用户名: 密码: 验证码:
奥氏体不锈钢形变/渗氮复合处理工艺及渗氮层结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢具有良好的成形性能、焊接性和耐蚀性,广泛应用于化工、医药、食品及航空等行业,约占每年世界不锈钢总产量的2/3。但由于奥氏体不锈钢硬度相当低(Hv<250)、耐磨性极差,大多数奥氏体不锈钢零部件即使在低载荷作用下也会由于严重磨损而过早失效。又因奥氏体不锈钢不能像一般钢铁材料通过相变热处理进行强化,因此,近年来许多学者致力于奥氏体不锈钢材料的表面强化研究,而如何提高奥氏体不锈钢的硬度和耐磨性且不损伤其耐腐蚀性一直是奥氏体不锈钢表面强化的研究重点。目前的研究现状是:对奥氏体不锈钢进行单一的形变强化处理无法获得满意的强化效果且耐腐蚀性能不稳定;常规等离子渗氮处理效率低下,渗层过薄;而近年出现的形变与渗氮结合的复合处理由于所采用的机械研磨和等通道角挤压等形变技术的条件所限,目前还无法用于处理工业生产中形状复杂的零部件。
     本文探求具有实际工程应用价值的奥氏体不锈钢强化方法,研究内容一是将工业上常规喷丸技术与等离子渗氮技术相结合,通过物理(晶粒细化和相变)和化学(元素渗扩改变化学成分)复合作用,提高渗氮效率且保持或提高原奥氏体不锈钢的耐腐蚀能力;研究内容二是采用高温短时离子渗氮法,使离子渗氮效率得到提高,同时获得具有良好机械性能和耐蚀性能的渗氮层,并研究探讨奥氏体不锈钢的渗氮热力学和氮化物析出动力学。
     获得的主要结论包括:
     1.采用普通工业喷丸与等离子渗氮相结合的复合处理工艺,有效降低了奥氏体不锈钢等离子渗氮时的扩散激活能,在相同渗氮条件下获得的渗层厚度约为常规离子渗氮层厚度的2倍。当渗氮温度低于500℃时,复合处理工艺在奥氏体不锈钢表面获得的渗氮层主要相组成为S相,且具有良好的耐腐蚀和耐磨损性能。通过改变渗氮时间、温度等参数,研究了复合渗氮工艺的微观渗氮机理和渗氮动力学过程,为实现奥氏体不锈钢形变/渗氮复合处理工艺的工业化应用提供了研究基础。
     2.工业喷丸处理导致304奥氏体不锈钢中产生了应变诱导马氏体,研究发现马氏体易于在单向剪切带位置、多向剪切带交割位置以及剪切带与晶界交界位置形核。等离子渗氮时,氮原子进入表面层后促进了应变诱导马氏体向膨胀奥氏体转变,其相变过程为:应变诱导马氏体马氏体→膨胀马氏体→膨胀奥氏体。
     3.采用高温(540℃)短时离子渗氮方法在喷丸奥氏体不锈钢表面获得主要组成为S相的渗氮层,处理时间为1h时渗氮厚度可达9.0μm,与常规离子渗氮所需时间(4-5h)相比大为缩短。
Austenitic stainless steel (ASS) possesses good deformation property, welding property and corrosion resistance property, which has been widely applied in the field of chemical, medical, food and aviation industries. The annual production of ASS accounts for two thirds of the world total production of stainless steel. However, due to the extremely low hardness (Hv<250), the wear resistance property of ASS is very poor, which leads to early failure of mass components and parts even under low load according to the serious wear. And because ASS can not be strengthened by heat treatment like common steel materials, lots of researchers study on the surface strengthening of ASS in recent years. How to enhance the hardness of ASS without loss of its corrosion resistance has been the hot research point in the research of surface strengthening of ASS. The current research status is as follows:deformation strengthening treatment can not achieve satisfied strengthening effect towards ASS and furthermore deformation could lead to unstable corrosion resistance property of ASS; the efficiency of ordinary plasma nitriding process of ASS is very low and the nitrided layer is very thin; recently the hybrid treatment of deformation pre-treatment and nitriding is used to enhance the nitriding efficiency of ASS, however according to the restriction of the surface mechanical attrition treatment and equal-channel angle pressing equipments, these kind of hybrid treatments could not applied to the components and parts with complex shapes in industry manufacturing.
