用户名: 密码: 验证码:
功能化核壳型纳米铁的制备及修复地下水中六价铬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬及其化合物是金属加工、冶金工业、制革、电镀、油漆、印染、制药、照相制版等行业必不可少的原料。由于不能对这些行业产生的含铬废水进行有效的控制和不合理排放,地下水常存在着严重的铬污染现象。Cr(Ⅲ)和Cr(Ⅵ)是铬的两种主要形态。其中,Cr(Ⅵ)的溶解度和迁移性较大,且具有致癌、致畸和致突变作用。相对来说,Cr(Ⅲ)的毒性较小并且是人体内的一种必需元素,其易发生沉淀、迁移性较弱。因此,将Cr(Ⅵ)还原为Cr(III)是一种重要的Cr(VI)污染控制技术。
     纳米零价铁由于粒径小、比表面积大、还原性强,成为一种新型污染控制技术。但是纳米铁颗粒极易团聚,迁移能力差,不易到达污染地区,从而降低了反应活性即去除污染物的能力。此外,纳米铁颗粒在空气中容易氧化,也为它的使用和运输带来不便。最常见的增强纳米铁稳定性的方法是对纳米铁表面进行包覆或者将其负载在载体上,这是因为包覆层和载体可以提高纳米铁颗粒之间的空间位阻和静电排斥力,从而防止纳米铁颗粒团聚。
     但是常规的纳米铁载体价格较高,不适应大规模生产,而包覆层材料的选择会影响到纳米铁的活性、稳定性、成本及二次污染。针对上述问题,本文选用合适的载体和包覆剂制备了功能化核壳型纳米铁复合材料—硅微粉负载型纳米铁(SF-Fe)和二氧化硅包覆型纳米铁(Fe@SiO_2),既保证纳米铁的活性、稳定性,又能在地下含水层具有较强的迁移能力。论文的主要研究内容有以下四部分:
     (1)用经济、无害的固体废弃物硅微粉作载体,通过KBH_4与FeCl3反应的简单液相还原法制备SF-Fe。采用XRD、TEM、SEM、FTIR等对SF-Fe的形貌与结构进行表征,并将其作还原剂用于地下水中Cr(VI)的去除。考察了硅微粉投加量对SF-Fe去除Cr(VI)效果的影响。结果表明:通过TEM分析,SF-Fe为不完全核壳型复合材料,载体硅微粉为复合材料的内核,球形纳米铁为外壳,均匀的分布在硅微粉的表面。纳米铁粒径分布为20~110nm,整个微球粒径为0.15~0.45μm。硅微粉表面的羟基对稳定纳米铁起到了关键作用。当硅微粉投加量为84wt%时,所制备的SF-Fe去除Cr(VI)效果最佳。与未负载纳米铁相比,SF-Fe对Cr(VI)的去除率升高了22.55%。
     (2)利用液相还原与改进的St ber法相结合,通过向原硅酸乙酯(TEOS)和氯化铁混合溶液直接添加硼氢化钾,一步合成了Fe@SiO_2复合材料。本制备方法无需表面改性剂和刺激性氨水,无需改变反应体系,简便实用。通过XRD、EDAX、TEM、UV-Vis、FTIR、XPS等对所得样品的形貌、结构和组成进行表征。将制备的Fe@SiO_2用于水体中Cr(Ⅵ)还原去除。XRD和EDAX分析证实了,KBH_4促进了TEOS发生水解缩合反应,生成了无定形的SiO_2。TEM分析表明:KBH_4滴加速度和TEOS的投加量对复合材料的结构形态具有一定的影响。TEOS投加量为0.1mL,KBH_4滴加速度为5mL min-1时,所制备的Fe@SiO_2是一种完全核壳型复合材料,它具有清晰的核壳结构,多孔的SiO_2层包裹1-2个球形纳米铁粒子,纳米铁平均粒径为25nm,SiO_2层的厚度为9nm。随着TEOS投加量的增加,SiO_2层变厚,纳米铁核具有更好的分散性。KBH_4滴加速度太快会导致单体二氧化硅生成,太慢又会导致纳米铁团聚。通过FTIR和XPS分析证明,TEOS水解缩合生成的SiO_2具有表面活性羟基,通过化学键合作用均匀的包覆在纳米铁颗粒表面。与未包覆型纳米铁相比,Fe@SiO_2对Cr(Ⅵ)的去除能力显著提高。TEOS投加量为0.1mL,KBH_4的滴加速度为5mL min-1,所制备的Fe@SiO_2对Cr(Ⅵ)去除能力(以Fe的质量计算)达到最大,为466.67mg g-1,而未包覆型纳米铁仅为76.35mg g-1。
     (3)通过批实验,考察了各种干扰物质对SF-Fe和Fe@SiO_2去除Cr(Ⅵ)的影响。研究了SF-Fe与Fe@SiO_2去除水中Cr(Ⅵ)的动力学。通过XPS测定对反应产物进行分析,探讨载体硅微粉、二氧化硅外壳的作用。
     (4)对SF-Fe与Fe@SiO_2填充的石英砂柱来说,随着时间的推移,出水的Cr(Ⅵ)的浓度基本呈上升趋势,但零价纳米铁并没有被完全消耗掉。求得SF-Fe与Fe@SiO_2去除铬的能力分别为每克纳米铁可以去除12与65mg Cr(Ⅵ),远低于批实验能力。这主要归因于干燥使纳米铁团聚、未研磨,导致所制备的核壳型复合材料的表面积大大降低。
     通过研究纳米铁在具有一定孔隙度和水力条件下的石英砂柱中的透过率来评价其在模拟土壤中的迁移性能。考察了离子强度和腐殖酸对SF-Fe、Fe@SiO_2复合材料在模拟土壤中的迁移特性的影响。结果表明:与未负载纳米铁相比,SF-Fe及Fe@SiO_2在模拟土壤迁移能力增强;在去离子水条件下,未负载纳米铁很少通过石英砂柱,而51.50%的SF-Fe能高效的通过竖直石英砂柱,88.03%的Fe@SiO_2能通过竖直石英砂柱。此外,在水平方向,两种纳米铁硅复合材料的迁移性仍然很强。离子强度对SF-Fe的具有一定负面影响,但腐殖酸能促进SF-Fe迁移。
     总之,本论文首次选用被称为固体废弃物的硅微粉作为载体,开发出一种分散性强并且具有较高活性的核壳型纳米铁复合材料;发明了一步法制备二氧化硅包覆型纳米铁的“绿色”合成方法,发现试剂KBH_4在体系中既可以作为合成纳米铁的还原剂又可作为生成SiO_2的催化剂。本论文对SF-Fe和Fe@SiO_2在石英砂柱竖直和水平方向的迁移能力的研究,是一次有实际意义的尝试,除了为同行在研究方法上提供参考外,其结果也可为进行实际地下水纳米铁修复技术提供理论指导。
Chromium, with its great economic importance for industrial use, is widely usedin a variety of industrial processes. It is one of the important pollutants found in soiland groundwater. Chromium exists in the environment primarily in two valence states:Cr(Ⅵ) and Cr(III). Cr(Ⅵ) is a toxic, carcinogenic substance to human and animals.Furthermore, Cr(Ⅵ) has high solubility in aqueous phase over almost the entire pHrange and it is only weakly sorbed onto inorganic surfaces, thus it is quite mobile inthe natural environment. On the contrary, Cr(III) is nontoxic and an essential humannutrient, which does not readily migrate in groundwater since it usually precipitatesas Cr(OH)3or as mixed Fe(III)–Cr(III)(oxy)hydroxides.
