用户名: 密码: 验证码:
苯系物对我国典型鱼类和水生植物的毒害效应及其水质基准的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国水环境中苯系物的污染问题日益严重,其含量逐年升高,对水生生态系统和人体健康产生了重大危害。本论文选择苯系物为研究对象,探讨了甲苯、乙苯和二甲苯污染物对典型水生生物的毒害效应,同时搜集苯、甲苯、乙苯和二甲苯相关的毒性数据,对我国水环境苯系物的水质基准展开了尝试性研究。
     研究选取泥鳅(Misgurnus anguillicaudatus)为受试鱼类,探讨了甲苯、乙苯和二甲苯三种污染物对典型鱼类的毒害效应。急性毒性试验研究发现,甲苯、乙苯和二甲苯对泥鳅具有明显的剂量-效应关系。甲苯、乙苯和二甲苯对泥鳅的96h-LC_(50)分别为149.7、92.7和88.9mg/L。本研究还研究了14天长期暴露对泥鳅脑部乙酰胆碱酯酶(AChE)、肝脏部位超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽转移酶(GST)和脂质过氧化生理生化指标的变化情况。研究结果表明:6种生理指标对三种污染物的胁迫的灵敏度各不相同。总体上看,AChE对乙苯和二甲苯的污染指示能力要比甲苯好,而抗氧化酶对甲苯,乙苯的指示能力比较好,这其中GST和POD较适合指示甲苯和乙苯短时间的氧化胁迫,而GST对14天的二甲苯胁迫也有较好的敏感性,脂质过氧化对三种污染物的胁迫都比较敏感。综合考虑,基于甲苯、乙苯和二甲苯生态毒理指标的7天最低有影响浓度(Lowest-Observed-Effect Concentration,LOEC)分别为:5、10和20mg/L。
     化合物对水生植物的毒性试验在生态风险评价中长期处于次要地位,远远不及对鱼类和无脊椎动物的毒性研究,资料的积累极为欠缺,因此也极少应用于水质管理质量基准等保护政策的制定中。因此本文选取了黑藻(Hydrillaverticillata)、苦草(Vallisneria spiralis)、水芹(Oenanthe javanica (Blume) DC)、黄菖蒲(Iris pseudacorus)和千屈菜(Spiked Loosestrlfe)五种典型水生植物,研究了三种污染物对植物色素含量、超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和脂质过氧化的影响情况。结果显示,不同的生理指标的灵敏程度各不相同。总体来说,本实验中所选取的生理标志物对短时间(7天)甲苯、乙苯和二甲苯的暴露有较好的指示作用,这可能是由于时间延长,生物体内已受到一定程度的破坏,生理指标的灵敏性已不如初期;也有可能是生物体在逐渐适应污染物胁迫的环境,因此生物体内机能有一定的恢复。其毒害机制还有待于在以后的工作中进一步的研究和探讨。另外根据结果可知,沉水植物更适合指示污染物的毒害效应,挺水植物对污染物的耐性更强。综合比较不同生物标志物对三种污染物不同的响应程度,得到甲苯对黑藻、苦草、水芹和千屈菜的7天LOEC分别为7.30、5.00、10.00和5.00mg/L;乙苯对黑藻、苦草、水芹和千屈菜的7天LOEC分别为1.15、5.00、5.00和5.00mg/L;二甲苯对黑藻、苦草、水芹和千屈菜的7天LOEC分别为2.36、5.00、5.00和5.00mg/L。
     为了制定符合我国水生态系统特征的水质基准,本研究还搜集了四种苯系物相关的毒理数据,采用国际上普遍使用的3种方法分别推导了我国苯、甲苯、乙苯和二甲苯的淡水水生生物基准。采用毒性百分数排序法得出四种污染物基准最大浓度分别为2.34、6.73、2.54和5.36mg/L,基准连续浓度(CCC)分别为NA、0.49、0.27和0.72mg/L;采用物种敏感度分布法得出的三种污染物的短期危险浓度分别为9.77、8.55、5.87和10.39mg/L,长期危险浓度分别为NA、0.62、0.63和1.42mg/L;采用评价因子法得出的我国四种污染物的淡水水生生物基准是单值,分别为0.54、0.46、0.11和0.15mg/L。比较3种方法得出的基准值认为,毒性百分数排序法较另2种方法更为恰当,得到的基准值可以保护更大范围的水生生物。根据以上结果,最终确定苯、甲苯、乙苯和二甲苯的基准最大浓度(CMC)分别为6.73、2.54和5.36mg/L;基准连续浓度(CCC)分别为NA、0.49、0.27和0.72mg/L。可以看出,由于苯缺少慢性毒性试验数据,因此无法推导其慢性基准值,有待于在以后的试验中进一步探讨和完善。该研究将为科学制订BTEX地表水环境质量标准以及排放标准提供重要的理论依据,也为我国今后系统开展水质基准的科学研究提供示范。
Monocyclic aromatic hydrocarbons such as benzene, toluene, ethylbenzene andxylene (BTEX) are commonly used in the blending of petrol and also used as solventand raw material in chemical production such as paints, polymers andpharmaceuticals. As a consequence of their wide usage, they are common wastematerials. High levels of BTEX compounds in aquatic environment have often beendetected frequently, which led to serious effects to the aquatic systems and human. Inthis paper, toxicological effects of toluene, ethylbenzene and xylene on some typicalaquatic organisms were investigated, and we made an initial attempt to enact theWater Quality Criteria for BTEX (benzene, toluene, ethylbenzene and xylene).