     This paper researched on the strengthening treatment process towards ASS which possesses actual industrial application value. The research contents can be classified as two parts:The first part studied the hybrid treatments by combining of ordinary industrial shot peening and plasma nitriding to enhance the nitriding efficiency of ASS with retaining or even improving corrosion resistance ability, which takes advantage of the composite effects of physics effect (fine grains and phase transformation) and chemical effect (chemical contents modification) in the hybrid treatments; Second part studied high-temperature-short-time plasma nitriding treatment to enhance the nitriding efficiency of ASS and achieve nitrided layer with good wear resistance and corrosion resistance properties, and also studied the nitriding thermodynamics and nitrides precipitation kinetics of ASS.
     The main conclusions are as follows:
     1. The hybrid treatments, which combines ordinary industrial shot peening and plasma nitriding, effectively decreases the nitriding diffusion activation energy of ASS, and achieves a twice thicker nitrided layer than ordinary nitriding treatment under the same treatment parameters. When the nitriding temperature bellows500℃, the nitrided layer achieved by hybrid treatments on the surface of ASS is mainly composed of phase S, which possesses good corrosion resistance property and wear resistance property. By changing the nitriding parameters, such as temperature and duration etc, the nitriding micro-mechanism and nitriding kinetics of hybrid nitriding treatments are studied, which provides theoretical basis for the industrial application of deformation/nitriding hybrid treatments.
     2. Industrial shot peening treatment leads to formation of strain-induced martensite in ASS, which preferentially forms at the positions of single-direction shear band, intersection of multi-direction shear bands and intersection of shear band and grain boundary. During the plasma nitriding, the entrance of nitrogen atoms into the surface layer promotes the transformation from strain-induced martensite to expanded austenite, and the evolution process is as bellow:strain-induced martensite→expanded martensite→expanded austenite.
     3. A nitrided layer mainly composed of phase S can be achieved on the surface of ASS by high-temperature-short-time plasma nitriding treatment, and the thickness of nitrided layer gets up to9.0μm when nitriding duration is up to1h, which evidently shortens the nitriding time compared to ordinary nitriding treatment (4-5h).
引文
[1]Harold M.Cobb. The history of stainless steel,2-5.
    [2]肖纪美.不锈钢的金属学问题.冶金工业出版社,2006,319-325。
    [3]Stainless Steel in Figures 2013, International Stainless Steel Forum.
    [4]Chapter 1, introduction to stainless steels, Alloy Digest Sourcebook:Stainless Steels,2000 ASM International.
    [5]冈毅民.中国不锈钢腐蚀手册,冶金工业出版社,1992,22。
    [6]徐滨士.表面工程的理论与技术(第二版),国防工业出版社,2010,1。
    [7]J. Lu. Proceedings of the Fourth International Conference on Residual Stresses, Society for Experimental Mechanics, Baltimore, MD, USA,1994,1154.
    [8]X. Wu, N. Tao, Y. Hong, B. Xu.et al. Acta Materialia 50 (2002) 84.
    [9]Thibaut Chaisea, Jun Li, Daniel Nelias Regis Kubler et al. Modelling of multiple impacts for the prediction of distortions and residualstresses induced by ultrasonic shot peening (USP). Journal of Materials Processing Technology 212 (2012) 2080-2090.
    [10]N.R. Tao, M.L. Sui, J. Lu, et al.Nanostruct. Mater.11 (1999) 433.
    [11]F.A. Guo, N. Trannoy, J. Lu.Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening. Superlattices and Microstructures 35 (2004)445-453.
    [12]X. Wu, N. Tao, Y. Hong, et al. Acta Mater.50(2002) 2075.
    [13]Y. Iwahashi, Y. Wang, J. Horita, et al. Acta Mater.46 (1998)3317.
    [14]J.C. Villegas, K. Dai, L.L. Shaw, et al. Materials Science and Engineering:A410-411 (2005)60.
    [15]J.C. Villegas, L.L. Shaw. Acta Materialia 57 (2009) 95.
    [16]A. Sanda, V. Garcia Navas, O. Gonzalo.Surface state of Inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample. Materials and Design 32 (2011) 2213-2220.
    [17]G. Liu,.J. Lu, K. Lu. Mater. Sci. Ling. A 286 (2000) 91.