     In situ chemical reduction of Cr(Ⅵ) by zero-valent iron nanoparticles (nZⅥ)represents a potentially more effective, lower cost alternative to other remediationtechniques. However, there are still serious technical challenges associated with itsuse. For example, nZⅥ prepared using traditional methods tend to either agglomeraterapidly or react quickly with the surrounding media (e.g., dissolved oxygen or water),resulting in rapid loss in reactivity. Also, they are essentially not transportable ordeliverable in soils, and thus, cannot be used for in situ applications. Several methodshave been proposed to solve this problem. One approach is attaching nZⅥ to supportmaterial such as resin and carbon. Another approach is to directly modify the surfacesof individual nZⅥ by adding poly acrylic acid, starch and carboxymethylcellulose. Astabilizer can enhance dispersion of nanoparticles through electrostatic repulsion andstatic hindrance.
     However, the cost of general used support materials is high. And the choice ofmodifier can affect the activity, stability and cost of nanoiron. To solve theseproblems, a suitable support and modifier were chosen in this study. The core-shellsilica fume-supported Fe0(SF-Fe) nanoparticles and SiO_2-coated Fe0(Fe@SiO_2)nanoparticles were prepared. These nanoparticles had high activity and mobility. Themain contents are as follows:
     (1)Fe0nanoparticles supported on commercial and friendly silica fume weresynthesized by borohydride reduction of ferric chloride in the presence of a support material. Transmission electron microscopy, X-ray diffraction and Fourier transforminfrared were used to characterize the SF-Fe. The feasibility of using this SF-Fe forreductive immobilization of hexavalent chromium Cr(Ⅵ) in soil and groundwaterwas studied. The effect of silica fume percentage on Cr(Ⅵ) removal by SF-Fe wasinvestigated, and was compared with those of unsupported Fe0nanoparticlescontaining the same amount of iron as SF-Fe. By analysis of TEM micrographs, itcan be seen that, the nanomaterial had core-shell structure and approximatelyspherical Fe was dispersed well on the surface of silica fume. The composite particlesize range was on the order of0.15-0.45μm, and the Fe size ranged from20nm to110nm. FTIR study indicated that hydroxyl group was the anchor for silica fume oniron which was accountable for the stability of Fe0nanoparticles. Compared withunsupported Fe0, SF-Fe was significantly more active in Cr (Ⅵ) removal especiallyin84wt%silica fume loading. The experiment results showed that the removal ratioof Cr(Ⅵ) by SF-Fe was22.55%higher than that of unsupported Fe0.
     (2)Without using aqueous ammonia and a surface modifier, a facile one-stepmethod was developed to fabricate Fe0nanoparticles coated with a SiO_2shell(Fe@SiO_2) by a modified St ber method combined with an aqueous reductionmethod. The Fe@SiO_2was prepared by directly adding KBH_4to a mixed solution oftetraethylorthosilicate (TEOS) and anhydrous ferric chloride. The structure andmorphology of the as-synthesized powders were investigated by X-ray powderdiffraction, energy dispersion analysis of X-ray, transmission electron microscopy,ultraviolet-visible absorption spectroscopy, Fourier-transform infrared spectrometryand X-ray photoelectron spectroscopy. The XRD and EDAX analysis had showedthat the amorphous SiO_2was prepared by the KBH_4. The TEOS amount and KBH_4injection speed had influence on Fe@SiO_2structure. For preparation of0.015g bettercoated Fe0nanoparticles, the perfect TEOS dose was0.1mL and the optimal KBH_4injection speed was5mL min-1. The TEM images showed that under this optimumcondition the prepared Fe@SiO_2had a distinct core-shell structure. One or two Fe0nanoparticles (25nm in diameter) were homogeneously coated by a porous SiO_2shell(9nm). With an increase in the amount of added TEOS the Fe0nanoparticles hadbetter dispersion and the thickness of the SiO_2coating increased gradually. Lower KBH_4injection speed was preferable to assemble Fe0nanoparticles. The feasibility ofusing the prepared Fe@SiO_2for the reductive immobilization of Cr(Ⅵ) in water wasstudied. Compared with uncoated Fe0nanoparticles, Cr(Ⅵ) removal by Fe@SiO_2increased greatly. The removal ability of the prepared Fe@SiO_2was the highest atTEOS dosage of0.1mL and KBH_4injection speed of5mL min-1. The highestremoval ability of Fe@SiO_2was466.67mg·g-1and it was only76.35mg·g-1foruncoated Fe0nanoparticles.
     (3) Batch experiments were conducted to evaluate the influences ofinterference factors on Cr(Ⅵ) reduction by the SF-Fe and Fe@SiO_2. The rate ofreduction of Cr(Ⅵ) to Cr(III) can be expressed by a pseudo-first-order reactionkinetics. In order to study the role of silica fume and SiO_2shell, the reaction productwas analyzed by XPS.
     (4)The column experiments had showed that at certain hydraulic conditions,the Cr(Ⅵ) removal rate gradually slowed down as time went on. However, thenanoiron was not used up. The removal ability of Fe@SiO_2and SF-Fe were only65,12mg·g-1respectively, which were much lower than batch experiment. This may bethat the nanomaterials were heavily aggregated by drying and was not grinded.
     The mobility of SF-Fe and Fe@SiO_2through sediments was tested usingvertical and horizontal column transport experiments. The experiments resultsconfirmed that the SF-Fe and Fe@SiO_2moved more effectively through model soilsthan unsupported Fe0nanoparticles. It was indicated that51.50%and38.29%ofSF-Fe were eluted from the vertical and horizontal columns under the specifiedconditions, respectively. And88.03%and61%of Fe@SiO_2were eluted from thevertical and horizontal columns, respectively. Increasing the solution ionic strengthwould decrease the mobility of SF-Fe and Fe@SiO_2due to the increased attachmentto sand grains. However, the mobility of Fe0nanoparticles was enhanced by thepresence of humic acid.