     Freshwater fish Misgurnus anguillicaudatus was adopted as experimental animalto study the acute and chronic toxic effects of toluene, ethylbenzene and xylene. Theacute toxicity test indicated that the96h-LC_(50)of three pollutants were149.7,92.7and88.9mg/L, respectively. Exposed to toluene, ethylene and xylene at low level for14days, acetylcholinesterase (AChE), lipid peroxidation, antioxidant defenses systemincluding superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) andglutathione-S-transferase (GST) were studied. The result showed that physiologicalindicators tested differed in their sensitivities to different pollutants. Overall, AChEwas better to be a good indicator of ethylbenzene and xylene; antioxidant enzymeswere more suitable to indicate the toxicity of toluene and ethylbenzene, which GSTand POD were more suited to be biomarkers of oxidative stress of toluene andethylbenzene for a short time; GST was also sensitivity to the xylene for14days;MDA was more sensitive to the three pollutants. According to the date, theLowest-Observed-Effect Concentrations (LOECs) of toluene, ethylbenzene andxylene on Misgurnus anguillicaudatus were5,10and20mg/L, respectively.
     Macrophytes are playing a vital role in material circulation and energy flow inaquatic environment, however, the data were relatively limited and have served arelatively minor role in regulatory decision. Therefore, five macrophytes that widely distributed in China were chosen as experiment plants to study the toxic effects oftoluene, ethylbenzene and xylene. Chlorophyll contents, malondialdehyde (MDA),superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in plants wereinvestigated. The result showed that the different physiology indexes in differentplants had various sensitivities to the three pollutants. Conclusion in general,biomarkers chosen in our research have worked well as indicators of toxic effects oftoluene, ethylbenzene and xylene in a short exposing time. The reason may be that theplants had been damaged due to prolonged exposing time; physiological indexes wereless sensitive than that at early exposure time to the pollutants. Another explanationwas that the macrophytes have gradually adapted to the stresses of pollutants, andthey could restore the metabolism functions to a certain degree.
     The results also indicated that the emergent aquatic plants was more resistance totoluene, ethylbenzene and xylene, and the submerged plants were more suitable toindicate the toxic effects. Comparing all the data based on toxicity test onmacrophytes, the Lowest-Observed-Effect Concentrations (LOECs) of toluene onHydrilla verticillata, Vallisneria spiralis, Oenanthe javanica (Blume) DC and SpikedLoosestrlfe were7.30,5.00,10.00and5.00mg/L, respectively; LOECs ofethylbenzene on the four plants were1.15,5.00,5.00and5.00mg/L, respectively;LOECs of xylene on the four plants were2.36,5.00,5.00and5.00mg/L,respectively.
     In order to derive Water Quality Criteria that can protect the freshwaterecosystem and biota system, all available toxicity data of BETX to Chineserepresentative species in freshwater were collected. Three widely used criteriaderivation methods including the toxicity percentile rank method, species sensitivitydistribution and assessment factor method were used to derive aquatic life criteria forthe three substances. The results showed that for toxicity percentile rank method,thecriteria maximum concentrations of benzene, toluene, ethylbenzene and xylene were2.34,6.73,2.54and5.36mg/L respectively,the criteria continuous concentrationswere NA,0.49,0.27and0.72mg/L respectively; for species sensitivity distributionmethod,the criteria of short term hazardous concentrations of four substances were 9.77,8.55,5.87and10.39mg/L, the long term hazardous concentrations were NA,0.62,0.63and1.42mg/L,respectively; for the assessment factor method,the criteriaof freshwater benzene, toluene, ethylbenzene and xylene were expressed by one value,which were0.58,0.46,0.11and0.15mg/L for toluene, ethylbenzene and xylene.Meanwhile,the criteria values for freshwater were studied and compared among thethree methods. It showed that the toxicity percentile rank method was more suitablethan the other two methods to derive Water Quality Criteria in our study. The criteriavalues derived from the toxicity percentile rank method can protect a wider range ofaquatic organisms.
     Based on all the analysis, the final recommended Water Quality Criteria forBTEX (benzene, toluene, ethylbenzene and xylene) in freshwater were that thecriteria maximum concentrations of benzene, toluene, ethylbenzene and xylene were2.34,6.73,2.54and5.36mg/L respectively,the criteria continuous concentrationwere NA,0.49,0.27and0.72mg/L. We couldn’t derive the criteria of chronictoxicity for benzene for lack of the chronic toxicity values, so it remains to beimproved in future research.
引文
[1] An Y J.Toxicity of benzene,toluene,ethylbenzene, and xylene(BTEX) mixtures to Sorghumbicolor and Cucumis sativus. Bulletin of environmental contamination and toxicology,2004,72:1006~1011
    [2]刘尧.土壤BTEX污染的分子诊断及修复基准研究.[硕士学位论文].天津:南开大学,2009
    [3] Lyman W J, Reeh W F, Rosemblatt D H. Handbook of chemical properties estimation methods.Washington,DC: American Chemical Society,1990
    [4]范亚维,周启星,王媛媛,等.水体BTEX污染对大型溞和霍普水丝蚓的毒性效应及水环境安全评价.环境科学学报,2009,29(7):1485~1490
    [5]范亚维,周启星. BTEX的环境行为与生态毒理.生态学杂志,2008,27(4):632~638
    [6]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单.中国环境监测,1990,6(4):1~3
    [7]《水和废水监测分析方法》编辑委员会.水和废水监测分析方法.北京:中国环境科学出版社,1989
    [8]中国城市供水水质监督网水质标准, http://www.nwqc.gov.cn/
    [9] Kwon J, Welsel C P, Turpinj B J. Source proximity and outdoor residential VOCconcentration:results from the RIOPA study.Environmental Science and Technology,2006,40:4074~4082
    [10] Walden T, Spence L. Risk based BTEX screening criteria for a groundwater irrigationscenario. Human and Ecological Risk Assessment,1997,3:699~722
    [11]赵妍.地下环境中BTEX的挥发特性及其对As影响研究.[硕士学位论文].吉林:吉林大学,2009
    [12] Guengerich F P, Kim D H, Iwasaki M. Role of human cytochrome P-450II El in theoxidation of many low molecular weight cancer suspects. Chemical Research in Toxicology,1991,4:168~179
    [13] Nakajima T, Wang R S, Elovaara E, et al. Toluene metabolism by cDNA-expressed humanhepatic cytochrome P450. Biochemical Pharmacology,1997,53:271~277
    [14] Johnson W W, Finley M T. Handbook of acute toxicity of chemicals to fish and aquaticinvertebrates. United States Department of the Interior, Fish and Wildlife Service/ResourcePublication137. Washington D.C,1980
    [15] Verschueren K. Handbook of environmental data on organic chemicals. New York: VanNostrand Reinhold Company, Limited,1983
    [16] Ferrando M D, Andreu-Moliner E. Acute toxicity of toluene, hexane, xylene, and benzene tothe rotifers Brachionus calyciflorus and Brachionus plicaTilis. Bulletin of environmentalcontamination and toxicology,1992,49:266~271_9
    [17]范亚维,周启星.水体中甲苯、乙苯和二甲苯对斑马鱼的毒性效应.生态毒理学报.2009,4(1):136~141
    [18] Frederic Leusch, Michael Bartkow. A short primer on benzene, toluene, ethylbenzene andxylenes (BTEX) in the environment and in hydraulic fracturing fluids. Griffith University,2010.