    [18]SEGAL V M. Materials processing by simple shear [J]. Mater Sci Eng A,197(1995) 157-164.
    [19]SEGAL V M. Engineering and commercialization of equal channel angular extrusion (ECAE) [J]. Mater Sci Eng A,386 (2004) 269-276.
    [20]SEGAL V M. Equal channel angular extrusion:From macromechanics to structure formation [J]. Mater Sci Eng A,271(1999)322-333.
    [21]Roberto Braga Figueiredo, Ivete Peixoto Pinheiro, Maria Teresa Paulino Aguilar, et al. The finite element analysis of equal channel angular pressing (ECAP)considering the strain path dependence of the work hardening of metals. Journal of Materials Processing Technology 180 (2006) 30-36.
    [22]Iwahashi, Y., Wang, J., Horita, Z., et al. Scripta Metal. Mater.,35(1996) 143.
    [23]Iwahashi, Y., Horita, Z., Nemoto,et al. Acta Mater.,46 (1998) 1589.
    [24]Alexandrov, LB., Zhu, Y.T., et al. Metal. Mater. Trans. A29 (1998)2253.
    [25]D.H. Shin, Y.S. Kim, E.J. Lavernia. Acta Mater.49 (2001) 2387.
    [26]Y. Fukuda, K. Oh-Ishi, Z. Horita, T.G. Langdon. Acta Mater.50 (2002)1359.
    [27]Y.H. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Acta Mater.53 (2005)3125.
    [28]V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, et al. Influence of ECAP routes on the Microstructure and Properties of Pure Ti. Mater. Sci. Eng. A. (in press).
    [29]S. Ferrasse, V.M. Segal, K.T. Hartwig, et al. Metall. Mater. Trans.28A (1997) 1047.
    [30]P.B. Prangnell, A. Gholinia, V.M. Markushev, et al. Investigations and Applications of Severe Plastic Deformation. Kluwer Academia, Dordrecht,2000,65-71.
    [31]Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon.Acta Mater.46 (1998) 3317.
    [32 K. Oh-Ishi, Z. Horita, M. Furukawa, et al. Metall. Mater. Trans.29A (1998) 2011.
    [33]K. Nakashima, Z. Horita, M. Nemoto, et al. Acta Mater.46 (1998) 1589.
    [34]T.G. Langdon, M. Furukawa, Z. Horita, et al. Using intense plastic straining for high-strain-rate superplasticity. JOM 50(1998)41-45.
    [35]Y. Iwahashi, Z. Horita, M. Nemoto, et al. Acta Mater.45 (1997) 4733.
    [36]A.B. Naizabekova, V.A. Andreyachshenkoa, Radim Kocichb. Study of deformation behavior, structure and mechanical properties of the AISiMnFe alloy during ECAP-PBP.Micron 44 (2013) 210-217.
    [37]I. Karaman, G.G. Yapici, Y.I. Chumlyakov, I.V. Kireeva. Mater. Sci. Eng. A410-A411 (2005) 243.
    [38]C.X. Huang, G. Yang, YL. Gao,et al. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Materials Science and Engineering:A485 (2008) 643-650.
    [39]P.W. Bridgman.Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York,1952.
    [40]Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, et al. Nature Commun 2010;1:63.
    [41]R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, et al. J. Mater. Res.17(2002)5.
    [42]Gertsman, V.Y., Birringer, R., Valiev,et al. Scripta Metal. Mater.,30(1994)2294.
    [43]Alexandrov, LV., Zhu, Y.T., Lowe,T.C.,et al.Nanostruct. Mater.10(1998) 49.
    [44]Ahmed Drai, Benaoumeur Aour.Analysis of plastic deformation behavior of HDPE during high pressure torsion process.Engineering Structures 46 (2013) 87-93.
    [45]X. Sauvage, Y. Ivanisenko. J. Mat. Sci.42 (2007)1615.
    [46]Y. Ivanisenko, R.Z. Valiev, H. Fecht. Mater. Sci. Eng. A390 (2005) 159.
    [47]F. Wetscher, B. Tian, R. Stcok, R. Pippan. Mater. Sci. Forum 503(2006)455-460.
