicke B J, Lin Y, et al. Identification and characterization of nuclease-stabilizedRNA molecules that bind human prostate cancer cells via the prostatespecific membraneantigen. Cancer Res,2002,62:4029-4033.
    [25] Cox J C, Hayhurst A, Hesselberth J, et al. Automated selection of aptamers against proteintargets translated in vitro: from gene to aptamer. Nucleic Acids Res,2002,30: e108.
    [26] Martino L, Virno A, Randazzo A, et al. A new modified thrombin binding aptamercontaining a5'-5' inversion of polarity site. Nucleic Acids Res,2006,34:6653-6662.
    [27] Tok J B, Cho J, Rando R R. RNA aptamers that specifically bind to a16S ribosomal RNAdecoding region construct. Nucleic Acids Res,2000,28:2902-2910.
    [28] Soukup G A, Ellington A D, Maher L G, Selection of RNAs that bind to duplex DNA atneutral pH. J Mol Biol,1996,259:216-228.
    [29] Tang J, Xie J, Shao N, et al. The DNA aptamers that specifically recognize ricin toxin areselected by two in vitro selection methods. Electrophoresis,2006,27:1303-1311.
    [30] Tang J, Yu T, Guo L, et al. In vitro selection of DNA aptamer against abrin toxin andaptamer-based abrin direct detection. Biosens Bioelectron,2007,22:2456-2463.
    [31] Gopinath S C, Misono T S, Kawasaki K, et al. An RNA aptamer that distinguishes betweenclosely related human influenza viruses and inhibits haemagglutinin-mediated membranefusion. J Gen Virol,2006,87:479-487.
    [32] Houser-Scott F, Ansel-McKinney P, Cai J M, et al. In vitro genetic selection analysis ofalfalfa mosaic virus coat protein binding to3'-terminal AUGC repeats in the viral RNAs. JVirol,1997,71:2310-2319.
    [33] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecularprobes for cancer study. Proc Natl Acad Sci U S A,2006,103:11838-11843.
    [34] Morris K N, Jensen K B, Julin C M, et al. High affinity ligands from in vitro selection:complex targets. Proc Natl Acad Sci U S A,1998,95:2902-2907.
    [35] Needleman H. Lead poisoning. Annu Rev Med,2004,55:209-222.
    [36] Hoyle I, Handy R D. Dose-dependent inorganic mercury absorption by isolated perfusedintestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive andenergy-dependent pathways. Aquat Toxicol,2005,72:147-159.
    [37] Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection ofmercuric ion in aqueous media. J Am Chem Soc,2003,125:14270-14271.
    [38] Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billion lead via anelectrode-bound DNAzyme assembly. J Am Chem Soc,2007,129:262-263.
    [39] Geary C D, Zudans I, Goponenko A V, et al. Electrochemical investigation of Pb2+bindingand transport through a polymerized crystalline colloidal array hydrogel containingbenzo-18-crown-6. Anal Chem,2005,77:185-192.
    [40] Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe forsensitive and selective detection of mercury (II) in aqueous solution. Anal Chem,2008,80:3716-3721
    [41] Liu C W, Huang C C, Chang H T. Highly selective DNA-based sensor for lead (II) andmercury(II) ions. Anal Chem,2009,81:2383-2387.
    [42] Huang C C, Chang H T. Aptamer-based fluorescence sensor for rapid detection of potassiumions in urine. Chem Commun,2008,12:1461-1463.
    [43] Niazi J H, Lee S J, Gu M B. Single-stranded DNA aptamers specific for antibioticstetracyclines. Bioorg Med Chem,2008,16:7245-7253.
    [44] de-los-Santos-Alvarez N, Lobo-Casta ón M J, Miranda-Ordieres A J, et al. SPR sensing ofsmall molecules with modified RNA aptamers: Detection of neomycin B. BiosensBioelectron,2009,24:2547-2553.
    [45] Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform forvisual detection. Angew Chem Int Ed Engl,2010,49:1052-1056.
    [46] Cruz-Aguado J A, Penner G. Determination of ochratoxin a with a DNA aptamer. J AgricFood Chem.2008,56:10456-10461.
    [47] Guo Z, Ren J, Wang J, et al. Single-walled carbon nanotubes based quenching of freeFAM-aptamer for selective determination of ochratoxin A. Talanta,2011,85:2517-2521.
    [48] Vinkenborg J L, Karnowski N, Famulok M. Aptamers for allosteric regulation. Nat ChemBiol,2011,7:519-527.
    [49] Li T, Li B, Dong S. Adaptive recognition of small molecules by nucleic acid aptamersthrough a label-free approach. Chemistry,2007,13:6718-6723.
    [50] Hamula C L A, Guthrie J W, Zhang H, et al. Selection and analytical applications ofaptamers. TrAC-Trend Anal Chem,2006,25:681-691.
    [51] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA.Science,1994,263:1425-1429.
    [52] de-los-Santos-álvarez N, Lobo-Casta ón M J, Miranda-Ordieres A J. et al. Aptamers asrecognitionelements for label-freeanalyticaldevices. TrAC-Trend Anal Chem,2008,27:437-446
    [53] Mairal T, Ozalp V C, Lozano Sánchez P, et al. Aptamers: Molecular tools for analyticalapplications. Anal Bioanal Chem.2008,390:989-1007.
    [54] Dick L W, McGown L B. Aptamer-enhanced laser desorption/ionization for affinity massspectrometry. Anal Chem,2004,76:3037-3041.
    [55] Huang Y F, Chang H T. Analysis of Adenosine Triphosphate and Glutathione through GoldNanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem,2007,79,4852-4859
    [56] Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-basedbioassay for platelet-derived growth factor detection. Chembiochem,2005,6:900-907.
    [57] Beigelman L, McSwiggen J A, Draper K G, et al. Chemical modification of hammerheadribozymes. Catalytic activity and nuclease resistance. J Biol Chem,1995,270:25702-25708.
    [58] Willis MC, Collins B D, Zhang T, et al. Liposome-anchored vascular endothelial growthfactor aptamers. Bioconjug Chem,1998,9,573-582.
    [59] Kato Y, Minakawa N, Komatsu Y, et al. New NTP analogs: the synthesis of40-thioUTP and4’-thioCTP and their utility for SELEX. Nucleic Acids Res,2005,33:2942-2951.
    [60] Lato S M, Ozerova N D, He K, et al. Boron-containing aptamers to ATP. Nucleic Acids Res,2002,30:1401-1407.
    [61] Keefe A D, Cload S T. SELEX with modified nucleotides. Current Opinion in ChemicalBiology,2008,12:448-456.
    [62] Uehara S, Shimada N, Takeda Y, et al.3' Poly(dA)-Tailed Thrombin DNA Aptamer toIncrease DNase-Resistance and Clotting Inhibitory Activity. Bull Chem Soc Jpn,2008,81:1485-1491.
    [63] Shoji A, Kuwahara M, Ozaki H, et al. Modified DNA aptamer that binds the (R)-isomer of athalidomide derivative with high enantioselectivity. J Am Chem Soc,2007,129:1456-1464.
    [64] Rowe A A, Miller E A, Plaxco K W. Reagent less Measurement of AminoglycosideAntibiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-BasedBiosensor. Anal Chem,2010,82:7090-7095.