    [19] QPHR. Queensland Public Health Regulations. Queensland Government, Brisbane, Australia,2005
    [20] NHMRC. Australian drinking water guidelines. National Health and Medical ResearchCouncil and Natural Resource, Management Ministerial Council, Canberra, Australia,2004
    [21] WHO. Guidelines for drinking water quality. Third Edition incorporating the first and secondaddenda. World Health Organization, Geneva, Switzerland,2008
    [22] USEPA. National primary drinking water standards. US Environmental Protection Agency,Office of Water, USA,2003
    [23] ANZECC. Australian and New Zealand guidelines for fresh and marine water quality.Australian and New Zealand: Environment and Conservation Council and Agriculture andResource Management Council of Australia and New Zealand,2000
    [24] Andreoni V, Gianfreda L.Bioremediation and monitoring of aromatic~polluted habitats.Applied Microbiology and Biotechnology,2007,76(2):287~308
    [25] Mater L, Sperb R M, Madureira L A S, et al. Proposal of a sequential treatment methodologyfor the safe reuse of oil sludge~contaminated soil. Journal of Hazardous Materials,2006,136:967~971
    [26]丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50~55
    [27] Borden R C,Black D C,Mcblief K V. MTBE and aromatic hydrocarbons in North Carolinastormwater runoff. Environmental Pollution,2002,118:141~152
    [28] Fatta D, Michael C, Canna-Michaelidou St, et al. Pesticides, volatile and semi volatileorganic compounds in the inland surface waters of Cyprus.Desalination,2007,215:223~236
    [29]李炳华,陈鸿汉,何江涛.长江三角洲某地区浅层地下水单环芳烃污染特征及其原因分析.中国地质,2006,23(5):1124~1130
    [30]马建华,马全杰,冯亚楠.黄河兰州段苯系物污染现状调查与评价.甘肃环境研究与监测,1999,12(2):93~96
    [31] OECD. Guidelines for testing of chemicals, guideline203; Fish Acute Toxicity Test.Organization of Economic Cooperation and Development, Paris, France,1992
    [32] OECD. Guidelines for testing of chemicals, guideline202: Dapnia sp. acute immobilizationtest. Organization of Economic Cooperation and Development, Paris, France,2004
    [33] OECD. Guidelines for testing of chemicals,guideline201: freshwater Algae andCyanobacteria, Growth Inhibition Test. Organization of Economic Cooperation andDevelopment, Paris, France, Paris, France,2006
    [34] Rowe B L, Sondra J L., Andrigan et al. Summary of published aquatic toxicity informationand water quality criteria for selected volatile organic compounds. US:Geological Survey,Open File Report,1997
    [35] CCME. A protocol for the derivation of water uality guidelines for the Protection of aquaticlife. Prepared by the Task Force on Water Quality uidelines. Canadian Council of Ministersof the Environment,Canada,2007
    [36] Warme M StJ. Critical review of methods to derive water quality guidelines for toxicants anda ProPosal for a new framework. Supervising scientist report135, Supervising scientist,Canberra,1998
    [37] Burton G A, Pitt R, Clark S. The role of traditional and novel toxicity test methods inassessing stormwater and sediment contamination. Critical Reviews in EnvironmentalScience and Technology,1999,30(4):413~447
    [38] National Research Council. Biological markers in reproductive toxicology.Washington,DC:National Academic Press,1989
    [39]刘海芳,王凡.水环境污染程度的分子生物标志物的研究进展.安徽农业科学,2007,35(18):5502~5503,5506
    [40]钱芸,朱琳,刘广良.几种农药对鲤鱼脑AChE的联合毒性效应.环境污染治理技术与设备,2000,1(4):27~32
    [41]贾秀英,董爱华. Cd、Cr(Ⅵ)及其复合污染对鲫鱼脑组织乙酰胆碱酯酶活性的影响.农业环境科学学报,2003,22(3):337~339
    [42]张宁,周启星,李婷,等.氧化型染发剂对沙蚕的毒性效应及对部分酶活性的影响.生态毒理学报,2008,3(1):65~71
    [43] Vieira L R, Sousa A, Frasco M F, et al. Acute effects of Benzo[a]pyrene,anthracene and afuel oil on biomarkers of the common goby pomatoschistus microps(Teleostei, Gobiidae).Science of the Total Environment,2008,395(2~3):87~100
    [44]严雪,沈国兴,严国安.水生植物毒性试验及在生态风险评价中的作用.上海环境科学,1998,17(7):24~39
    [45] Wang W. Review: Literatures review on duckweed toxicity testing. Environment Review,1990,52:7~22
    [46] ISO/DIS20079, Water quality determination of the toxic effect of water constituents andwaste water to duckweed (Lemna minor). Duckweed growth inhibition test. ISO TC147/SC5/WG5,2004
    [47] Naumann B,Eberius M, APPenroth K J. Growth rate based dose-response relationships andEC values of ten heavy metals using the duckweed growth inhibition test(ISO20079)withLemna minor L. clone St. Journal of Plant Physiology,2007,164:1656~1664
    [48]张莉,王友保,刘登义.利用浮萍检测Cu、As及其复合污染的植物学毒性.安徽师范大学学报(自然科学版),2001,24(4):392~394