    [48]Dmitry Orlov, Pinaki Prasad Bhattacharjee, Yoshikazu Todaka, et al. Texture evolution in pure aluminum subjected to monotonous and reversal straining in high-pressure torsion. Scripta Materialia 60 (2009) 893-896.
    [49]A.P. Zhilyaev, T.R. McNelley, T.G. Langdon. J. Mat.Sci.42 (2007) 1517.
    [50]A.A. Mazilkin, B.B. Straumal, E. Rabkin,et al. Acta Mater.54 (2006) 3933.
    [51]S.V. Dobatkin, S.N. Bastarache, G. Sakai,et al. Mater. Sci. Eng. A 408 (2005) 141.
    [52]V. Rajinikantha, K. Venkateswarlub, Mani Kuntal Sena et al. Influence of scandium on an Al-2% Si alloy processed by high-pressure torsion. Materials Science and Engineering A 528 (2011) 1702-1706.
    [53]J. Cizek, I. Prochazka, B. Smola,et al. Mater. Sci. Forum 503(2006) 149.
    [54]B. Srinivasarao, A.P.Zhilyaev, T.GLangdon, et al. On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Materials Science & Engineering A 562 (2013) 196-202.
    [55]F. Dalla Torre, P. Spatig, R. Schlaubing,et al.Acta Mater.53 (2005) 2337.
    [56]X. Huang, G. Winther, N. Hansen, et al.Mater. Sci.Forum 426 (2003) 2819.
    [57]F. Wetscher, R. Pippan. Philos. Mag.86 (2006) 5867.
    [58]M.J. Zehetbauer, J. Kohout, E. Schafler,et al. J. Alloy. Compd.378 (2004) 329.
    [59]M.T. Perez-Prado, A.A. Gimazov, O.A. Ruano.et al. Bulk nanocrystall ine x-Zr by high-pressure torsion.Scripta Materialia 58 (2008)219-222.
    [60]E.C.S. Correa, M.T.P. Aguilar, E.M.P. Silva, et al.The effect of sequential tensile and cyclic torsion straining on work hardening of steel and brass. Journal of Materials Processing Technology 142 (2003)282-288.
    [61]T. Hebesberger, H.P. Stuwe, A. Vorhauer.et al. Structure of Cu deformed by high pressure torsion. Acta Materialia 53 (2005) 393-402.
    [62]Yu. lvaniscnko, H.J. Fecht. Mater. Sci. Forum 584-586 (2008) 203-208.
    [63]Yu. Ivanisenko, L. Kurmanaeva, J. Weissmueller, et al. Acta Mater.57 (2009) 3391-340.
    [64]Chuan TingWang, NongGao, MarkG.Gee, et al.Processing of an ultrafine-grained titanium by high-pressure torsion:An evaluation of the wear properties with and without a TiN coating.Journal of the mechanical behavior of biomedical materials 17 (2013)166-175.
    [65]H.Yilmazer, M.Niinomi, M.Nakai, et al. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion.Journal of the mechanical behavior of biomedical materials 10 (2012) 235-245.
    [66]Yoshikazu Todaka, Jun Sasaki, et al.Bulk submicrocrystalline Ti produced by high-pressure torsion straining. Scripta Materialia 59 (2008) 615-618.
    [67]Y. Cao, Y.B. Wang, R.B. Figueiredo,et al.Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution.Acta Materialia 59 (2011)3903-3914.
    [68]Scheriau, Z. Zhang, S. Kleber,et al. Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Materials Science and Engineering 528(2011)2776-2786
    [69]Yoji Mine, Kazutaka Tachibana, Zenji Horita. Grain-boundary diffusion and precipitate trapping of hydrogen in ultrafine-grained austenitic stainless steels processed by high-pressure torsion. Materials Science and Engineering:528(2011) 8100-8105.
    [70]Fairand B P, Clauer A H. Laser generation of high amplitude stress waves in materials. J Appl Phys,50 (1979)1497-1502.
    [71]A.H. Clauer, J.K. Gregory, H.J. Rack,et al.Surface Performance of Titanium. TMS, Warrendale (1996)217-230.
    [72]U. Trdan, J. Grum, M.R. Hill. Mater. Sci. Forum 681 (2011) 480.
    [73]P. Peyre, X. Schcrpereel, L. Berthe,et al.Mater. Sci. Eng. A280 (2000)294.