    [65] Li F, Li J, Wang C, et al. Competitive protection of aptamer-functionalized goldnanoparticles by controlling the DNA assembly. Anal Chem,2011,83:6464-6467.
    [66] Medley C D, Bamrungsap S, Tan W, et al. Aptamer-conjugated nanoparticles for cancer celldetection. Anal Chem,2011,83:727-34.
    [67] Carrasquilla C, Li Y, Brennan J D. Surface immobilization of structure-switching DNAaptamers on macroporous sol-gel-derived films for solid-phase biosensing applications. AnalChem,2011,83:957-965.
    [68] Wan Y, Mahmood M A, Li N, et al. Nanotextured substrates with immobilized aptamers forcancer cell isolation and cytology. Cancer,2012,118:1145-1154.
    [69] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for theamplified optical detection of thrombin. J Am Chem Soc,2004,126:11768-11769.
    [70] Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetricdetermination of platelet-derived growth factors and their receptors. Anal Chem,2005,77:5735-5741.
    [71] Li L, Li B, Qi Y, et al. Label-free aptamer-based colorimetric detection of mercury ions inaqueous media using unmodified gold nanoparticles as colorimetric probe. Anal BioanalChem,2009,393:2051-2057.
    [72] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selectivecollection and detection of cancer cells. Anal Chem,2006,78:2918-29124.
    [73] Ikanovic M, Rudzinski W E, Bruno J G, et al. Fluorescence assay based on aptamer-quantumdot binding to Bacillus thuringiensis spores. J Fluoresc,2007,17:193-199.
    [74] Liu J, Mazumdar D, Lu Y. A simple and sensitive "dipstick" test in serum based on lateralflow separation of aptamer-linked nanostructures. Angew Chem Int Ed Engl,2006,45:7955-7959.
    [75] Zhao Q, Lu X, Yuan C G, et al. Aptamer-linked assay for thrombin using gold nanoparticleamplification and inductively coupled plasma-mass spectrometry detection. Anal Chem,81:7484-7489.
    [76] Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situ molecularprobing in living cells. J Am Chem Soc,2010,132:9274-9276.
    [77] Wang Y, Xiao Y, Ma X, et al. Label-free and sensitive thrombin sensing on a molecularlygrafted aptamer on graphene. Chem Commun,2012,48:738-740.
    [78] Sheng L, Ren J, Miao Y, et al. PVP-coated graphene oxide for selective determination ofochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron,2011,26:3494-3499.
    [79] Du Y, Guo S, Qin H, et al. Target-induced conjunction of split aptamer as new chiral selectorfor oligopeptide on graphene-mesoporous silica-gold nanoparticle hybrids modified sensingplatform. Chem Commun,2012,48:799-801.
    [80] Pu Y, Zhu Z, Han D, et al. Insulin-binding aptamer-conjugated graphene oxide for insulindetection. Analyst,2011,136:4138-4140.
    [81] Geiger A, Burgstaller P, Von der Eltz H, et al. RNA aptamers that bind L-arginine withsub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res,1996,24:1029-1036.
    [82] Deng Q, German I, Buchanan D, et al. Retention and separation of adenosine and analoguesby affinity chromatography with an aptamer stationary phase. Anal Chem,2001,73:5415-5421.
    [83] Romig T S, Bell C, Drolet D W. Aptamer affinity chromatography: combinatorial chemistryapplied to protein purification. J Chromatogr B Biomed Sci Appl,1999,731:275-284.
    [84] Ravelet C, Grosset C, Peyrin E. Liquid chromatography, electrochromatography andcapillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A,2006,1117:1-10.
    [85] Huang M F, Kuo Y C, Huang C C, et al. Separation of long double-stranded DNA bynanoparticle-filled capillary electrophoresis. Anal Chem,2004,76:192-196.
    [86] Heegaard N H. Applications of affinity interactions in capillary electrophoresis.Electrophoresis,2003,24:3879-3891.
    [87] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics.Clin Chem,1999,45(9):1628–1650.
    [88] German I, Buchanan D D, Kennedy R T. Aptamers as ligands in affinity probe capillaryelectrophoresis. Anal Chem,1998,70:4540-4545.
    [89] Pavski V, Le X C. Detection of human immunodeficiency virus type1reverse transcriptaseusing aptamers as probes in affinity capillary electrophoresis. Anal Chem,2001,73:6070-6076.
    [90] Fu H, Guthrie J W, Le X C. Study of binding stoichiometries of the humanimmunodeficiency virus type1reverse transcriptase by capillary electrophoresis andlaser-induced fluorescence polarization using aptamers as probes. Electrophoresis,2006,27:433-441.
    [91] Haes A J, Giordano B C, Collins G E. Aptamer-based detection and quantitative analysis ofricin using affinity probe capillary electrophoresis. Anal Chem,2006,78:3758-3764.
    [92] Madru B, Chapuis-Hugon F, Peyrin E, et al. Determination of cocaine in human plasma byselective solid-phase extraction using an aptamer-based sorbent. Anal Chem,2009,81:7081-7086.
    [93] Stead S L, Ashwin H, Johnston B, et al. An RNA-aptamer-based assay for the detection andanalysis of malachite green and leucomalachite green residues in fish tissue. Anal Chem,2010,82:2652-2660.
    [94] De Girolamo A, McKeague M, Miller J D, et al. Determination of ochratoxin A in wheatafter clean-up through a DNA aptamer-based solid phase extraction column. Food Chem,2011,127:1378-1384.
    [95] Wu X, Hu J, Zhu B, et al. Aptamer-targeted magnetic nanospheres as a solid-phaseextraction sorbent for determination of ochratoxin A in food samples. J Chromatogr A,2011,1218:7341-7346.
    [96] Hamula C L A, Zhang H, Li F, et al. Selection and analytical applications of aptamersbinding microbial pathogens. TrAC-Trend Anal Chem,2011,30:1587-1597.
    [97] Singh G, Vajpayee P, Rani N, et al. Bio-capture of S. Typhimurium from surface water byaptamer for culture-free quantification. Ecotoxicol Environ Saf,2012,78:320-326.
    [98] Cui Z, Ren Q, Wei H, et al. Quantum dot-aptamer nanoprobes for recognizing and labelinginfluenza A virus particles. Nanoscale,2011,3:2454-2457.
    [99] Lee J, Jo M, Kim T H, et al. Aptamer sandwich-based carbon nanotube sensors forsingle-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip,2011,11:52-56.
    [100] Kim M, Um H J, Bang S, et al. Arsenic removal from Vietnamese groundwaterusing the arsenic-binding DNA aptamer. Environ Sci Technol,2009,43:9335-9340.
    [101] Dave N, Chan M Y, Huang PJ, et al. Regenerable DNA-functionalizedhydrogels for ultrasensitive, instrument-free mercury(II) detection and removalin water. J Am Chem Soc,2010,132:12668-12673.
    [102] Berezovski M V, Lechmann M, Musheev M U, et al. Aptamer-facilitatedbiomarker discovery (AptaBiD). J Am Chem Soc,2008,130:9137-9143.
    [103] Langer R. Drug delivery and targeting. Nature,1998,392:5-10.