    [49]钱湛,孙健,铁柏清,等.铜、镉、砷单一及其复合污染对浮萍的毒性效应.中国生态农业学报,2006,14(3):135~137
    [50] Orucoe S Y, Uner N. Tissue-specific ox idative stress responses in fish exposed to2,4-D andazinphosmethyl. Comparative Biochemistry and Physiology,2004,137(1):43~51
    [51] Babo S, Vasseur P. Invitro effects of thrim on liver antioxidant enzyme activ ities of rainbowtrout (Oncorhynchus mykiss). Aquatic Toxicology,1992,22(1):61~68
    [52]杨居荣,贺建群,张国祥,等.不同耐受性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996,16(2):113~117
    [53] US EPA.Ambient water quality criteria (series).Washington DC:US EPA,1980
    [54] Traas T P. Guidance document on deriving environmental risk limits. The National Instituteof Public Health and the Environment (RIVM) report601501012. BA Biltooven, theNetherlands,2001
    [55] Crommentuijn T, Sijm D, de Bruijn J, et al. Maximum permissible and negligibleconcentrations for metals and metalloids in the Netherlands, taking into account backgroundconcentrations. Jounal of Environment Management,2000,60(2):121~143
    [56]周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订.农业环境科学学报,2007,26(1):1~5
    [57] Roux D J, Jooste S H J and MacKav H M. Substance~specific water quality criteria for theprotection of South African freshwater ecosystems: methods for derivation and initialresults for some inorganic toxic substance. South Afrucab Journal of Scien,1996(92),198~206
    [58]张瑞卿,吴丰昌,李会仙,等.中外水质基准发展趋势和存在的问题.生态学杂志,2010,29(10):2049~2056
    [59]周启星.环境基准研究与环境标准制定进展及展望.生态与农村环境学报,2010,26(1):1~8
    [60] USEPA. National recommended Water Quality Criteria. Washington DC: Office ofWater,Office of Science and Technology,2009
    [61] WHO. Guidelines for drinking water quality:incorporation1stand2ndaddenda.Vol1,Recommendation~3rdedition. World Health Organization,Geneva,2008
    [62]中国环境科学研究院.水质基准的理论与方法学导论.北京:科学出版社,2010
    [63]孟伟,闫振广,刘征涛.美国水质基准技术分析与我国相关基准的构建.环境科学研究,2009,22(7):757~761
    [64]孟伟,刘征涛,张楠,等.流域水质目标管理技术研究(Ⅱ)-水环境基准、标准与总量控制.环境科学研究,2008,21(1):1~8
    [65]王明俊.水质的基准和标准.海洋通报,1981,3:77~85
    [66]周忻,刘存,张爱茜,等.非致癌有机物水质基准的推导方法研究.环境保护科学,2005,31(1):22~26
    [67]吴丰昌,孟伟,宋永会.中国湖泊水环境基准的研究进展.环境科学学报,2008,28(12):2386~2393
    [68]张彤,金洪钧.丙烯腈水生态基准研究.环境科学学报,1997,17(1):75~85
    [69]张彤,金洪钧.硫氰酸钠的水生态基准研究.应用生态学报,1997,8(1):99~103
    [70]张彤,金洪钧.乙睛的水生态基准.水生生物学报,1997,21(3):226~233
    [71] Daqiang Yin, Shuangqing Hu, Hongjun Jin, et al. Deriving freshwater quality criteria for2,4,6~trichlorophenol for protection of aquatic life in China.Chemosphere,2003,52:67~73
    [72]雷炳莉,金小伟,黄圣彪,等.太湖流域3种氯酚类化合物水质基准的探讨.生态毒理学报,2009,4(1):40~49
    [73]闫振广,孟伟,刘征涛,等.我国淡水水生生物镉基准研究.环境科学学报,2009,29(11):2393~2406
    [74]曹宇静,吴丰昌.淡水中重金属镉的水质基准制定.安徽农业科学,2010,8(3):1378~1380
    [75]吴丰昌,孟伟,张瑞卿,等.保护淡水水生生物硝基苯水质基准研究.环境科学研究,2011,24(1):1~10
    [76]朱志宁,朗佩珍.几种有机物在鲤鱼体内富集与释放行为的研究.环境科学学报,1987,7(3):339~345
    [77]李幸夫,张普英.低pH和铝对几种淡水鱼一早期生活阶段的影响.环境科学学报,1992,12(1):97~104
    [78]徐士霞,李旭东,王跃招.两栖动物在水体污染生物监测中作为指示生物的研究概况.动物学杂志,2003,38(6):110~114
    [79] OECD. Guideline for testing of chemicals: fish, acute toxicity test.203. Organization ofEconomic Cooperation and Development, Paris, France,1992
    [80] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248~254
    [81] Ellman G L. A new and rapid colorimetric determination of acetylcholinesterease activity.Biochemical Pharmacology,1961,7(2):88~95
    [82]邹国林,桂兴芬,钟晓凌,等.一种SOD的测活方法—邻苯三酚自氧化法的改进.生物化学与生物物理进展,1986,4:71~73
    [83]徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性及活性抑制的紫外分光光度法测定.环境化学,1997,16(1):73~76
    [84]赵亚华,高向阳.生物化学实验技术教程.广州:华南理工大学出版社,2005
    [85] Habig W H, Pabst M J, Jakoby W B. Glutathione-s-transferases: the first enzymatic step inmercapturic acid formation. The Journal of Biological Chemistry,1974,249(22):7130~7139
    [86]国家环境保护局.环境监测技术规范.生物监测(水环境部分).第4册.北京:国家环境保护局,1986
    [87] Luo Y, Zang Y, Zhong Y A, et al. Toxicological study of two novel pesticides on earthwormEisenia foetida. Chemosphere,1999,39(13):2347~2356
    [88]范亚维,周启星.水体甲苯、乙苯和二甲苯对斑马鱼的毒性效应.生态毒理学报,2009,4(1):136~141
    [89] Di Marzio W, Saenz M E. OSARS for aromatic hydrocarbons at several trophic levels.Environmental Toxicology,2006,21(2):118~124
    [90] Schultz T W,Sinks G D,Bearden A P.QSAR in aquatic toxicology:a mechanism of actionapproach comparing toxic potency to pimephales promelas,Tetrahymena pyriformis, andVibrio fischeri.In:Devillers,J(ed).ComParative QSARs.London: Taylor&Francis,1998,