    [74]G. Hammersley, L.A. Hackel, F. Harris. Opt. Lasers Eng.34(2000)327.
    [75]Peyre P., Fabbro R.. Laser shock processing:a review of the physics and applications. Optical and Quantum Electronics,27(1995)1213-1229.
    [76]C. Rubio-Gonzalez, C. Felix-Martinez, G. Gomez-Rosasb,et al.Effect of laser shock processing on fatigue crack growth of duplex stainless steel.Materials Science and Engineering A 528 (2011)914-919.
    [77]I. Nikitin, I. Altenberger. Comparion of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel A1SI 304 in the temperature range 25-600℃.Materials Science and Engineering A 465 (2007) 176-182.
    [78]Hyuntaeck Lim, Pilkyu Kim, Hoemin Jeong,et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock pcening. Journal of Materials Processing Technology 212 (2012)1347-1354.
    [79]Zhong Zhou, Amrinder S. Gill,et al.A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. International Journal of Impact Engineering 38 (2011)590-596.
    [80]Uros Trdana, Juan A. Porrob, Jose L. Ocanab.et al. Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy. Surface and Coatings Technology,208(2012)109-116
    [81]Z. Hong, Y. Chengye, Mater. Sci. Eng. A257 (1998)322.
    [82]Y. Sano, M. Obata, T. Kubo,et al. Mater. Sci. Eng. A417 (2006)334.
    [83]U. Sanchez-Santana, C. Rubio-Gonzalez, G Gomez-Rosas,et al. Wear 260 (2006) 847.
    [84]U. Trdan, S. Zagar, J. Grum.et al. Surface modification of laser and shot-peened 6082 aluminium alloy:Laser peening effect to pitting corrosion.International Journal of Structural Integrity. 2(2011)9-21.
    [85]Y. Hu, Z. Yao, Int. J. Mach. Tools Manuf.48(2008)152.
    [86]Uros Trdan, Janez Grum. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and E1S methods. Corrosion Science, 59(2012)324-333.
    [87]张洪旺.AISI304不诱钢的表面自纳米化及混合表面纳米化研究,大连海事大学博士论文,2003.
    [88]H.W. Zhang, Z.K. Hei, G. Liu.et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia,2003,51(7): 1871-1881.
    [89]T. Roland, D. Retraint, K. Lu, et al.Fatigue life improvement through surface subjected to surface mechanical attrition treatment. Journal of Materials Science&Technology,2010,26(3): 258-263.
    [90]L. Zhou, G. Liu, X.L.,et al. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment. Acta Materialia,2008,56(1) 78-87.
    [91]T. Hu, C.S. Wen, G.Y. Sun,et al. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surfacc and Coatings Technology,2010,205(2):506-510.
    [92]J H.Q. Sun, Y.N. Shi, M.X. Zhang,et al.Surface alloying of an Mg alloy subjected to surface mechanical attrition treatment.Surface and Coatings Technology,202(2008)3947-3953.
    [93]A. Di Schino, J.M. Kenny.Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel.Materials Letters 57 (2003)1830-1834.
    [94]B. P. KASHYAP, K. TANGRI.On the hall-patch relationship and substructural evolution in type 316L stainless steel. Acta metall, mater 43 (1995) 3971-3981.
    [95]B.N. Mordyuk, Yu.V. Milman, G.I. Prokopenko,et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel.Surface & Coatings Technology 202 (2008)4875-4883.
    [96]Yimin Lin, Jian Lu, Liping Wang,et al.Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel.Acta Materialia 54 (2006) 5599-5605。
    [97 M. Ya, Y. Xing, F. Dai,et al. Surf. Coat. Technol.168 (2003)148.
    [98]P. Peyre, X. Scherpereel, L. Berthe, et al. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng.280(2000)294.
    [99]C.B. Shen, S.G. Wang, H.Y Yang, et al. Corrosion effect of allylthiourea on bulk nanocrystalline ingot iron in dilute acidic sulphate solution. Electrochemica Acta, 52(2007)3950-3957.
    [100]S.H. Kim, K..T. Aust, U. Erb,et al. A comparison of the corrosion behavior of polycrystalline and nanocrystalline Cobalt.Scripta Materialia,48(2003)1379-1384.
    [101]Y Gao, Z.J.Zheng, M.Zhu, et al. Corrosion resistance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures. Mater.Sci.Eng. A,381(2004)98-103.