    [104] Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticlesfor enhanced anti-glioma drug delivery. Biomaterials,2011,32:8010-8020.
    [105] Zhu L, Lu H, Song Y, et al. Bioresponsive controlled release using mesoporoussilica nanoparticles capped with aptamer-based molecular gate. J Am ChemSoc,2011,133:1278-1281.
    [106] Chang M, Yang C S, Huang D M. Aptamer-conjugated DNA icosahedralnanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano,2011,5:6156-6163
    [107] Bouchard P R, Hutabarat R M, Thompson K M. Discovery and development oftherapeutic aptamers. Annu Rev Pharmacol Toxicol,2010,50:237-257.
    [108] Marquis J K, Grindel J M. Toxicological evaluation of oligonucleotidetherapeutics. Curr Opin Mol Ther,2000,2:258-263.
    [109] Henry S P, Beattie G, Yeh G, et al. Complement activation is responsible foracute toxicities in rhesus monkeys treated with a phosphorothioateoligodeoxynucleotide. Int. Immunopharmacol,2002,2:1657-1666.
    [110] Sheehan J P, Lan H C. Phosphorothioate oligonucleotides inhibit the intrinsictenase complex. Blood,1998,92:1617-1625.
    [111] Barchet W, Wimmenauer V, Schlee M, et al. Accessing the therapeuticpotential of immunostimulatory nucleic acids. Curr Opin Immunol,2008,20:389-395.
    [112] Goebl N, Berridge B, Wroblewski V J, et al. Development of a sensitive andspecific in situ hybridization technique for the cellular localization of antisenseoligodeoxynucleotide drugs in tissue sections. Toxicol Pathol,2007,35:541-548.
    [1] Jenison R D, Gill S C, Polisky B. High-resolution molecular discrimination by RNA. Science,1994,263:1425-1429.
    [2] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. AnalChem,2002,74:4488-4495.
    [3] Cerchia L, Duconge F, Pestourie C, et al. Neutralizing aptamers from whole-cell SELEXinhibit the RET receptor tyrosine kinase. PLoS Biol,2005,3:697-704.
    [4] Li T, Li B L, Dong S J. Adaptive recognition of small molecules by nucleic acid aptamersthrough a label-free approach. Chem Eur J,2007,13:6718-6723.
    [5] Bunka D H J, Stockley P G. Aptamers come of age-at last. Nat Rev Microbiol,2006,4:588-596.
    [6] Yan A C, Levy M. Aptamers and aptamer targeted delivery. RNA Biology,2006,6:316-320.
    [7] Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmentaland food analysis. Biomol Eng,2007,24:191-200.
    [8] Kim M, Um H J, Bang S, et al. Arsenic removal from Vietnamese groundwater using thearsenic-binding DNA aptamer. Environ Sci Technol,2009,43:9335-9340.
    [9] Dave N, Chan M Y, Huang P J J, et al. Regenerable DNA-functionalized hydrogels forultrasensitive, instrument-free mercury(II) detection and removal in Water. J Am Chem Soc,2010,132:12668-12673.
    [10] Rodriguez-Mozaz S, Weinberg H S. Meeting report: pharmaceuticals in water-aninterdisciplinary approach to a public health challenge. Environ Health Perspect,2010,118:1016-1020.
    [11] Jones O A, Lester J N, Voulvoulis N. Pharmaceuticals: A threat to drinking water? TrendsBiotechnol,2005,23:163-167.
    [12] Hu, X G; Zhou, Q X; Luo, Y.2010. Occurrence and source analysis of typical veterinaryantibiotics in manure, soil, vegetables and groundwater from organic vegetable bases,northern China. Environmental Pollution.2010,158(9):2992-2998.
    [13] Hu, X G; Zhou Q X. Past and future of antibiotic occurrence, attenuation, accumulation andscreening in sediment: long-term on field and model study. Journal of Hazardous Materials.2012,(225-226):91-98.
    [14] Kimura K, Hara H, Watanabe Y. Elimination of selected acidic pharmaceuticals frommunicipal wastewater by an activated sludge system and membrane bioreactors. Environ SciTechnol,2007,41:3708-3714.
    [15] Schaar H, Clara M, Gans O. et al. Micropollutant removal during biological wastewatertreatment and a subsequent ozonation step. Environ Pollut,2010,158:1399-1404.
    [16] Klamerth N, Rizzo L, Malato S, et al. Degradation of fifteen emerging contaminants at mu gL-1initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res,2010,44:545-554.
    [17] Bui T X, Choi H. Adsorptive removal of selected pharmaceuticals by mesoporous silicaSBA-15. J Hazard Mater,2009,168:602-608.
    [18] Radjenovic J, Petrovic M, Ventura F, et al. Rejection of pharmaceuticals in nanofiltrationand reverse osmosis membrane drinking water treatment. Water Res,2008,42:3601-3610.
    [19] Cingoz A, Hugon-Chapuis F, Pichon V. Evaluation of various immobilized enzymaticmicroreactors coupled on-line with liquid chromatography and mass spectrometry detectionfor quantitative analysis of cytochrome c. J Chromatogr A,2008,1209:95-103.
    [20] Joeng C B, Niazi J H, Lee S J, et al. ssDNA aptamers that recognize diclofenac and2-anilinophenylacetic acid. Bioorg Med Chem,2009,17:5380-5387.
    [21] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensorfor the rapid, label-free detection of cocaine in adulterated samples and biological fluids. JAm Chem Soc,2006,128:3138-3139.
    [22] Sublet R, Simonnotb M, Boireauc A, et al. Selection of an adsorbent for lead removal fromdrinking water by a point-of-use treatment device. Water Res,2003,37:4904-4912.
    [23] Huerta-Fontela M, Galceran M T, Ventura F. Ultraperformance liquidchromatography–tandem mass spectrometry analysis of stimulatory drugs of abuse inwastewater and surface waters. Anal Chem,2007,79:3821-3829.
    [24] van Nuijs A L N, Pecceu B, Theunis L, et al. Spatial and temporal variations in theoccurrence of cocaine and benzoylecgonine in waste-and surface water from Belgium andremoval during wastewater treatment. Water Res,2009,43:1341-1349.
    [25] Potty A S, Kourentzi K, Fang H, et al. Biophysical characterization of DNA aptamerInteractions with vascular endothelial growth factor. Biopolymers,2009,91:145-156.
    [26] Jucker F M, Phillips R M, McCallum S A, et al. Role of a heterogeneous free state in theformation of a specific RNA-theophylline complex. Biochemistry,2003,42:2560-2567.
    [27] Latham M P, Zimmermann G R, Pardi A. NMR chemical exchange as a probe forligand-binding Kinetics in a theophylline-binding RNA aptamer. J Am Chem Soc,2009,131:5052–5053.
    [28] Wickiser J K, Cheah M T, Breaker R R, et al. The kinetics of ligand binding by anadenine-sensing riboswitch. Biochemistry,2005,44:13404-13414.
    [29] Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor forcocaine. J Am Chem Soc,2001,123:4928-4931.
    [30] Chen J W, Jiang J H, Gao X, et al. A New aptameric biosensor for cocaine based onsurface-enhanced raman scattering spectroscopy. Chem Eur J,2008,14:8374-8382.