    [91]范飞,周启星,王美娥.基于小麦种子发芽和根伸长的麝香酮污染毒性效应.应用生态学报,2008,19(6):1396~1400
    [92] Guilherm ino L, Lopes M C, C arvalho A P, et al Inhibition of acetylcholinesterase activityas effect criterion in acute with tests juvenile Daphnia magna. Chemosphere,1996,32(4):727~738
    [93]王媛媛,周启星,范亚维.鲫鱼脑AChE活性对水体中石油污染土壤和孔雀石绿的响应.农业环境科学学报,2009,28(3):466~470
    [94] Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis,rophylaxis and treatment. Advances in Clinical Chemistry,2004,38:151–216
    [95] Li F,Zhao J H. Purification and characterization of AChE from cotton aphid aphis (GossyPiiGlove). Archives of Insect Biochemistry and Physiology,2002,51(1):37~45
    [96]闫建国,汝少国,王蔚.久效磷对黄鳝乙酰胆碱酯酶,羧酸酯酶和磷酸酶活性的影响.安全与环境学报,2006,6(3):61~63
    [97] Kavitha P, Rao J V. Oxidative stress and locomotor behaviour response as biomarkers forassessing recovery status of mosquito fish,Gambusia affinis after lethal effect of anorganophosphate pesticide, monocrotophos. Pesticide Biochemistry and Physiology,2007,87(2):182~188
    [98]崔静,陆光华.乙酰胆碱酯酶作为水体中杀虫剂污染生物标志物的评价与展望.现代生物医学进展,2009,9(7):1384-1386
    [99] Vyas N B, Kun zel W J, HillEF, et al. Regional cholinesterase activity in white~throatedsparrow brain is differen tially affected by acephate (Orthene(R)). Comarative Biochemistryand Physiology~Part C:Pharmacology,toxicology and Endocrinology,1996,113(3):381~386
    [100]徐维娜,谢国驷,刘文斌,等.敌百虫胁迫对异育银鲫鱼体中4种酶活性变化的影响.环境科学学报,2008,28(6):1198~1205
    [101]方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002
    [102]周启星,孔繁翔,朱琳.生态毒理学.北京:科学出版社.2004
    [103] Radic S, Cvjetko P, Glavas K, et al. Oxidative stress and DNA damage in Broad Bean (ViciaFaba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry,2009,28(1):189~196
    [104] Li Y N, Zhou Q X, Li F X, et al. Effects of tetrabromobisphenol~A as an emerging pollutanton wheat (Triticum aestivum) at biochemical levels. Chemosphere,2008,74(1):119~124
    [105] Mecord J M,Fridovieh.Superoxide dismutase:an enzymie fuction for erythrocuprein(hemoeuprein). Journal of Biological Chemistry,1969,244(22):6049~6055
    [106] Zaman K, MaeGillR S, Johnson J E, et al.An insect model for assessing mereury toxieity:effete of mereury on antioxidant enzyme activities of the housefiy(Musca domestica)and thecabbage looper moth (TrichoPlusia ni). Arehives of Environmenta Contamination andToxicology,1994,26(1):114~118
    [107] Gelain D P, De Bitt encourt, Pasquali M A, et al.2008. Retionl increases catalase activ ityand protein content by a reactive species~dependent mechanism in sterolicells.Chemico~Biological Interactions,174,1:38~43
    [108]徐凤彩.基础生物化学.广州:华南理工大学出版社,1999
    [109]吴伟,瞿建宏,聂凤琴,等.多溴联苯醚胁迫下鲫鱼肝脏微粒体CYP3A1和GST的响应.生态环境学报,2009,18(3):805~810
    [110]冯涛,郑微云,郭祥群,等.苯并(a)芘对大弹涂鱼肝脏超氧化物歧化酶活性的影响.台湾海峡,2001,20(2):182~186
    [111] Israr M; Sahi S V; Jain J. Cadmium accumulation and antioxidative responses in theSesbania drummondii Callus. Archives of Environmental Contamination and Toxicology.2006,50(1):121~127
    [112] Cheung C C C,Zheng G J,Li A M Y,et al.Relationships between tissue concentrations ofpolycyclic aromatic hydrocarbons and antioxidative responses of marine mussels,Pernaviridis.Marine Pollution Bulletin,2002,45(1/12):181~191
    [113] Xiao N W, Liu X H, Li W, et al. Effect of herbicide acetochlor on cytochrome P450monooxygenases and GST of earthworm Eisenia fetida. Journal of Environmental Sciences,2006,18(1):135~140
    [114] Sun Y Y, Yin Y, Zhang J F, et al. Bioaccumulation and ROS generation in liver of freshwaterfish, goldfish Carassius auratus under HC Orange No.1exposure. EnvironmentalToxicology,2007,22(3):256~263
    [115] Stegeman J J, Lech J J. Cytochrome P-450monooxygenase systems in aquatic species:carcinogen metabolism and biomarkers for carcinogen and pollutant exposure.Environmental Health Perspectives,1991,90:101~109
    [116] Hasspieler B M, Behar J V, Digiulio R T. Glutathione~dePendent defense in channel atfish(Ictalurus Punctatus)and brown bullhead (Ameriurus nebulosus). Ecotoxicology andEnvironmental Safety,1994,28(1):82~90
    [117] Cao X D, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulatorChinese brake fern (Pteris vittata L.). Environmental Pollution,2004,128(3):317~325
    [118]穆景利,王新红,林建清,等.苯并[a]芘对黑鲷肝脏GST活性的影响及其与肝脏代谢酶和胆汁代谢产物之间的变化关系.生态毒理学报,2009,4(4):516~523
    [119] Hai D Q, Varga I S, Matkovies B. Effeets of an organophosphate on the antioxidant systemsof fish tissues. Acta Biologica Hungarica,1995,46(1):39~50