     In summation, this study was the first time to use silica fume as a support for Fe0nanoparticles, and the prepared core-shell nanomaterials had high dispersion andactivity. A facile and friendly one-step method to fabricate monodispersed core-shellFe@SiO_2nanocomposites was discussed. Borohydride was acted not only as a reductant for iron salt but also a catalyst for hydrolysis and polycondensation reactionof TEOS. The study of mobility of SF-Fe and Fe@SiO_2in vertical and horizontalcolumn filled with quartz sand was a meaningful effort. It not only served as areference for the research methods, but also provided theory guide for the practicalapplication of nanoiron technology.
引文
[1] Evgenii V. P. A recent concept of hydrogeology and its ecological problems.地学前沿,1995,3(1-2):49-56.
    [2]王大纯.水文地质学基础.北京:地质出版社,1998.
    [3]赵文智,程国栋.干旱区生态水文过程研究若干问题评述.科学通报,2001,46(22):1851-1857.
    [4]李雅. Fe0-PRB修复地下水中铬铅复合污染的研究.[博士学位论文].西安:西北农林科技大学,2011.
    [5]范春辉.浅析地下水资源的污染与防治.环境科学与管理,2007,32(8):35-37.
    [6]郭秀红,孙继朝,李政红,等.我国地下水质量分布特征浅析.水文地质工程地质,2005,3:51-54.
    [7]郝华.我国城市地下水污染状况与对策研究.水利发展研究,2004,4(3):23-25.
    [8]李庆诚.全国重点环境考核城市地下水污染概况与防治对策.地下水,1992,14(1):2-5.
    [9]陈秀成,曹瑞钰.地下水污染治理技术的进展.中国给水排水,2001,17(4):23-26.
    [10]唐克旺,吴玉成,侯杰.中国地下水资源质量评价(II)―地下水水质现状和污染分析.水资源保护,2006,22(3):1-4.
    [11]张长红,陈维楼.建湖县15年来农村地下水水质的变化及对策.中国卫生检验杂志.2012,22(1):151-153.
    [12]安毅.纳米铁-反硝化细菌复合体系修复地下水中NO3-N污染的研究.[博士学位论文].天津:南开大学,2010.
    [13]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究.[博士学位论文].长沙:中南大学,2009.
    [14]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用.再生资源研究,2004,6:34-38.
    [15]彭莉.含铬废渣稳定化处理技术研究.含铬废渣稳定化处理技术研究.[硕士学位论文].重庆:西南大学,2006.
    [16] http://www.samsco.com.cn/info/45740.htm2004年全国各工业行业废水排放及处理情况.
    [17]张红梅,速宝玉.垃圾填埋场渗滤液及对地下水污染研究进展.水文地质工程地质,2003,6:110-115.
    [18]相震,吴向培.工业性铬污染对湟水水质的影响.环境与健康杂志,2004,21(3):160-161.
    [19]王威,刘东华,蒋悟生.铬污染地区环境对植物生长的影响.农业环境保护,2002,2l(3):257-259.
    [20]鲁先文,余林,宋小龙,等.重金属铬对小麦叶绿素合成的影响.安徽农业通报,2007,13(14):101-102.
    [21]王新,梁仁禄.土壤-水稻系统中重金属复合污染物交互作用及生态效应的研究.生态学杂志,2000,19(4):38-42.
    [22]陆昌淼,马世豪,张忠祥.污水综合排放标准详解.中国标准出版社:北京,1991; p55-56.
    [23]朱月珍.影响土壤中铬迁移转化的几个因素.土壤学报,1985,22(4):390-393.
    [24]李天杰.土壤环境学.北京:高等教育出版杜.1996.
    [25]陈英旭,朱荫湄,袁可能.土壤中铬的化学行为.浙江农业大学学报,1990,16(2):119-124.
    [26]韩英魁.环保治理,刻不容缓.铬盐工业,2002,2:22-30.
    [27]瞿建国,申如香,徐伯兴,等.微生物法处理含铬(VI)废水的研究.化工环保,2005,25(1):1-4.
    [28]张纯一.铬(VI)还原菌的分离筛选及应用研究.[硕士毕业论文].华东师范大学,2004.
    [29]周孝德.第二届水电工程青年学术论文集.北京:中国科学技术出版社,1992.
    [30]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地球科学进展,2002,17(6):833-839.
    [31] Baker A. J. M., McGrath S. P., Sidoli C. M. D., et al. The possibility of in situ heavy metaldecontamination of polluted soils using crops of metal-accumulating plants. Environmentalbiotechnology in waste treatment and recycling,1994,11(1-4):41-49.
    [32] Dushenkov V., Kumar P. B. A. N., Motto H., et al. Rhizofiltration: the use of plants to removeheavy metals from aqueous streams. Environmental Science&Technology,29(5):1239-1245.
    [33] Bennicelli R., Stpniewska Z., Banach A., et al. The ability of Azolla caroliniana to removeheavy metals (Hg (II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere,2004,55(1):141-146.
    [34] Zhang X. H., Liu J., Huang H. T., et al. Chromium accumulation by the hyperaccumulatorplant Leersia hexandra Swartz. Chemosphere,2007,67:1138-1143.
    [35]郝志伟.改性零价铁还原去除污染水体中的六价铬和硝酸盐的研究.[博士后学位论文].上海:同济大学,2008.
    [36] Tan W. T., Ooi S. T., Lee C. K. Removal of chromium (VI) from solution by coconut huskand palm pressed fibers. Environmental Technology,1993,14(3):277-282.
    [37] Bosinco S., Roussy J., Guibal E., et al. Interaction mechanisms between hexavalentchromium and corncob. Environmental Technology,1996,17(1):55-62.
    [38] Karthikeyan T., Rajgopal S., Miranda L. R. Chromium (VI) adsorption from aqueoussolution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials,2005,124(1-3):192-199.
    [39]耿兵.壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究.[博士学位论文].天津:南开大学,2009.
    [40] Ozaki H., Sharma I., Saktaywin W. Performance of an ultra-low-pressure reverse osmosismembrane (UI PROM) for separating heavy metal: effects of interference parameters.Desalination,2002,144:287-294.
    [41]吴克明,石瑛,王俊,等.离子交换树脂处理钢铁钝化含铬废水的研究.工业安全与环保.2005,3l (4):22-23.
    [42]邵涛,姜春梅.膨润土对不同价态铬的吸附研究.环境科学研究,1999,6(7):112-116.
    [43]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京大学学报,2003,30(2):19-22.
    [44]邓小红.铁屑内电解法处理电镀含铬废水的实验研究及应用.环境工程学报,2008,2(10):25-29.
    [45]彭位华,桂和荣.国内铁氧体法处理重金属废水应用现状水处理技术.水处理技术,2010,36(5):22-27.
    [46]黄继国,张永祥. GT-铁氧体法处理含铬废水实验研究.长春科技大学学报,2000,30(1):65-66.
    [47]杨维,王立东,徐丽,等.铬污染地下水的PRB反应介质筛选及修复实验.吉林大学学报(地球科学版),2008,38(5):854-858.