    [31] Cruz-Aguado J A, Penner G. Determination of ochratoxin A with a DNA aptamer. J AgricFood Chem,2008,56:10456-10461.
    [32] Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic,aptaemr-based sensors via target-induced strand displacement. J Am Chem Soc,2005,127:17990-17991.
    [33] Sen D, Gilbert W A. Sodium-potassium switch in the formation of4-stranded G4-DNA.Nature,1990,344:410-414.
    [34] Wang J, Jiang Y X, Zhou C S, et al. Aptamer-based ATP assay using a luminescent lightswitching complex. Anal Chem,2005,77:3542-3546.
    [35] Sines C C, McFail-Isom L, Howerton S B, et al. Cations mediate B-DNA conformationalheterogeneity. J Am Chem Soc,2000,122:11048-11056.
    [36] Peyrin E. Nucleic acid aptaemr molecular recognition principles and application in liquidchromatography and capillary electrophoresis. J Sep Sci,2009,32:1531-1536.
    [37] Ruta J, Ravelet C, Desire J, et al. Covalently bonded DNA aptamer chiral stationary phasefor the chromatographic resolution of adenosine. Anal Bioanal Chem,2008,390:1051-1057.
    [38] Zuo X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptaemr switch(TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc,2007,129:1042-1043.
    [1] Azevedo S M, Carmichael W W, Jochimsen E M, et al. Human intoxication bymicrocystins during renal dialysis treatment in Caruaru-Brazil. Toxicology,2002,181-182:441-446.
    [2] Lawton L A, Chambers H, Edwards C, et al. Rapid detection of microcystins incells and water. Toxicon,2010,55:973-978.
    [3] Dawan S, Kanatharana P, Wongkittisuksa B, et al. Label-free capacitiveimmunosensors for ultra-trace detection based on the increase of immobilizedantibodies on silver nanoparticles. Anal Chim Acta,2011,699:232-241.
    [4] Li Q, Mahendra S, Lyon D.Y, et al. Alvarez, Antimicrobial nanomaterials for waterdisinfection and microbial control: potential applications and implications. WaterRes,2008,42:4591-4602.
    [5] Li D, Lyon D Y, Li Q, et al. Effect of natural organic matter on antibacterialactivity of fullerene water suspension. Environ Toxicol Chem,2008,27:1888-1894.
    [6] Ho L, Gaudieux A L, Fanok S, et al. Bacterial degradation of microcystin toxins indrinking water eliminates their toxicity. Toxicon,2007,50:438-441.
    [7] Li J, Shimizu K, Sakharkar M K, et al. Comparative study for the effects ofvariable nutrient conditions on the biodegradation of microcystin-LR andconcurrent dynamics in microcystin-degrading gene abundance. BioresourTechnol,2011,102:9509-9517.
    [8] Westrick J A, Szlag D C, Southwell B J, et al. A review of cyanobacteria andcyanotoxins removal/inactivation in drinking water treatment. Anal Bioanal Chem,2010,397:1705-1714.
    [9] Moiseev L, Unlü M S, Swan A K, et al. DNA conformation on surfaces measuredby fluorescence self-interference. Proc Natl Acad Sci U S A,2006,103:2623-2628.
    [10]Hermann T, Patel D J, Adaptive recognition by nucleic acid aptamers. Science,2000,287:820-825.
    [11]Vinkenborg J L, Karnowski N, Famulok M. Aptamers for allosteric regulation. NatChem Biol,2011,7:519-527.
    [12]Ruigrok V J, Levisson M, Eppink M H, et al. Alternative affinity tools: moreattractive than antibodies? Biochem J,2011,436:1-13.
    [13]Yan A C, Levy M. Aptamers and aptamer targeted delivery. RNA Biol,2006,6:316-320.
    [14]Kim M, Um H J, Bang S, et al. Arsenic removal from Vietnamese groundwaterusing the arsenic-binding DNA aptamer. Environ Sci Technol,2009,43:9335-9340.
    [15]Dave N, Chan M Y, Huang PJ J, et al. Regenerable DNA-functionalized hydrogelsfor ultrasensitive, instrument-free mercury (II) detection and removal in water. JAm Chem Soc,2010,132:12668-12673.
    [16]Hu X, Mu L, Zhou Q, et al. ssDNA aptamer-based column for simultaneousremoval of nanogram per liter level of illicit and analgesic pharmaceuticals indrinking water. Environ Sci Technol,2011,45:4890-4895.
    [17]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306:666-669.
    [18]Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties,and applications. Adv Mater,2010,22:3906-3924.
    [19]Sreeprasad T S, Maliyekkal S M, Lisha K P, et al. Reduced grapheneoxide-metal/metal oxide composites: facile synthesis and application in waterpurification. J Hazard Mater,2011,186:921-931.
    [20]Zhang K, Dwivedi V, Chi C. et al. Graphene oxide/ferric hydroxide composites forefficient arsenate removal from drinking water. J Hazard Mater,2010,182:162-168
    [21]Wang Y, Li Z, D. Hu Z, et al. Aptamer/graphene oxide nanocomplex for in situmolecular probing in living cells. J Am Chem Soc,2010,132:9274-9276.
    [22]Gu K D, Famulok M. In vitro selection of specific aptamers againstmicrocystin-LR. Chin J Prev Med,2004,38:369-373.
    [23]Gao X F, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide:Reaction mechanisms, product structures, and reaction design. J Phys Chem C,2010,114:832-842.
    [24]Sun X, Liu Z, Welsher K. et al. Nano-graphene oxide for cellular imaging and drugdelivery. Nano Res,2008,1:203-212.
    [25]Aranda-Rodriguez R, Kubwabo C, Benoit F M. Extraction of15microcystins andnodularin using immunoaffinity columns. Toxicon,2003,42:587-599.
    [26]Hianik T, OstatnáV, Sonlajtnerova M, et al. Influence of ionic strength, pH andaptamer configuration for binding affinity to thrombin. Bioelectrochemistry,2007,70:127-133.
    [27]Neale P A, Antony A, Gernjak W. et al. Natural versus wastewater deriveddissolved organic carbon: Implications for the environmental fate of organicmicropollutants. Water Res,2011,45:4227-4237.
    [28]Calik P, Balci O, Ozdamar T H. Human growth hormone-specific aptameridentification using improved oligonucleotide ligand evolution method. ProteinExpr Purif,2010,69:21-28.
    [29]Vesterkvist P S, Meriluoto J A. Interaction between microcystins of differenthydrophobicities and lipid monolayers. Toxicon,2003,41:349-355.
    [30]Antoniou M G, de la Cruz A A, Dionysiou D D. Cyanotoxins: New generation ofwater contaminants. J Environ Eng,2005,131:1239-1243.
    [31]Kolpashchikov D M. Binary probes for nucleic acid analysis. Chem Rev,2010,110:4709-4723.
    [32]Cook D, Newcombe G. Comparison and modeling of the adsorption of twomicrocystin analogues onto powdered activated carbon. Environ Technol,2008,29:525-534.
    [33]Qiu Y, Zheng Z, Zhou Z. et al. Effectiveness and mechanisms of dye adsorption ona straw-based biochar. Bioresour Technol,2009,100:5348-5351.