    [120]宋玉芳,周启星,许华夏,等.菲、芘、1,2,4~三氯苯对蚯蚓的急性毒性效应.农村生态环境,2003,19(1):36~39
    [121] Arts G, Belgers J D M, Hoekzema C H, et al.2008. Sensitivity of submersed freshwatermacrophytes and endpoints in laboratory toxicity tests. Environment Pollution,2008,153(1),199~206
    [122] Arts G, Davies J, Dobbs M, et al.2010. AMEG: the new SETAC advisory group on aquaticmacrophyte ecotoxicology. Environmental Science and Pollution Research,2010,17(4),820~823
    [123] Wang W., Freemark K. The use of plants for environmental monitoring and assessment.Ecotoxicology and Environmental Safety,1995,30(3),289~301
    [124] Gersich F M, Mayes M A. Acute toxicity test with Daphnia magna straus and pemephalespromelas rafinesque in support of national pollutant discharge elimination permitrequirement. Water Research,1986,20(7):939
    [125] Lewis M A. Use of freshwater plants for phytotoxicity testing: a review. EnvironmentPollution,1995,87(3),319–336
    [126] Lytle J S, Lytle T F. Use of plants for toxicity assessment of estuarine ecosystems.Environment Toxicology and Chemistry,2001,20(1),68~83
    [127] EU. The EU Water Framework Directive2000/60,2000
    [128] Sinha S, Pandey K. Nickel induced toxic effects and bioaccumulation in the submergedplant, Hydrilla verticillata (L.F.) Royle under repeated metal exposure. Bulletin ofEnvironmental Contamination and Toxicology,2001,71(6),1175~1183
    [129] Srivastava S, Mishra S, TriPathi R D,et al. Phytochelatins and antioxidant systems responddifferentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle.Environmental Science and Technology,2007,41(8),2930~2936
    [130]张玲,李广贺,张旭,等.滇池人工湿地的植物群落学特征研究.长江流域资源与环境.2005,5(14):570~573
    [131]郑翀,孙梅,郑少奎,等.低温下水芹浮床对氨氮类富营养水体的连续小试净化.环境污染治理技术与设备,2006,8:23~26
    [132]陈建勋,王晓峰.植物生理学实验指导.北京:高等出版社,2006
    [133] Wang C, Zhang S H, Wang P F, et al.2010. Effects of ammonium on the antioxidativeresponse in Hydrilla verticillata (L.f.) Royle plants. Ecotoxicology and EnvironmentalSafety,2010,73(2):189~195
    [134] Rai U N, Chandra, E. Accumulation of copper, cadmium, manganese and iron by fieldpopulation of Hydrodictyon reticulatum (Linn.) Lagerheim. Science of Total Environment,1992,116(3):203~211
    [135] Gupta M, Sinha S, Chandra P. Copper-nduced toxicity in aquatic macrophyte, Hydrillaverticillata: effect of pH. Ecotoxicology,1996,5(1):23~33
    [136] Kanoun-BouléM, Vicente J, Nabais C, et al. Ecophysiological tolerance of duckweedsexposed to copper. Aquatic Toxicology,2009,91(1):1~9
    [137] Stobart A K, Grif ithsW T, Ameen~Bukhar I. The effects of Cd2+on the biosynthesis ofchlorophyll in leaves of barley. Plant Physiology,1985,63(3):293~298
    [138]徐勤松,施国新,周耀明,等.镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析.实验生物学报,2004,37(6):461~468
    [139] Willekens H, Van CamP W, Van Montagu M, et al. Ozone, sulfur dioxide, and ozoneuhraviolet~B have similar effect on mRNA accumulat ion of antioxidant genes in NicotianaPlumbagimf olia L. Plant Physiology,1994,106(3),1007~1014
    [140] Kenneth E, Pallet K E, Young J.2000. Carotenoids: Antioxidants in higher plants. Kath,G.Alscher (Eds.). John L.Hess. CRC Press, Boca Raton, Florida USA,2000
    [141] Ferrat L. Assessment of the use of biomarkers in aquatic plants for the evaluation ofenvironmental quality:application to seagrasses. Aquatic Toxicology,2003,65(2),187~204
    [142] Qureshi M I, Abdin M Z, Qadir S, Iqbal M. Lead~induced oxidative stress and metabolicalterations in Cassia angustifolia Vahl. Biol Plantarum,2007,51(1):121~128
    [143] Fatima R, Ahmad M. Certain antioxidant enzymes of Allium cepa as biomarkers for thedetection of toxic heavy metals in wastewater. Science of Total Environment,2005346(1~3),256~273
    [144] Sun F, Zhou Q X, Wang M, et al. Joint stress of copper and petroleum hydrocarbons on thepolychaete Perinereis aibuhitensis at biochemical levels. Ecotoxicology and EnvironmentalSafety,72(7),1887~1892
    [145]王萍,周启星.2009. BTEX污染环境的修复与技术进展研究.生态学杂志,2009,28(2):329~334
    [146] Sinha S. Oxidative stress induced by HCH in Hydrilla verticillata (l.f.) Royle: modulation inuptake and toxicity due to Fe. Chemosphere,2002,46:281~288
    [147] Martínez Domínguez D, Córdoba García F, Canalejo Raya A, et al. Cadmium-inducedoxidative stress and the response of the antioxidative defense system in Spartina densiflora.Physiologia Plantarum,2010,139(3):289~302