    [48] Korte N. E. Zero-valent iron permeable reactive barriers: a review of performance.Environmental Sciences Division, Publication,2000, No5056.
    [49] Gandhi S., Oh B. T., Schnoor J. L., et al. Degradation of TCE, Cr(VI), sulfate, and nitratemixtures by granular iron in flow-through columns under different microbial conditions.Water Research,2002,36(8):1973-1982.
    [50] Farrell J., Wang J. P., O’day P., et al. Electrochemical and spectroscopic study of arsenateremoval from water using zero-valent iron media. Environmental Science&Technology,2001,35(10):2026-2032.
    [51] Singh I. B., Singh D. R. Effects of pH on Cr-Fe interaction during Cr(VI) removal bymetallic iron. Environment Technology,2003,24(8):1041-1047.
    [52] Westerhoff P., James J. Nitrate removal in zero-valent iron packed columns. Water Research,2003,37(8):1818-1830.
    [53] Xiong Z., Zhao D. Y., Pan G. Rapid and complete destruction of perchlorate in water andion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research,2007,41(15):3497-3505.
    [54] An Y., Li T. L., Jin Z. H., et al. Decreasing ammonium generation using hydrogenotrophicbacteria in the process of nitrate reduction by nanoscale zero-valent iron. Science of the TotalEnvironment,2009,407:5465-5470.
    [55] Sayles G. D., You G. R., Wang M. X., et al. DDT, DDD, and DDE dechlorination byzero-valent iron, Environmental Science&Technology,1997,31(12):3448-3454.
    [56] Fennelly J. P., Roberts A. L. Reaction of1,1,1-trichloroethane with zero-valent metals andbimetallic reductants. Environmental Science&Technology,1998,32(13):1980-1988.
    [57] Nam S., Tratnyek P. G. Reduction of azo dyes with zero-valent iron. Water Research,2000,34(6):1837-1845.
    [58] Keum Y. S., Li Q. X. Reduction of nitroaromatic pesticides with zero-valent iron.Chemosphere,2004,54(3):255-263.
    [59] Gillham R. W., O’Hannesin S. F. Enhanced degradation of halogenated aliphatics byzero-valent iron. Ground water,1994,32(6):958-967.
    [60] Xu X. H., Wei J. J., Wang D. H. Studies on dechlorination of chlorophenols with Pd/Fe andnanoscale Pd/Fe. China Environmental Science,2004,24:76-80.
    [61] Devlin J. F., Klausen J., Schwarzenbach R. P. Kinetics of nitroaromatic reduction on granulariron in recirculating bath experiments. Environmental Science&Technology,1998,32:1941-1947.
    [62]徐新华,卫建军,汪大晕. Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学,2004,24(1):76-80.
    [63]童少平,胡丽华,魏红,等. Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学,2005,26(4):59-62.
    [64]全燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国环境科学,1998,18(4):333-338.
    [65] Huang C. P. Nitrate reduction by metallic iron. Water Research,1997,32(8):2257-2264.
    [66] Paul W., Jenifer J. Nitrate removal in zero-valent Iron packed columns. Water Research,2003(37):1818-1830.
    [67]周玲,李铁龙,金朝晖,等.还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报,2006,25(2):68-72.
    [68] Blowes D. W., Ptacek C. J., Jambor J. L. In-situ remediation of Cr(VI)-contaminatedgroundwater using permeable reactive walls: laboratory studies. Environmental Science&Technology,1997,31(12):3348-3357.
    [69] Alowitz M. J., Scherer M. M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.Environmental Science&Technology,2002,36(3):299-306.
    [70] Gheju M., Balcu I. Removal of chromium from Cr(VI) polluted wastewaters by reductionwith scrap iron and subsequent precipitation of resulted cations. Journal of HazardousMaterials,2011,196:131-138.
    [71] Cui D. Q., Spahiu K. The reduction of U(VI) on corroded iron under anoxic conditions.Radiochimica Acta,2002,90(9-11):623-628.
    [72] Wu W. M., Carley J., Luo J., et al. In situ bioreduction of uranium(VI) to submicromolarlevels and reoxidation by dissolved oxygen. Environmental Science&Technology,2007,41(16):5716-5723
    [73] Cruywagen J. J., Dewet H. F. Equilibrium studies of the adsorption of molybdenum (VI) onthe cultivated carbon. Polyhedron,1988,7(7):547-556.
    [74] Zhang Y. Q., Wang J. F., Amrhein C. Removal of selenate from water by zero valent iron.Journal of Environmental Quality,2005,34(2):487-495.
    [75] Yoon I. H., Kim K.W., Bang S., et al. Reduction and adsorption mechanisms of selenate byzero-valent iron and related iron corrosion. Applied Catalysis B-Environmental,2011,104(1-2):185-192.
    [76] Kanel S. R., Greneche J. M., Choi H. Arsenic(V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material. Environmental Science&Technology,2006,40:2045-2050.
    [77] Su C., Puls R. W. In situ remediation of arsenic in simulated groundwater using zerovalentiron: laboratory column tests on combined effects of phosphate and silicate. EnvironmentalScience&Technology,2003,37:2582-2587.
    [78] Leupin O. X., Hug S. J. Oxidation and removal of arsenic (III) from aerated groundwater byfiltration through sand and zero-valent iron. Water Research,2005,39(9):1729-1740.
    [79] Liu Q. Y., Bei Y. L., Zhou F., et al. Removal of lead(II) from aqueous solution withamino-functionalized nanoscale zero-valent iron. Central European Journal of Chemistry,2009,7(1):79-82.
    [80] Furukawa Y., Kim J. W., Watkins J., et al. Formation of ferrihydrite and associated ironcorrosion products in permeable reactive barriers of zero-valent iron. Environmental Science&Technology,2002,36(24):5469-5475.
    [81] Ito D., Miura K., Ichimura T., et al. Removal of As, Cd, Hg and Pb ions from solution byadsorption with bacterially-produced magnetic iron sulfide particles using high gradientmagnetic separation.18th International Conference on Magnet Technology,2004,14(2):1551-1553.
    [82] Pratt A. R., Blowes D. W., Ptacek C. J. Products of chromate reduction on proposedsubsurface remediation material. Environmental Science&Technology,1997,31(9):2492-2498.
    [83] Lien H. L., Wilkin R. T. High-level arsenite removal from groundwater by zero-valent iron.Chemosphere,2005,59(3):377-386.
    [84] Melitas N., Wang J. P., Conklin M., et al. Understanding soluble arsenate removal kinetics byzero valent iron media. Environmental Science&Technology,2002,36(9):2074-2081.
    [85] Su C. M., Puls R. W. Arsenate and arsenite removal by zero valent iron: effects of phosphate,silicate, carbonate, borate, sulfate, chromate, molybdate and nitrate, relative to chloride.Environmental Science&Technology,2001,35(22):4562-4568.