    [102]Wang X Y, Li D. J.. Mechanical and electrochemical behavior of nanocrystalline and surface of 304 stainless steel. Electrochim Acta,47(2002)3939.
    [103]吕爱强,张洋,李瑛等.异步轧制对表面纳米化316L不锈钢组织和性能的影响[J].金属学报,41(2005)271-276.
    [104]李雪莉,李瑛,王福会,等USSP表面纳米化Fe 20Cr合金的腐蚀性能及机制研究.中国腐蚀与防护学报,2002,22(6)326.
    [105]T.Balusamy, Satendra Kumar, T.S.N. Sankara Narayanan. Effect of surface nanocryatallization on the corrosion behavior of AISI 409 stainless steel.'Corrosion Science,52 (2010)3826-3834.
    [106]沈长斌,王胜刚,龙康,等.块体纳米晶工业纯铁在室温硫酸溶液中的腐蚀电化学行为.机械工程材料,2005,29(4)48.
    [107]李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响.腐蚀与防护,2003,24(1)6.
    [108]熊天英,王吉孝,金花子等.0Cr18Ni9Ti钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能的研究.材料保护,2005,38(1)13.
    [109]石继红,武保林,刘刚.316L不锈钢表面纳米化后腐蚀性能研究.材料工程,10(2005)42.
    [110]T. Wang, J. Yu, B. Dong. Surf. Coat. Technol,200(2006)4777.
    [111]肖纪美.不锈钢的金属学问题[M}.北京,冶金工业出版社,2006,155-164.
    [112]宣天鹏,材料表面功能镀覆层及其应用,机械工业出版社.
    [113]刘坤吉,王锡林,刘庆华,等.不锈钢零件表面离子渗氮的研究与应用,《金属热处理》2005,30(4),55-58.
    [114]Masato Sahara, Takayasu Sato, Shigeru Ito, et al. R.f. plasma nitriding of pure iron and stainless steel. Mater. Chem. Phys.,1998,54,123-126.
    [115]S. Kumar, M.J. Baldwin, M.P. Fewell, et al.The effect of hydrogen on the growth of the nitrided layer in r.f.-plasma-nitrided austenitic stainless steel AISI 316.Surf. Coat. Technol.2000,123,29-35.
    [116]J.R.Conrad, J.L.Radtke, R.A. Dodd, et al. Plasma source ion-implantation technique for surface modification of materials. Journal of Applied Physics 62 (1987) 4591-4596.
    [117]G.A. Collins, R. Hutchings, J. Tendys. Plasma immersion ion implantation-the role of diffusion. Surface and Coatings TechnoloQV 59 (1993) 267-273.
    [118]Lei M K, Zhu X M. Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance. Surface and Coatings Technology,193(2005)22-28.
    [119]Pomathiod L, Debrie R, Arnal Y,et al.Microwave excitation of large volumes of plasma at electron cyclotron resonance in multipolar confinement[J]. Physics Letter,1984, A 106:301-304.
    [120]Coeur F Le, Arnal V, Burke R, et al. Ion implantation based on the uniform distributed plasma. Surface and coating [J].Technology,93(1997)265-268.
    [121]张仲麟,雷明凯,袁力江,等.ECR微波等离子体源离子渗氮[J].金属热处理,10(1996)14-17.
    [122]Leigh S, Samandi M, Collins G A, et al. The influence of ion energy on the nitriding behaviour of austenitic stainless steel[J].Surface and Coatings Technology,85(1996)37-43.
    [123]Lopez-Callejas R, Valencia-Alvarado R, Mu"oz-Castro A E, et al. Plasma immersion ion implantation of AISI 304 stainless steel in toroidal and cylindrical geometries [J]. Vacuum, 76(2004)287-290.
    [124]Blawert C, Mordke B L.Industrial application of plasma immersion ion imputation [J]. Surface and Coatings Technology,93(1997)274-279.
    [[125]M.K.Lei, X.M. Zhu.Comparative corrosion resistance of plasma-based low-energy nitrogen ion austenitic stainless steel. Surface and Coatings Technology 201 (2007) 6865-6868.