    [34]Gitis V, Dlugy C, Gun J, et al. Studies of inactivation, retardation andaccumulation of viruses in porous media by a combination of dye labeled andnative bacteriophage probes. J Contam Hydrol,2011,124:43-49.
    [35]Schaar H, Clara M, Gans O, et al. Micropollutant removal during biologicalwastewater treatment and a subsequent ozonation step. Environ Pollut,2010,158:1399-1404.
    [36]Dixon M B, Falconet C, Ho L, et al. Removal of cyanobacterial metabolites bynanofiltration from two treated waters. J Hazard Mater,2011,188:288-295.
    [1] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene.Chem Rev,2010,110:132-145.
    [2] Kotchey G P, Allen B, Vedala H, et al. The enzymatic oxidation of graphene oxide.Acs Nano,2011,5:2098-2108.
    [3] Wu Z, Ren W, Gao L, et al. Synthesis of high-quality graphene with apre-determined number of layers. Carbon,2009,47:493-499.
    [4] Chen H, Muler M B, Gilmore K J, et al. Mechanically strong, electricallyconductive, and biocompatible graphene paper. Adv Mater,2008,20:3557-3561.
    [5] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties,and applications. Adv Mater,2010,22:3906.
    [6] Hu X, Mu L, Zhou Q, et al. ssDNA aptamer-based column for simultaneousremoval of nanogram per liter level of illicit and analgesic pharmaceuticals indrinking water. Environ Sci Technol,2011,45:4890-4895.
    [7] Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci,2011,4:668-674.
    [8] Yeh T F, Chan F F, Hsieh C T, et al. Graphite oxide with different oxygenatedlevels for hydrogen and oxygen production from water under illumination: Theband positions of graphite oxide. J Phys Chem C,2011,115:22587-22597.
    [9] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. NatPhotonics,2010,4:611-674.
    [10]Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci,2011,4:1113-1132.
    [11]Scheuermann G M, Rumi L, Steurer P, et al. Nanoparticles on graphite oxide andits functionalized graphene derivatives as highly active catalysts for theSuzuki_Miyaura coupling reaction. J Am Chem Soc,2009,131:8262-8270.
    [12]Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performancephotocatalyst. ACS Nano,2010,4:380-386.
    [13]Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid withenhanced plasmonic photocatalytic activity under visible light. Environ SciTechnol,2011,45:5731-5736.
    [14]Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets onTiO(2) thin film for photoinactivation of bacteria in solar light irradiation. J PhysChem C,2009,113:20214-20220.
    [15]Ham M H, Choi J H, Boghossian A A, et al. Photoelectrochemical complexes forsolar energy conversion that chemically and autonomously regenerate. Nat Chem,2010,2:929-936.
    [16]Malato S, Fernandez-Ibanez P, Maldonado MI, et al. Decontamination anddisinfection of water by solar photocatalysis: Recent overview and trends. CatalToday,2009,147:1-59.
    [17]Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis of acarbon@TiO(2) dyade structure effectively promoting visible-light photocatalysis.Adv Mater,2010,22:3317-3321.
    [18]An C, Peng S, Sun Y. Facile synthesis of sunlight-driven AgCl:Ag plasmonicnanophotocatalyst. Adv Mater,2010,22:2570-2574.
    [19]Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano,2010,4:4317-4323
    [20]Li Q, Guo B, Yu J, et al. Highly efficient visible-light-driven photocatalytichydrogen production of CdS-cluster-decorated graphene nanosheets. J Am ChemSoc,2011,133:10878-10884.
    [21]Kaniyankandy S, Achary S N, Rawalekar S, et al. Ultrafast relaxation dynamics ingraphene oxide: Evidence of electron trapping. J Phys Chem C,2011,115:19110-19116.
    [22]Matsumoto Y, Koinuma M, Kim SY, et al. Simple photoreduction of grapheneoxide nanosheet under mild conditions. ACS Appl Mater Interfaces,2010,2:3461-3466.
    [23]Nel AE, M dler L, Velegol D, et al. Understanding biophysicochemicalinteractions at the nano-bio interface. Nat Mater,2009,8:543-557.
    [24]Landsiedel R, Ma-Hock L, Kroll A, et al. Testing metal-oxide nanomaterials forhuman safety. Adv Mater,2010,22:2601-2627.
    [25]Famulok M, Hartig J S. Mayer G. Functional aptamers and aptazymes inbiotechnology, diagnostics, and therapy. Chem Rev,2007,107:3715-3743.
    [26]Vinkenborg J L, Karnowski N, Famulok M. Aptamers for allosteric regulation. NatChem Biol,2011,7:519-527.
    [27]Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science,2000,287:820-825.
    [28]Mayer G. The chemical biology of aptamers. Angew Chem Int Edn Engl,2009,48:2672-2689.
    [29]Hu X, Tulsieram KL, Zhou Q, et al. Polymeric nanoparticle-aptamer bioconjugatescan diminish the toxicity of mercury in vivo. Toxicol Lett,2012,208:69-74.
    [30]Sinclair R G, Jones E L, Gerba C P. Viruses in recreational water-borne diseaseoutbreaks: A review. J Appl Microbiol,2009,107:1769-1780.
    [31]Templeton M R, Andrews R C, Hofmann R. Particle-associated viruses in water:Impacts on disinfection processes. Crit Rev Environ Sci Technol,2008,38:137-164.
    [32]Valegard K, Liljas L, Fridborg K, et al. The three-dimensional structure of thebacterial virus MS2. Nature,1990,345:36-41.
    [33]Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situmolecular probing in living cells. J Am Chem Soc,2010,132:9274-9276.
    [34]Gao X F, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide:Reaction mechanisms, product structures, and reaction design. J Phys Chem C,2010,114:832-842.
    [35]Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drugdelivery. Nano Res,2008,1:203-212.
    [36]Parrott A M, Lago H, Adams D J, et al. RNA aptamers for the MS2bacteriophagecoat protein and the wild-type RNA operator have similar solution behavior.Nucleic Acids Res,2000,28:489-497.
    [37]Gutierrez L, Li X, Wang J, et al. Adsorption of rotavirus and bacteriophage MS2using glass fiber coated with hematite nanoparticles. Water Res,2009,43:5198-5208.
    [38]Hill VR, Kahler AM, Jothikumar N, et al. Multistate evaluation of anultrafiltration-based procedure for simultaneous recovery of enteric microbes in100-liter tap water samples. Appl Environ Microbiol,2007,73:4218-4225.
    [39]Furiga A, Pierre G, Glories M, et al. Effects of ionic strength on bacteriophageMS2behavior: implications on the assessment of virus retention by ultrafiltrationmembranes. Appl Environ Microbiol,2011,77:229-236.
    [40]Nakagawa O, Ono S, Li Z, et al. Specific fluorescent probe for8-oxoguanosine.Angew Chem Int Ed Engl,2007,46:4500-4503.
    [41]Lee Y A, Durandin A, Dedon, P C,et al. Oxidation of guanine in G, GG, and GGGsequence contexts by aromatic pyrenyl radical cations and carbonate radicalanions: relationship between kinetics and distribution of alkali-labile lesions. JPhys Chem B,2008,112:1834-1844.