    [86] Weisener C. G., Sale K. S., Smyth D. J. A, et al. Field column study using zerovalent iron formercury removal from contaminated groundwater. Environmental Science&Technology,2005,39(16):6306-6312.
    [87] Powell R. M., Puls R. W. Proton generation by dissolution of intrinsic or augmentedaluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron.Environmental Science&Technology,1997,31(8):2244-2251.
    [88] Fiedor J. N., Bostick W. D., Jarabek R J, et al. Understanding the mechanism of uraniumremoval from groundwater by zero-valent iron using X-ray photoelectron spectroscopy.Environmental Science&Technology,1998,32(10):1466-1473.
    [89] Gu B., Liang L., Dickey M. J., et al. Reductive precipitation of uranium(VI) by zero-valentiron. Environmental Science&Technology,1998,32(21):3366-3373.
    [90] Zhang Y. Q., Amrhein C., Frankenberger RJ W. T. Effect of arsenate and molybdate onremoval of selenate from aqueous solution by zero-valent iron. Environmental Science&Technology,2005,350(1-3):1-11.
    [91] Wilkin R. T., McNeil M. S. Laboratory evaluation of zero-valent iron to treat water impactedby acid mine drainage. Chemosphere,2003,53(7):715-725.
    [92] Morrison S. J., Metzler D. R., Dwyer B. P. Removal of As, Mn, Mo, Se, U, V and Zn fromgroundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.Journal of Contaminant Hydrology,2002,56(1-2):99-116.
    [93] Cantrell K. J., Kaplan D. I., Wietsma T. W. Zero-valent iron for the in situ remediation ofelected metals in groundwater. Journal of Hazardous Materials,1995,42(2):201-212.
    [94]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [95]杨鼎宜,孙伟.纳米材料的结构特征与特殊性能.材料导报,2003,17(10):7-11.
    [96]施周,许光眉,张彬.纳米颗粒的分散及其在水与废水处理中的应用.环境污染治理技术与设备,2003,4(11):1-5.
    [97]陈建化,单连伟,单志强.纳米技术及其在环保领域的应用现状与前景.重庆工商大学学报(自然科学版),2003,20(3):74-76.
    [98] Masciangioli T., Zhang W. X. Environmental nanotechnology: Potential and pitfalls.Environmental Science&Technology,2003,37(5):102A-108A.
    [99] Zhang W. X. Nanoscale iron particles for environmental remediation: On overview. Journalof Nanoparticle Research,2003,(5):323-332.
    [100] Gillham, R. W. Discussion of nano-scale iron for dehalogenation. Ground WaterMonitoring Remediation,2003,23(1):6-8.
    [101] Sherman M., Ponder, John G., et al. Surface chemistry and electrochemistry of supportedzerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistryof Materials,2001,13(2):479-486.
    [102] Uzum C., Shahwan T., Eroglu A. E. Application of zero-valent iron nanoparticles for theremoval of aqueous Co(2+) ions under various experimental conditions. ChemicalEngineering Journal,144(2):213-220.
    [103] Zhang W. X., Wang C. B., Lien H. L. Treatment of chlorinated organic contaminants withnanoscale bimetallic particles. Catalysis Today,1998,40(4):387-395.
    [104] An Y., Li T. L., Jin Z. H., et al. Nitrate degradation and kinetic analysis of the denitrificationsystem composed of iron nanoparticles and hydrogenotrophic bacteria. Desalination,2010,252:71-74.
    [105] Vance D. B. Nanoscale iron colloids: the maturation of the technology for field scaleapplications. Pollution Engineering,2005,37:16-18.
    [106] Cao J., Zhang W. X. Stabilization of chromium ore processing residue (COPR) withnanoscale iron particles. Journal of Hazardous Materials,2006,132(2-3):213-219
    [107] Ponder S. M., Darab J. G., Mallouk T. E. Remediation of Cr(VI)and Pb(II)aqueoussolutions using supported nanoscale zero-valent iron. Environmental Science&Technology,2000,34(12):2564-2569.
    [108] Lien H., Zhang W. X. Reactions of chlorinated methanes with nanoscale metal particles inaqueous solutions. Journal of Environmental Engineering,1999,125(11):1042-1047
    [109] Daniel W. E., Zhang W. X. Field assessment of nanoscale bimetallic particles forgroundwater treatment. Environmental Science&Technology,2001,35(24):4922-4925
    [110] Del B. L., Hernando A., Multigner M., et al. Evidence of spin disorder at the surface coreinterace of oxygen passivated Fe nanoparticles. Journal of Applied Physics,1998,84:2189-2192
    [111] Malow T. R., Koch C. C., Miraglia P. Q., et al. Compressive mechanical behavior ofnanocrystalline Fe investigated with an automated ball indentation technique. MaterialsScience and Engineering: A,1998,252(1):36-43.
    [112] Islamgaliev R. K., Chmelik F., Gibadullin I. F., et al. The nanocrystalline structureformation in germanium subjected to severe plastic deformation. Nanostructured Materials,1994,4(4):387-395.
    [113] Ding X. Z., Qi Z. Z., He Y. Z. Effect of hydrolysis water on the preparation ofnano-crystalline titania powders via sol-gel process. Journal of Material Science Letters,1995,14(1):21-22.
    [114]曾京辉,郑化桂,曾恒兴,等.联氨在金属纳米粉制备中的行为研究.中国科技大学学报,1999,29(5):594-599.
    [115]王翠英,陈祖耀,程彬,等.金属铁纳米粒子的液相制备、表面修饰及其结构表征.化学物理学报,1999,12(6):670-674.
    [116] Gibson C. P., Put K. L. Synthesis and characterization of anisometric cobalt nanoclusters.Science,1995,267:1338.
    [117] Li F., Vipulananda C., Kishoore K. Microemulsion and solution approaches to nanoparticleiron production for degradation of trichloroethylene. Colloids and surfaces A: Physicochem.Eng. Aspects,2003,223:103-112.
    [118] Jean L., Jean D., Jacques R., et al. Synthesis and characterization of a new Fe mixednanoparticles. Chemistry of Materials,2000,12:946-955.
    [119]李发伸,杨文平,薛德胜.纳米Fe微粒的制备及研究.兰州大学学报(自然科学版),1994,30(1):144-146.
    [120]田春霞.纳米粉末的制备方法综述.粉末冶金工业,2001,11(5):19-24.
    [121]王其祥,宋宝珍,李洪钟. H2+H2O还原法制备超细金属磁记录粉.无机材料学报,2001,16(5):861-866.
    [122] Phenrat T., Saleh N., Sirk K., et al. Aggregation and sedimentation of aqueous nanoscalezerovalent iron dispersions. Environmental Science&Technology,2007,41:284-290.