    [148] Lepedu H, Cesar V, Krsnik-rasol M. Guaiacol Peroxidases in carrot (Daucus carota L.)root. Food Technology and Biotechnology,2004,42(1):33~36
    [149] Koricher J, Roy S, Vranjic J A, et al. Antioxidant responses to simulated acid rain and heavymetal deposition in birch seedlings. Environmental Pollution,1997,95:249~258
    [150] Mittler R.Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7(9),405~410
    [151] Sun F H, Zhou Q X, Wang M E, et al. Joint stress of copper and petroleum hydrocarbons onthe polychaete Perinereisaibuhitensis at biochemical levels. Ecotoxicology andEnvironmental Safety,2009,72:1887~1892
    [152] Mahalingam R, Fedorof N. Stress response, cell death and signaling: the many faces ofreactive oxygen species. Plant Physiology,2003,119:56–68
    [153] Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activity ofantioxidant enzymes in growing rice plants. Plant Science,2003,164:645~655
    [154] Menone M L, Pflugmacher S. Effects of3~chlorobiphenyl on photosynthetic oxygenproduction, glutathione content and detoxicaTion enzymes in the aquatic macrophyteCeratophyllum demersum. Chemosphere,2005,60:79~84
    [155] Liu H, Weisman D, Ye Y, et al. An oxidative stress response to polycyclic aromatichydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science2009,176:375~82
    [156] Bacelar E A, Santos D L, Moutinho-Pereira J M, et al. Physiological behaviour, oxidativedamage and antioxidative protection of olive trees grown under different irrigation regimes.Plant Soil,2007,292:1~12
    [157] Vanhoudt N, Vandenhove H, Horemans N, et al. Study of oxidative stress related responsesinduced in Arabidopsis thaliana following mixed exposure to uranium and cadmium. PlantPhysiology and Biochemisty,2010,48:879~86
    [158] Luo H J, Li H Y, Zhang X Z, et al. Antioxidant responses and gene expression in perennialryegrass (Lolium Perenne L.) under cadmium stress. Ecotoxicology,2011,20:770~778
    [159] Chen T H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering ofbetaines and other compatible solutes curr o Plant Biology,2002,5:250~257
    [160] Deng X, Xia Y, Hu W, et al. Cadmium~induced oxidative damage and protective effects ofN-acetyll-cysteine against cadmium toxicity in Solanum nigrum L. Journal of HazardMaterial2010,180:722~729
    [161] Srivastava S, D'Souza S F. Effect of variable sulfur supply on arsenic tolerance andantioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicology andEnvironmental Safety,2010,73:1314~1322
    [162] Wu Z, Yu D, Li J, et al. Growth and antioxidant response in Hydrocharis dubis (Bl.) Backerexposed to linear alkylbenzene sulfonate. Ecotoxicology,2009,19:761~769
    [163] Blokhina O, Virolainen E, Eagerstedt K. Antioxidants, oxidative damage and oxygendeprivation stress: a review. Annals of Botany,2003,91:179~194
    [164] Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers ofoxidative stress in aquatic organisms in relation to toxic environmental pollutants.Ecotoxicology and Environmental Safety,2006,64:178~89
    [165]严重玲,李瑞智,钟章成.模拟酸雨对绿豆、玉米生理生态特性的影响.应用生态学报,1995,6(增刊):124~131
    [166]陈国祥,施国新,何兵,等. Hg、Cd对莼菜纯冬芽光合膜光化学活性及多肽组分的影响.环境科学学报,1999,19(5):521~525
    [167]孙赛初,王焕校.水生维管植物受镉污染后的生理生化变化及受害机制初探.植物生理学报,1995,11(2):113~121
    [168]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响.植物学通报,1991,8(3):26~29
    [169]徐楠,施国新,杜开和,等. Hg,Cd及其复合污染对浮萍叶片的毒害研究.南京师大学报(自然科学版),2002,25(3):109~115
    [170] Korichera J, Roy S,Vranjic J A, et al. Antioxidant responses to stimulated acid rain andheavy metal deposition in birchseedling. Environmetal Pollution,1997,95:249~258
    [171]张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报,2000,20(3):514~523
    [172] Attila Hegedüs, Sára Erdei, Gábor Horváth. Comparative studies of H2O2detoxifyingenzymes in green and greening barley seedlings under cadmium stress. PlantScience.2011,160(6):1085–1093
    [173]王君,刘思思,王妍,等. Cr6+对慈姑部分生理生化指标的影响.南京师大学报(自然科学版),2009,32(2):108~112
    [174] Wang M E, Zhou,Q X, Ren L P. Toxicological responsesinwheat Triticum aestivum underjoint stress of chlorimuron-ethyl andcopper. Ecotoxicology and Environmental Safety,2009,72:2121~2129
    [175]张玉秀,柴团耀, Gerard B.植物耐重金属机理研究进展.植物学报,1999,41(5):453~457
    [176]潘慧云,李小路,徐小花,等.甲磺隆对沉水植物伊乐藻的生理生态效应研究.环境科学,2008,29(7):1845~1848
    [177] Qureshim I, Abdin M Z, Qadir s, et al. Lead induced oxidative stress and metabolicalterations in Cassia angustif olia Vahl. Biology Plantarum,2007,51:121~128.