    [42]Malayappan B, Garrett T J, Segal M, et al. Urinary analysis of8-oxoguanine,8-oxoguanosine, fapy-guanine and8-oxo-2'-deoxyguanosine by high-performanceliquid chromatography-electrospray tandem mass spectrometry as a measure ofoxidative stress. J Chromatogr A,2007,1167:54-62.
    [43]Levine R L, Williams J A, Stadtman E R, et al. Carbonyl assays for determinationof oxidatively modified proteins. Methods Enzymol,1994,233:346-357.
    [44]Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self-assembly ofgraphene sheets into layered bio-nanocomposites using DNA. Adv Mater,2009,21:3159-3164.
    [45]Zhang D, Li G, Yu J C. Inorganic materials for photocatalytic water disinfection. JMater Chem,2010,20:4529-4536.
    [46]Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. NanoscaleRes Lett,2011,6:1-8.
    [47]Li N, Xia T, Nel A E. The role of oxidative stress in ambient particulatematter-induced lung diseases and its implications in the toxicity of engineerednanoparticles. Free Radic Biol Med,2008,44:1689-1699.
    [48]Liga M V, Bryant E L, Colvin V L, et al. Virus inactivation by silver dopedtitanium dioxide nanoparticles for drinking water treatment. Water Res,2011,45:535-544.
    [49]Cho M, Lee J, Mackeyev Y, et al. Visible light sensitized inactivation of MS-2bacteriophage by a cationic amine-functionalized C60derivative. Environ SciTechnol,2010,44:6685-6691.
    [50]Shen L, Ji H F, Zhang H Y. A theoretical elucidation on the solvent-dependentphotosensitive behaviors of C60. Photochem Photobiol,2006,82:798-800.
    [51]Iglev H, Fischer M K, Gliserin A, et al. Ultrafast geminate recombination afterphotodetachment of aqueous hydroxide. J Am Chem Soc,2011,133:790-796.
    [52]Nguyen J, Ma Y, Luo T, et al. Direct observation of ultrafast-electron-transferreactions unravels high effectiveness of reductive DNA damage. Proc Natl AcadSci U S A,2011,108:11778-11783.
    [53]Berlett B S, Stadtman E R. Protein oxidation in aging, disease, and oxidative stress.J Biol Chem,1997,272:20313-20316.
    [54]Petrov D, Zagrovic B. Microscopic analysis of protein oxidative damage: Effect ofcarbonylation on structure, dynamics, and aggregability of villin headpiece. J AmChem Soc,2011,133:7016-7024
    [55]Strauss J H Jr, SinsheimerI R L. Purification and properties of bacteriophage MS2and of its ribonucleic acid. J Mol Biol,1963,7:43-54.
    [56]Matsumoto Y, Koinuma M, Ida S, et al. Photoreaction of graphene oxidenanosheets in water. J Phys Chem C,2010,115:19280-19286.
    [57]Ekiz O O, Urel M, Güner H, et al. Reversible electrical reduction and oxidation ofgraphene oxide. Acs Nano,2010,5:2475-2482.
    [58]Linder J, Black-Schaffer A M, Sudbo A. Triplet proximity effect andodd-frequency pairing in graphene. Phys Rev B,2010,82:1409-1413.
    [59]Morita Y, Suzuki S, Sato K, et al. Synthetic organic spin chemistry for structurallywell-defined open-shell graphene fragments. Nat Chem,2011,3:197-204.
    [1] Harush-Frenkel O, Bivas-Benita M, Nassar T, et al. A safety and tolerability studyof differently-charged nanoparticles for local pulmonary drug delivery. ToxicolAppl Pharmacol,2010,246:83-90.
    [2] Phillips M A, Gran M L, Peppas N A. Targeted nanodelivery of drugs anddiagnostics. Nano Today2010,5:143-159.
    [3] Lee J H, Yigit M V, Mazumdar D, et al. Molecular diagnostic and drug deliveryagents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev,2010,62:592-605.
    [4] Greenleaf W J, Frieda K L, Foster D A N, et al. Direct observation of hierarchicalfolding in single riboswitch aptamers. Science,2008,319:630-633.
    [5] Séguin R M, Ferrari N. Emerging oligonucleotide therapies for asthma and chronicobstructive pulmonary disease. Expet Opin Investig Drugs,2009,18:1510-1517.
    [6] Hu X, Mu L, Zhou Q, et al. ssDNA aptamer-based column for simultaneousremoval of nanogram per liter level of illicit and analgesic pharmaceuticals indrinking water. Environ Sci Technol,2011,45,4890-4895.
    [7] Fadeel B, Garcia-Bennett A E. Better safe than sorry: Understanding thetoxicological properties of inorganic nanoparticles manufactured for biomedicalapplications. Adv Drug Deliv Rev,2010,62:362-374.
    [8] Huang C F, Liu SH, Hsu CJ, et al. Neurotoxicological effects of low-dosemethylmercury and mercuric chloride in developing offspring mice. Toxicol Lett,2011,201:196-204.
    [9] Risher J F, Amler S N. Mercury exposure: evaluation and intervention; theinappropriate use of chelating agents in the diagnosis and treatment of putativemercury poisoning. Neurotoxicology,2005,26:691-699.
    [10]Khan M A K, Asaduzzaman A M, Schreckenbach G, et al. Synthesis,characterization and structures of methylmercury complexes with selenoaminoacids. Dalton Trans,2009,29:5766-5772.
    [11]Su L, Wang M, Yin S T, et al. The interaction of selenium and mercury in theaccumulations and oxidative stress of rat tissues. Ecotox Environ Safe,2008,70:483-489.
    [12]Thomas J K, Janz D M. Dietary selenomethionine exposure in adult zebrafishalters swimming performance, energetics and the physiological stress response.Aquat Toxicol,2011,102:79-86.
    [13]Tanaka Y, Oda S, Yamaguchi H, et al.15N-15N J-coupling across Hg(II): Directobservation of Hg (II)-mediated T-T base pairs in a DNA duplex. J Am Chem Soc,2007,129:244-245.
    [14]Farokhzad Q C, Cheng J J, Teply B A, et al. Targeted nanoparticle-aptamerbioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A,2006,103:6315-6320.
    [15]Tucker C E, Chen L S, Judkins M B, et al. Detection and plasma pharmacokineticsof an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838)in rhesus monkeys. J Chromatogr Biomed Appl,1999,732:203-212.
    [16]Adachi T, Kuwana T, Pan HS, et al. Sex difference in the influence of dietaryprotein deficiency on the fate of methylmercury in mice and rats. J Health Sci,2005,51:207-211.
    [17]Rabitto I S, Bastos W R, Almeida R, et al. Mercury and DDT exposure risk tofish-eating human populations in Amazon. Environ Int,2011,37:56-65.
    [18]Zhang H, Feng X B, Larssen T, et al. In inland China, rice, rather than fish, is themajor pathway for methylmercury exposure. Environ Health Perspect,2010,118:1183-1188.
    [19]Zachariadis G A, Kapsimali D C. Effect of sample matrix on sensitivity of mercuryand methylmercury quantitation in human urine, saliva, and serum using GC-MS.J Sep Sci,2008,31:3884-3893.