    [123] Phenrat T., Kim H. J., Fagerlund F., et al. Particle size distribution, concentration, andmagnetic attraction affect transport of polymer modified Fe0nanoparticles in sand columns.Environmental Science&Technology,2009,43(13):5079-5085.
    [124] Yang G. C. C., Tu H. C., Hung C. H. Stability of nanoiron slurries and their transport in thesubsurface environment. Separation and Purification Technology,2007,58:166-172.
    [125]李勇超,李铁龙,王学,等.纳米Fe@SiO2一步合成及其对六价铬的去除.物理化学学报,2011,27(11):2711-2718.
    [126] Zhu B. W., Lim T. T., Feng J. Reductive dechlorination of1,2,4-trichlorobenzene withpalladized nanoscale Fe0particles supported on chitosan and silica. Chemosphere,2006,65:1137-1145.
    [127] Choi H., Al-abed S. R., Agarwal S., et al. Synthesis of reactive nano-Fe/Pd bimetallicsystem-impregnated activated carbon for the simultaneous adsorption and dechlorination ofPCBs. Chemistry of Materials,2008,20:3649-3655.
    [128] Hoch L B., Mack E. J., Hydutsky B. W., et al. Carbothermal synthesis of carbon-supportednanoscale zero-valent iron particles for the remediation of hexavalent chromium.Environmental Science&Technology,2008,42:2600-2605.
    [129] Li A., Tai C., Zhao Z. S., et al. Debromination of decabrominated diphenyl ether byresin-bound iron nanoparticles. Environmental Science&Technology,2007,41:6841-6846.
    [130] Hyeok C., Shirish A., Souhail R. A. Adsorption and simultaneous dechlorination of PCBson GAC/Fe/Pd: Mechanistic aspects and reactive capping barrier concept. EnvironmentalScience&Technology,2009,43:488-493.
    [131] He F., Zhao D. Preparation and characterization of a new class of starch-stabilizedbimetallic nanoparticles for degradation of chlorinated hydrocarbons in water.Environmental Science&Technology,2005,39(9):3314-3320.
    [132] Xu Y., Zhao D. Reductive immobilization of chromate in water and soil using stabilizediron nanoparticles. Water Research,2007,41:2101-2108.
    [133] Cheng F., Muftikian R., Fernando Q. Reduction of nitrate to ammonia by zero-valent iron.Chemosphere,1997,35(11):2689-2695.
    [134] Hydutsky B. W., Mack E. J., Beckerman B. B., et al. Optimization of nano-and microirontransport through sand columns using polyelectrolyte mixtures. Environmental Science&Technology,2007,41(18):6418-6424.
    [135] Lin Y. H., Tseng H. H., Wey M. Y., et al. Characteristics of two types of stabilized nanozero-valent iron and transport in porous media. Science of the Total Environment,2010,408:2260-2267.
    [136] He F., Zhao D., Liu J., et al. Stabilization of Fe-Pd nanoparticles with sodiumcarboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene insoil and groundwater. Industrial&engineering chemistry research,2007,46:29-34.
    [137] Saleh N., Kim H. J., Phenrat T., et al. Ionic strength and composition affect the mobility ofsurface-modified Fe0nanoparticles in water saturated sand columns. Environmental Science&Technology,2008,42(9):3349-3355.
    [138] Yao K. M., Habibian M. T., O’merlia R., et al. Water and waste water filtration: Conceptsand applications. Environmental Science&Technology,1971,5(11):1105-1112.
    [139] Tufenkji N., Elimelech M. Correlation equation for predicting single-collector efficiency inphysicochemical filtration in saturated porous media. Environmental Science&Technology,2004,38(2):529-536.
    [140] Zheng T. H., Zhan J. J., He J. B., et al. Reactivity characteristics of nanoscale zerovalentiron/silica composites for trichloroethylene remediation. Environmental Science&Technology,2008,42(12):4494-4499.
    [141] Zhan J. J., Zheng T. H., Piringer G., et al. Transport characteristics of nanoscale functionalzerovalent iron/silica composites for in situ remediation of trichloroethylene.Environmental Science&Technology,2008,42(23):8871-8876.
    [142]李勇超,金朝晖,李铁龙.硅微粉负载纳米铁去除六价铬及其迁移行为.硅酸盐学报,2011,39(7):154-160.
    [143] Li Y. C., Li T. L., Jin Z. H. Stabilization of Fe0nanoparticles with silica fume for enhancedtransport and remediation of hexavalent chromium in water and soil. Journal ofEnvironmental Sciences,2011,23(7):1-8.
    [144] Ko C. H., Elimelech M. The "shadow effect" in colloid transport and deposition dynamicsin granular porous media:Measurements and mechanisms. Environmental Science&Technology,2000,34:3681-3689.
    [145] Xu S. P., Gao B., Saiers J. E. Straining of colloidal particles in saturated porous media.Water Resources Research,2006,42:1-10.
    [146] Xu S. P., Saiers J. E. Colloid straining within water-saturated porous media:Effects ofcolloid size nonuniformity. Water Resources Research,2009,45:1-8.
    [147] Kanel S. R., Goswami R. R., Clement T. P., et al. Two dimensional transport characteristicsof surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science&Technology,2008,42(3):896-900.
    [148] Schrick B., Hydutsky B. W., Blough J. L., et al. Delivery vehicles for zerovalent metalnanoparticles in soil and groundwater. Chemistry of Materials,2004,16(11):2187-2193.
    [149] Fang J., Shan X. Q., Wen B., et al. Stability of titania nanoparticles in soil suspensions andtransport in saturated homogeneous soil columns. Environmental Pollution,2009,157:1101-1109.
    [150] Glavee G. N., Klabunde K. J., Sorensen C. M., et al. Chemistry of borohydride reduction ofIron(II) and Iron(III) Ions in aqueous and nonaqueous media. Formation of nanoscale Fe,FeB, and Fe2B powders. Inorganic Chemistry,1995,34:28-35.
    [151] Crini G. Recent developments in polysaccharide-based materials used as adsorbents inwastewater treatment. Progress in Polymer Science,2005,30:38-70.
    [152]毛玉如,沈鹏,孙启宏,等.矿热电炉硅微粉的理化特性和回收利用.中国资源综合利用,2006,(1):16-19.
    [153] Bruni S., Cariat F., Casu M., et al. IR and NMR study of nanoparticle-support interactionsin a Fe2O3-SiO2nanocomposite prepared by a sol-gel method. Nanostructured Materials,1999,11(5):573-586.
    [154]高月英,顾惕人.无定形二氧化硅的表面结构.石油化工,1984,13(3):205-212.
    [155]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究.国外金属矿选矿,1998,(4):8-11.
    [156] Larbi J. A., Fraay A. L. A, Bijen, J. M. Chemistry of the pore fluid of silica fume-blendedcement systems. Cement and Concrete Research,1990,20(4):506-516.