    [178]袁敏,铁柏清,唐美珍.重金属单一污染对龙须草叶绿素含量和抗氧化酶系统的影响.土壤通报,2005,36(6):929~932
    [179] Xu Z Q, Zhou Q X, Liu W T. Joint effects of cadmium and lead on seedlings of fourChinese cabbage cultivars in northeastern China. Journal of Environmental Sciences,2009,21:1598–1606
    [180]胡林林,周扬胜,陈艳卿.借鉴美国经验建立我国水质基准地位.中国环境报,2006
    [181] US EPA. Guidelines for deriving numerical national water quality criteria for the protectionof aquatic organisms and their uses (PB852227049) Washington DC: US.EnvironmentalProtection Agency,1985
    [182] USEPA. Quality criteria for water. EPA440/5~86~001, Office of Water Regulations andStandards, US.Environmental Protection Agency,Washington DC,1986
    [183] Lepper P and Fraunhofer. Towards the derivation of quality standards for priority substancesin the context of the Water Framework Directive. No.B4~3040/2000/30637/MAR/E1.2002
    [184] Hohreiter D W, Rigg D K. Derivation of ambient water quality criteria for formaldehyde.Chemosphere,2001,45:471~486
    [185] Dean K E, Palachek R M., Noel J M, et al. Development of freshwater water quality criteriafor perchlorate. Environmetal Toxicology and Chemistry,2004,23,1441–1451
    [186] Fisher D J, Burton D T, Yonkos L T, et al. Derivation of acute ecological risk criteria for chlorite in freshwater ecosystems. Water Research,2003,37:4359~4368
    [187] Newman M C, Ownby D R, Mezin L C A, et al. Applying species sensitivity distributionsin ecological risk assessment: Assumptions of distribution type and sufficient numbers ofspecies. Environmental Toxicology and Chemistry,2000,19(2):508—515
    [188] Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: data andmodel choice. Marine Pollution Bulletin,2002,45:192—202
    [189] OECD. Draft report of the OECD workshop on the extrapolation of laboratory aquatictoxicity data to the real environment. Organisation for Economic Cooperation andDevelopment, Paris, France,1991
    [190] ECB. Technical Guidance Document on risk assessment. European Commission JointResearch Centre. PubliCATion EUR20418EN/3, Environmental Risk Assessment, Part II,ChaPter3, European Chemical Bureau,2003
    [191]王印,王军军,秦宁,等.2009.应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险.环境科学学报,2009,29(11):2407~2414
    [192] Van Straalen N M. Theory of ecological risk assessment based on species sensitivitydistributions//Posthuma L, Traas T P, Suter GW. Species Sensitivity Distributions inEcotoxicology. Boca Raton, FL, USA: Lewis,2002
    [193] Wagner C, L kke H. Estimation of ecotoxicological protection levels from NOEC toxicitydata.Water Research,1991,25(10):1237~1242
    [194] Aldenberg T, Slob W. Confidence limits for hazardous concentrations based onlogistically distributed noec toxicity data.Ecotoxicology and Environmental Safety,1993,25(1):48~63
    [195] Shao Q X.Estimation for hazardous concentrations based on NOEC toxicity data: analternative approach. E nvironmetrics,2000,11(5):583~595
    [196]张瑞卿,吴丰昌,李会仙,等.应用物种敏感度分布法研究中国无机汞的水生生物水质基准.环境科学学报,2012,32(2):440~449
    [197] Zajdlik and Associates Inc. Statistical analysis of the SSD approach for development ofCanadian water quality guidelines. Canadian Council of Ministers of the Environment,Canada,2005
    [198] Hosel G C, Van den Brink P J. Confrming the species sensitivity distribution concept forendosulfan using laboratory, mesocosm, and field data. Archives of EnvironmentalContamination and Toxicology,2004,47:511–520
    [199] ECB. Technical Guidance document on risk assessment. European Commission JointResearch Centre. Publication EUR20418EN/3, Environmental Risk Assessment, Part II,ChaPter3, European Chemical Bureau,2003
    [200]吴丰昌,孟伟,曹宇静,等.镉的淡水水生生物水质基准研究.环境科学研究,2011,24(2):172~184
    [201] Staples C A, Woodburn K B, Klecka G M, et al. Comparison of four species sensitivitydistribution methods to calculate predicted no effect concentrations for bisphenol A. Humanand Ecological Risk Assessment: An International Journal,2008,14:455~478
    [202] Chapman P M, Fairbrother A, Brown D. A critical evaluation of safety (uncertainty) factorsfor ecological risk assessment. Environmental Toxicology and Chemistry,1998,17:99~108
    [203] OECD. Report of the OECD Workshop on extrapolation of laboratory aquatic toxicity datato the real environment. OECD Environment Monographs59, Organisation for EconomicCo-operation and Development, Paris, France,1992
    [204] Sharon L, Bertelsen, Alex D, et al. Evaluation of logKow and tissue lipid content aspredictors of chemical partitioning to fish tissue. Environmental Toxicology andChemistry,1998,1447–1455
    [205] Oliver B G, Niimi A J. Bioconcentration factors of some halogenated organics for rainbowtrout: Limitations in their use for prediction of environmental residues. EnvironmentalScience and Technoogy,1985,19:842–849
    [206] Jones A, Zabel T. Proposed Environmental quality standards for toluene in water. FinalReport to the Doe. Wrc report No doe2986,1996
    [207] Kester J E.―Endocrine disruptors.‖In: Clinical environmental health and toxic exposures,Second Edition, J.B. Sullivan and G.R. Krieger, Eds. Lippincott Williams and Wilkins,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700