    [20]Hill K E, McCollum G W, Burk R F. Determination of thioredoxin reductaseactivity in rat liver supernatant. Anal Biochem,1997,253:123-125.
    [21]Wendel A. Glutathione peroxidase. Methods Enzymol,1981,77:325-333.
    [22]Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction. Anal Biochem,1979,95:351-358.
    [23]Yoshida M, Shimizu N, Suzuki M, et al. Emergence of delayed methylmercurytoxicity after perinatal exposure in metallothionein-null and wild-type C57BLmice. Environ Health Perspect,2008,116:746-751.
    [24]Farokhzad O C, Karp J M, Langer R. Nanoparticle–aptamer bioconjugates forcancer targeting. Expert Opin Drug Deliv,2006,3:311-324.
    [25]Bouchard P R, Hutabarat R M, Thompson K M. Discovery and development oftherapeutic aptamers. Annu Rev Pharmacol Toxicol,2010,50:237-257.
    [26]Wuellner U, Gavrilyuk J I, Barbas C F. Expanding the concept of chemicallyprogrammable antibodies to RNA aptamers: chemically programmedbiotherapeutics. Angew Chem Int Ed,2010,49:5934-5937.
    [27]Franco J L, Braga H C, Nunes A KC, et al. Lactational exposure to inorganicmercury: Evidence of neurotoxic effects. Neurotoxicol Teratol,2007,29:360-367.
    [28]Onishchenko N, Tamm C, Vahter M, et al. Developmental exposure tomethylmercury alters learning and induces depression-like behavior in male mice.Toxicol Sci,2007,97:428-437.
    [29]Wochner A, Menger M, Rimmele M. Characterisation of aptamers for therapeuticstudies. Expert Opin Drug Discov,2007,2:1205-1224.
    [30]Helmlinger G, Sckell A, Dellian M, et al. Acid production in glycolysis-impairedtumors provides new insights into tumor metabolism. Clin Cancer Res,2002,8:1284-1291.
    [31]Khan M A K,Wang F Y. Chemical demethylation of methylmercury byselenoamino acids. Chem Res Toxicol,2010,23:1202-1206.
    [32]Fairweather-Tait S J, Collings R, Hurst R. Selenium bioavailability: Currentknowledge and future research requirements. Am J Clin Nutr,2010,91:1484-1491.
    [33]Carvalho C M L, Chew E H, Hashemy S I, et al. Inhibition of human thioredoxinsystem: A molecular mechanism of mercury toxicity. J Biol Chem,2008,283:11913-11923.
    [34]Ralston N VC, Raymond L J. Dietary selenium's protective effects againstmethylmercury toxicity. Toxicology,2010,278:112-123.
    [35]Wagner C, Sudati J H, Nogueira C W, et al. In vivo and in vitro inhibition of micethioredoxin reductase by methylmercury. Biometals,2010,23:1171-1177.
    [36]Rayavarapu R G, Petersen W, Hartsuiker L, et al. In vitro toxicity studies ofpolymer-coated gold nanorods. Nanotechnology,2010,21:145101-145110.
    [1] Arthur C L, Pawliszyn J. Solid phase-with thermal desorption using fused silicaoptical fibers. Anal Chem,1990,62:2145-2148.
    [2] Hu X, Zhou Q. Comparisons of microwave-assisted extraction, simultaneousdistillation-solvent extraction, soxhlet extraction and ultrasound probe forpolycyclic musks in sediments: Recovery, repeatability, matrix effects andbioavailability. Chromatographia,2011,74:489-495.
    [3] Hu X, Luo Y, Zhou Q. Simultaneous analysis of selected typical antibiotics inmanure by microwave-assisted extraction and LC-MSn. Chromatographia,2010,71:217-223.
    [4] Schedl M, Wilharm G, Achatz S. et al. Monitoring polycyclic aromatichydrocarbon metabolites in human urine: Extraction and purification with a sol-gelglass immunosorbent. Anal Chem,2001,73:5669-5676.
    [5] Lord H L, Rajabi M, Safari S, et al. A study of the performance characteristics ofimmunoaffinity solid phase microextraction probes for extraction of a range ofbenzodiazepines. J Pharm Biomed Anal,2007,44:506-519.
    [6] Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers forsolid-phase microextraction. Anal Chem,2007,79:3099-3104.
    [7] Hu Y, Zheng Y, Zhu F, et al. Sol-gel coatedpolydimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir barsorptive extraction and its application to analysis of estrogens and bisphenol A. JChromatogr A,2007,1148:16-22.
    [8] Ulrich H, Martins A H B, Perquero J B. RNA and DNA aptamers in cytomicsanalysis. Cytom Part A,2004,59:220-231.
    [9] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase. Science,1990,249:505-510.
    [10]Jenison R D, Gill S C, Pardi A, et al.High-resolution molecular discrimination byRNA. Science,1994,263:1425-1429.
    [11]Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP.Biochemistry,1995,34:656-665.
    [12]Mirnaghi F S, Chen Y, Sidisky L M, et al. Optimization of the coating procedurefor a high-throughput96-blade solid phase microextraction system coupled withLC-MS/MS for analysis of complex samples. Anal Chem,2011,83:6018-6025.
    [13]Stanlis K K H, McIntosh J R. Single-strand DNA aptamers as probes for proteinlocalization in cells. J Histochem Cytochem,2003,51:797-808.
    [14]Hu X, Mu L, Wen J, et al. Immobilized smart RNA on graphene oxide nanosheetsto specifically recognize and adsorb trace peptide toxins in drinking water. Journalof Hazardous Materials,2012,213-214:387-392
    [15]Gulbakan B, Yasun E, Shukoor M I, et al. A dual platform for selective analyteenrichment and ionization in mass spectrometry using aptamer-conjugatedgraphene oxide. J Am Chem Soc,2010,132:17408-17410.
    [16]Siddiqui-Jain A, Grand CL, Bearss DJ, et al. Direct evidence for a G-quadruplex ina promoter region and its targeting with a small molecule to repress c-MYCtranscription. Proc Natl Acad Sci U S A,2002,99:11593-11598.
    [17]Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescenceresonance energy transfer (CRET) detection of DNA, metal ions, andaptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnSquantum dots. J Am Chem Soc,2011,133:11597-11604.
    [18]Hu X, Mu L, Zhou QX, et al. ssDNA aptamer-based column for simultaneousremoval of nanogram per liter level of illicit and analgesic pharmaceuticals indrinking water. Environ Sci Technol,2011,45:4890-4895.
    [19]Nithipatikom K, Mizumura T, Gross G J. Determination of plasma adenosine byhigh-performance liquid chromatography with column switching and fluorometricdetection. Anal Biochem,1994,223:280-284.
    [1] Wochner A, Menger M, Rimmele M. Characterisation of aptamers for therapeutic studies.Expert Opin Emerg Dr,2007,2:1205-1224.
    [2] Wang Y, Liu B. Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin inblood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir,2009,25:12787-12793.
    [3] Nielsen L J, Olsen L F, Ozalp V C. Aptamers embedded in polyacrylamide nanoparticles: atool for in vivo metabolite sensing. ACS Nano,2010,4:4361-4370.