    [157]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2000.127-166.
    [158]罗驹华.非金属矿物粉体机械力化学研究进展.化工矿物与加工,2004,(11):5-8.
    [159]李晓云,张之圣,曹俊峰.环氧树脂在电子封装中的应用及发展方向.电子元件与材料,2003,22(2):36-37.
    [160]宋晓岚.超细功能粉体的机械化合物研究进展.金属矿山,2004,5(7):25-30.
    [161] Saleh N, Sirk K, Liu Y, et al. Surface modifications enhance nanoiron transport and NAPLtargeting in saturated porous media. Environmental Engineering Science,2007,24(1):45-57.
    [162] Zhang L., Manthiram A. Chains composed of nanosize metal particles and identifying thefactors driving their formation. Applied Physics Letters,1997,70(18):2469-2471.
    [163]钱慧静. CMC对纳米零价铁去除污染水体中六价铬的影响.[硕士学位论文].杭州:浙江大学,2008.
    [164]章仪,陈文哲,章文汞.脉冲激光法连续制备纳米铁溶胶及其分散稳定性的研究.化学学报,2003,61(1):141-145.
    [165]张立德.纳米材料研究及其发展趋势和展望.高科技与产业化,1994,5(4):17-20.
    [166]杨文胜,高明远,白玉白,等.纳米材料与生物技术.北京:化学工业出版社,2005:154-166.
    [167]喻发全.核-壳型复合结构纳米粒子研究进展.现代化工,2004,24(2):12-15.
    [168]刘世荣,黄伟其,秦朝建,等.氧化硅层中的锗纳米晶体团簇量子点.物理学报,2006,55(5):2488-2491.
    [169] Santra S., Tapec R., Theodoropoulou N. Synthesis and characterization of silica-coated ironoxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir,2001,17(10):2900-2906.
    [170]刘海弟,赵璇,陈运法.纳米磁性Fe3O4-SiO2复合材料的制备和表征.化学研究,2007,18(2):21-23.
    [171]崔爱莉,王亭杰,金涌,等.二氧化钛表面包覆氧化硅纳米膜的热力学研究.高等学校化学学报,2001,22(9):1543-1545.
    [172] Bell A. T. The impact of nanoscience on heterogeneous catalysis. Science,2003,299(5613):1688-1691.
    [173] Aiken III J. D., Finke R. G. A review of modern transition-metal nanoclusters: theirsynthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A,1999,145(2):1-44.
    [174] Caruso F. Nanoengineering of particle surfaces. Advanced Materials,2001,13(1):11-22.
    [175]周学永,陈守文,喻子牛.医药和农药纳米剂型研究和应用.化学与生物工程,2004,21(1):4-6.
    [176] Kim H. J., Ahn, J. E., Haam S, et al. Synthesis and characterization of mesoporous Fe/SiO2for magnetic drug targeting. Journal of Materials Chemistry,2006,16:1617-1621.
    [177]于乃森,李玲,郝霄鹏,等.核壳型复合半导体纳米粒子的研究.材料科学与工程学报,2004,22(3):432-435.
    [178] St ber W., Fink A. Controlled growth of monodisperse silica spheres in the micron sizerange. Journal of Colloid and Interface Science,1968,26:62-69.
    [179] Philipse A. P., Vrij A. Polydispersity probed by light scattering of secondary particles incontrolled growth experiments of silica spheres. Journal of Chemical Physics,1987,87(10):5634-5643.
    [180]赵瑞玉,董鹏,梁文杰.单分散SiO2体系制备中TEOS水解动力学研究.物理化学学报,1995,11(7):612-616.
    [181] Martinez J. R., Ruiz F., Vorobiev Y. V. et al. Infrared spectroscopy analysis of the localatomic structure in silica prepared by sol-gel. Journal of Chemical Physics,1998,109(17):7511-7514.
    [182] Li T., Moon J., Morrone A. A., et al. Preparation of Ag/SiO2nanosize composites by areverse micelle and sol-gel technique. Langmuir,1999,15(13):4328-4334.
    [183]王玲玲,方小龙,唐芳琼,等.单分散二氧化硅超细颗粒的制备.过程工程学报,2001,1(2):165-172.
    [184] Zhou H., Zhu S., Hibino M., et al. Lithium storage in ordered mesoporous carbon (CMK-3)with high reversible specific energy capacity and good cycling performance. AdvancedMaterials,2003,15(24):2107-2111.
    [185] Graf C., Vossen D. L. J., Imhof A., et al. A general method to coat colloidal particles withsilica. Langmuir,2003,19(17):6693-6700
    [186] Liu S.H., Han M. Y. Synthesis, fictionalization, and bioconjugation of monodisperse,silica-coated gold nanoparticles: robust bioprobes. Advanced functional materials,2005,15(6):961-967.
    [187] Yang P., Ando M., and Murase N. Various Au Nanoparticle Organizations fabricatedthrough SiO2monomer induced self-assembly. Langmuir2011,27(3):895-901
    [188] Wang Y. F., Biradar A. V., Duncan C.T. et al. Silica nanosphere supported shaped Pdnanoparticles encapsulated with nanoporous silica shell: Efficient and recyclablenanocatalysts. Journal of Materials Chemistry,2010,20:7834-7841.
    [189]张磊,胡博,陈华,等.多孔SiO2·xH2O负载RuB纳米粒子催化喹啉加氢反应.物理化学学报,2010,26:2422-2428.
    [190] Wang G. H., and Harrison A. Preparation of iron particles coated with silica. Journal ofColloid and Interface Science,1999,217(1):203-207
    [191] Li Y. S., Church J. S., Woodhead A. L. et al. Preparation and characterization of silicacoated iron oxide magnetic nano-particles. Spectrochimica Acta Part A,2010(76):484-489.
    [192] Yi D. K., Lee S. S., Ying J. Y. Synthesis and applications of magnetic nanocompositecatalysts. Chemistry of Materials,2006,18(10):2459-2461.
    [193] Liu S.H., Han M.Y. Silica-coated metal nanoparticles. Chemistry-An Asian Journal,2010,5:36-45.
    [194] Yuan M. L., Tao J. H., Yan G. J., et al. Preparation and characterization of Fe/SiO2core/shell nanocomposites. Transactions of Nonferrous Metals Society of China,2010,20(4):632-636.
    [195] Yang T. I., Brown R. N. C., Kempel L. C. et al. Controlled synthesis of core–shelliron–silica nanoparticles and their magneto-dielectric properties in polymer composites.Nanotechnology,2011,22(10):105601-105609.
    [196] Cheng J., Ni X. M., Zheng H. G., et al. Preparation of Fe (core)/SiO2(shell) compositeparticles with improved oxidation-resistance. Materials Research Bulletin,2006(41):1424-1429.
    [197] Feyen M., Weidenthaler C., Güttel R. High-temperature stable, iron-based core–shellcatalysts for ammonia decomposition. Chemistry A European Journal,2011,17:598-605.
    [198] Zhao W.Y., Zhang Q.J., Guan J.G., et al. XPS study on the surface of Fe/SiO2core-shellcomposite particles. Bulletin of the Chinese Ceramic Society,2007,26(1):38-43.
    [199] CERCLA priority list of hazardous substances. Agency for toxic substances and diseaseregistry-US department of health and human services,2007.
    [200] Patterson R. R., Fendorf S., Fendorf M. Reduction of hexavalent chromium by amorphousiron sulfide. Environmental Science&Technology,1997,31(7):2039-2044
    [201] Saleh N., Kim H. J., Phenrat T., et al. Ionic strength and composition affect the mobility ofsurface-modified Fe0nanoparticles in water-saturated sand columns. EnvironmentalScience&Technology,2008,42(9):3349-3355.
    [202] Liu T. Z., Rao P. H., Lo I. M. Influences of humic acid, bicarbonate and calcium on Cr(VI)reductive removal by zero-valent iron. Science of the Total Environment,2009,407(10):3407-3414.
    [203]国家环保局,水和废水检测分析方法(第四版)[M]北京:中国环境出版社,2002.
    [204] Powell R. M., Puls R. W., Hightower S. K., et al. Coupled iron corrosion and chromatereduction–mechanisms for subsurface remediation. Environmental Science&Technology,1995,29(8):1913-1922.
    [205] Fendorf S. E., Lamble G. M., Stapleton M. G., et al. Mechanisms of chromium (III)sorption on silica.1. Cr(III) surface-structure derived by extended X-ray-absorptionfine-structure spectroscopy. Environmental Science&Technology,1994,28:284-289.
    [206] Oh Y. J., Song H., Shin W. S., et al. Effect of amorphous silica and silica sand on removal ofchromium (VI) by zero-valent iron. Chemosphere,2007,66:858-865.
    [207]刘浩富,孔凡娟,饶艳英,等. Ag@SiO2纳米颗粒的制备及其在H2O2检测上的应用.化学学报,2010,68:865-869.
    [208] Gheju M., Iovi A., Balcu I. Hexavalent chromium reduction with scrap iron incontinuous-flow system Part1: Effect of feed solution pH. Journal of Hazardous Materials,2008,153:655-662.
    [209] Li X. Q., Cao J., Zhang W. X. Stoichiometry of Cr(VI) immobilization using nanoscalezerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy(HR-XPS). Industrial&engineering chemistry research,2008,47:2131-2139.
    [210] Li S. J., Li T. L., Xiu ZM, et al. Reduction and immobilization of chromium (VI) bynano-scale Fe0particles supported on reproducible PAA/PVDF membrane. Journal ofEnvironmental Monitoring,2010,12:1153-1158
    [211] Geng B., Jin Z. H., Li T. L., et al. Preparation of chitosan-stabilized Fe0nanoparticles forremoval of hexavalent chromium in water. Science of the Total Environment,2009,407:4994-5000.
    [212] Liu T. Y., Zhao L., Sun D. S., et al. Entrapment of nanoscale zero-valent iron in chitosanbeads for hexavalent chromium removal from wastewater. Journal of Hazardous Materials,2010,184:724-30.
    [213] Li Y. C., Jin Z. H., Li T. L.,et al. Removal of hexavalent chromium in soil and groundwaterby supported nano zero-valent iron on silica fume. Water Science and Technology2011,63:2781-2187.
    [214] Wu Y. J., Zhang J. H., Tong Y. F., et al. Chromium (VI) reduction in aqueous solutions byFe3O4-stabilized Fe0nanoparticles. Journal of Hazardous Materials,2009,172:1640-1645.
    [215] Burris D. R., Allen-King R. M., Manoranjan V. S., et al. Chlorinated ethene reduction bycast iron: sorption and mass transfer. Journal of Environmental Engineering,1998,124(10):1012-1019.
    [216] Tratnyek P. G., Scherer M. M., Deng B., et al. Effects of natural organic matter,anthropogenic surfactants, and model quinones on the reduction of contaminants byzero-valent iron. Water Research,2001,35(18):4435-4443.
    [217] Doong R. A., Chen K. T., Tsai H. C. Reductive dechlorination of carbon tetrachloride andtetrachloroethylene by zerovalent silicon-iron reductants. Environmental Science&Technology,2003,37:2575-2581.
    [218] Geng B., Jin Z. H., Li T. L., et al. Kinetics of hexavalent chromium removal from water bychitosan-Fe0nanoparticles. Chemosphere,2009,75:825-830.
    [219] Lo I. M., Lam C. S., Lai K. C. Hardness and carbonate effects on the reactivity ofzero-valent iron for Cr(VI) removal. Water Research,2006,40:595-605.
    [220] Vogan J. L., Focht R. M., Clark D. K., et al. Performance evaluation of a permeable reactivebarrier for remediation of dissolved chlorinated solvents in groundwater. Journal ofHazardous Materials,1999,68:97-108
    [221] Keith C. K., Lo L., Irene M. C. Removal of chromium(VI) by acid-washed zero-valent ironunder various groundwater geochemistry conditions. Environmental Science&Technology,2008,42(4):1238-1244
    [222] Alessi D. S., Li Z. Synergistic effect of cationic surfactants on perchloroethylenedegradation by zero-valent iron. Environmental Science&Technology,2001,35(18):3713-3717.
    [223] Liu T. Y., Zhao L., Tan X., et al. Effects of physicochemical factors on Cr(VI) removal fromleachate by zero-valent iron and alpha-Fe2O3nanoparticles. Water Science and Technology,2010,61(11):2759-2767.
    [224] Stumm W., Sulzberger B., Sinniger J. The coordination chemistry of the oxide-electrolyteinterface-the dependence of surface reactivity (dissolution, redox reactions) onsurface-structure. Croatica Chemica Acta,1990,63:277-312
    [225] Su C. M., Puls R. W. Kinetics of trichloroethene reduction by zero valent ironandtin:Pretreatment effect, apparent activation energy, and intermediate products. EnvironmentalScience&Technology,1999,33:163-168
    [226] Li X., Zhang W. Sequestration of metal cations with zerovalent iron nanoparticless: A studywith high resolution X-ray photoelectron spectroscopy (HR-XPS). Journals-AmericanChemical Society,2007,111(19):6939-6946
    [227] Hu J. D., Zevi Y., Kou X. M., et al. Effect of dissolved organic matter on the stability ofmagnetite nanoparticles under different pH and ionic strength conditions. Science of theTotal Environment,2010,408:3477-3489
    [228] Mylon S. E., Chen K. L., Elimelech M. Influence of natural organic matter and ioniccomposition on the kinetics and structure of hematite colloid aggregation: Implications toiron depletion in estuaries. Langmuir,2004,20(21):9000-9006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700