    [4] Hu X, Mu L, Zhou Q, et al. ssDNA aptamer-based column for simultaneous removal ofnanogram per liter level of illicit and analgesic pharmaceuticals in drinking water. EnvironSci Technol,2011,45:4890-4895.
    [5] Krug H F, Wick P. Nanotoxicology: An interdisciplinary challenge. Angew Chem Int EdEngl.2011,50:1260-1278
    [6] Hernandez-Alonso M D, Fresno F, Suarez S,et al. Development of alternative photocatalyststo TiO2: Challenges and opportunities. Energy Environ Sci,2009,2:1231-1257.
    [7] Liu X, Vinson D, Abt D, et al. Differential toxicity of carbon nanomaterials in Drosophila:larval dietary uptake is benign, but adult exposure causes locomotor impairment andmortality. Environ Sci Technol,2009,43:6357-6363.
    [8] Farhangi N, Chowdhury R R, Medina-Gonzalez Y, et al. Visible light active Fe doped TiO2nanowires grown on graphene using supercritical CO2. Appl Catal B: Environ,2011,110:25-32.
    [9] Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACSNano,2011,5:2098-2108.
    [10] Liu J, Li Y, Li Y, et al. Noncovalent DNA decorations of graphene oxide and reducedgraphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly.J Mater Chem,2010,20:10944-10945.
    [11] Hu X, Mu L, Wen J, et al. Covalently synthesized graphene oxide-aptamer nanosheets forefficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon,2012,50:2772-2781.
    [12] Hu X, Mu L, Wen J, et al. Immobilized smart RNA on graphene oxide nanosheets tospecifically adsorb trace peptide toxins in drinking water. J Hazard Mater,2012,213-214:387-392.
    [13] Card J W, Jonaitis T S, Tafazoli S, et al. An appraisal of the published literature on the safetyand toxicity of food-related nanomaterials. Crit Rev Toxicol,2011,41:22-49.
    [14] Harper S L, Carriere J L, Miller J M, et al. Systematic evaluation of nanomaterial toxicity:Utility of standardized materials and rapid assays. ACS Nano,2011,5:4688-4697.
    [15] Petersen E J, Pinto R A, Mai D J, et al. Influence of polyethyleneimine graftings ofmulti-walled carbon nanotubes on their accumulation and elimination by and toxicity toDaphnia magna. Environ Sci Technol,2011,45:1133-1138.
    [16] Fako V E, Furgeson D Y. Zebrafish as a correlative and predictive model for assessingbiomaterial nanotoxicity. Adv Drug Deliv Rev,2009,61:478-486.
    [17] Scown T M, Santos E M, Johnston B D, et al. Effects of aqueous exposure to silvernanoparticles of different sizes in rainbow trout. Toxicol Sci,2010,115:521-34.
    [18] Chen C, Zhou Q, Liu S, et al. Acute toxicity, biochemical and gene expression responses ofthe earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere,2011,83:1147-1154.
    [19] Cai X, Tan S, Lin M, et al. Synergistic antibacterial brilliant blue/reduced grapheneoxide/quaternary phosphonium salt composite with excellent water solubility and specifictargeting capability. Langmuir,2011,27:7828-7835.
    [20] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano,2010,4:4317-4323.
    [21] Sinclair R G, Jones E L, Gerba C P. Viruses in recreational water-borne disease outbreaks: Areview. J Appl Microbiol,2009,107:1769-1780.
    [22] Khodakovskaya M V, de Silva K, Nedosekin D A, Dervishi E, et al. Complex genetic,photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl AcadSci U S A,2011,108:1028-1033.
    [23] Begurn P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage,tomato, red spinach, and lettuce. Carbon,2011,49:3907-3919.
    [24] Dietz K J, Herth S. Plant nanotoxicology. Trends Plant Sci,2011,16:582-589.
    [25] Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles toplants. Environ Sci Technol,2009,43:9473-9479.
    [26] Rahimi F, Murakami K, Summers J L, et al. RNA aptamers generated against oligomericAbeta40recognize common amyloid aptatopes with low specificity but high sensitivity. PloSOne,2009,4: e7694.
    [27] Li H, Zhai J, Tian J, et al. Carbon nanoparticle for highly sensitive and selective fluorescentdetection of mercury(II) ion in aqueous solution. Biosens Bioelectron,2011,26:4656-4660.
    [28] Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform forvisual detection. Angew Chem Int Ed Engl,2010,49:1052-1056.
    [29] Chu T C, Marks J W3rd, Lavery L A, et al. Aptamer: Toxin conjugates that specificallytarget prostate tumor cells. Cancer Res,2006,66:5989-5992.
    [30] Hamula C L A, Zhang H, Li F, et al. Selection and analytical applications of aptamersbinding microbial pathogens. TrAC-Trend Anal Chem,2011,30:1587-1597.
    [31] Bouchard P R, Hutabarat R M, Thompson K M. Discovery and development of therapeuticaptamers. Annu Rev Pharmacol Toxicol,2010,50:237-257.
    [32] Apte RS, Modi M, Masonson H, et al. Pegaptanib1-year systemic safety results from asafety-pharmacokinetic trial in patients with Neovascular age-related macular degeneration.Ophthalmology,2007,114:1702-1712.
    [33] Blake CM, Wang H, Laskowitz DT, et al. A Reversible Aptamer Improves Outcome andSafety in Murine Models of Stroke and Hemorrhage. Oligonucleotides,2011,21:11-19.
    [34] Leite Diniz C, Da Pieve C, Perkins A, et al. Pharmacokinetic and biodistribution studies ofanti MUC1PEGylated aptamers with potential in the targeted radiotherapy of breast cancer.Ejc Suppl,2010,8:59-60.
    [35] Walther C, Meyer K, Rennert R, et al. Quantum dot-carrier peptide conjugates suitable forimaging and delivery applications. Bioconjug Chem,2008,19:2346-2356.
    [36] van Wijngaarden P, Qureshi SH. Inhibitors of vascular endothelial growth factor (VEGF) inthe management of neovascular age-related macular degeneration: A review of currentpractice. Clin Exp Optom,2008,91:427-437
    [37] Burmeister P E, Wang C, Killough J R, et al.2'-deoxy purine,2'-O-methyl pyrimidine(dRmY) aptamers as candidate therapeutics. Oligonucleotides,2006,16:337-351.
    [38] Dougan H, Lyster D M, Vo C V, et al. Extending the lifetime of anticoagulantoligodeoxynucleotide aptamers in blood. Nucl Med Biol,2000,27:289-297.
    [39] Drolet D W, Nelson J, Tucker C E, et al. Pharmacokinetics and safety of an anti-vascularendothelial growth factor aptamer (NX1838) following injection into the vitreous humor ofrhesus monkeys. Pharm Res,2000,17:1503-1510.
    [40] Brandal S, Blake C M, Sullenger B A, et al. Effect of PAI-1specific RNA aptamers on celladhesion and motility. Blood,2009,114:840-840.
    [41] Dhar S, Kolishetti N, Lippard S J, et al. Targeted delivery of a cisplatin prodrug for safer andmore effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A,2011,108:1850-1855.
    [42] Mallikaratchy P, Tang Z, Tan W. Cell specific aptamer-photosensitizer conjugates as amolecular tool in photodynamic therapy. Chemmedchem,2008,3:425-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700