    [126]Mukherjee S, Raole P M, John P 1.Effect of applied pulse voltage on nitrogen plasma immersion ion implantation of AIS1316 austenitic stainless steel [J]. Surface and Coatings Technology,2002,157:111-117.
    [127]C.B. Mello, M. Ueda, C.M. Lepienski, et al.Tribological changes on SS304 stainless steel induced by nitrogen plasma immersion ion implantation with and without auxiliary heating. Applied Surface Science 256 (2009) 1461-1465.
    [128]M.K. Lei, J.D. Chen, Y. Wang, et al. Plasma source low-energy ion-enhanced deposition of thin films.Vacuum 57 (2000) 327-338.
    [129]M.K. Lei, Z.L. Zhang, T.C. Ma. Plasma-based low-energy ion implantation for low-temperature surface engineering. Surface and Coatings Technology 131 (2000)317-325.
    [130]M.K. Lei, X.M. Zhu.Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance.Surface & Coatings Technology 193 (2005) 22-28.
    [131]J.Georges. Nitriding process and nitriding furnace therefor. US 5989363 (1999).
    [132]Sh. Ahangarani, F. Mahboubi, A.R. Sabour. Effects of various nitriding parameters on active screen plasma nitriding behavior of a low-alloy steel. Vacuum 80 (2006) 1032-1037.
    [133]Li C X,Bell T. Principles, mechanisms and applications of active screen plasma nitriding [J]. Heat Treatment of Metals,1(2003)1-7.
    [134]Li C X, Bell T, Dong H.A study of active screen plasma nitriding [J]. Surface Engineering, 2002,18(3):174-181.
    [135]Li C X, Georges J, Li X Y. Active screen plasma nitriding of austenitic stainless steel [J]. Surface Engineering,18(2002)453-458.
    [136]Santiago Corujeira Gallo, Hanshan Dong. Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel.Surface & Coatings Technology 203 (2009) 3669-3675.
    [137]J.M. Priest, M.J. Baldwin, et al. Surf. Coat. Technol.145 (2001) 152.
    [138]冯端.金属物理学第一卷结构与缺陷,1987,科学}出版社,534.
    [139]W.P. Tong, N.R. Tao, Z.B. Wang, et al. Science 299 (2003) 686.
    [140]W.P. Tong, Z. Han, L.M. Wang, et al.Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment.Surface & Coatings Technology 202 (2008) 4957-4963.
    [141]H.W. Zhang, L. Wang, Z.K. Hei, et al. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer[J]. Z Metall,2003,94(5): 1143-1147.
    [142]卑多慧,吕坚,顾剑锋,等.表面纳米化预处里对低碳钢气体渗氮行为的影响.材料热处理学报,2002(23)19-25。
    [143]H. Ferkel, M. Glatzer, Y. Estrin,et al.RF plasma nitriding of severely deformed iron-based alloys.Materials Science and Engineering A348 (2003) 100-110.
    [144]H. Ferkel, M. Glatzer, Y. Estrin, et al.RF plasma nitriding of a severely deformed high alloyed steel.Scripta Materialia 46(2002) 623-628。
    [145]H. Ferkel, Y. Estrin, C. Blawert,et al.RF nitriding of severely deformed Armco iron and St2K50.Surface and Coatings Technology 173-174(2003) 1164-1170.
    [146]徐祖耀.马氏体相变与马氏体,1981,科学出版社,409。
    [147]I. Shakhova, V. Dudko, A.Belyakov,et al. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Materials Science and Engineering A545 (2012)176-186.
    [148]D. Manova, S. Mandl, H. Neumann, et al.Influence of grain size on nitrogen diffusivity in austenitic stainless steel.Surface & Coatings Technology 201 (2007) 6686-6689.
    [149]Shen, Lie, Wang, Liang, Xu, J.J.et al. Effect of pre-shot peening on plasma nitriding kinetics of austenitic stainless steel.Advanced Materials Research,634-638(2013).2955-2959.
    [150]M. Stalder, S. Vogel, M.A.M. Bourke,et al. Retransformation kinetics of strain induced martensite in304 stainless steel.Materials Science and Engineering A280 (2000) 270-281.
    [151]J.Kolbel. Forschungsberichte des Landes Nordhein-Westfalen, Vol.1555 (West-Deutscher verlag, Koln,1965).
    [152]M.Hudis.Study of ion-nitriding. J.Appl.Phys.,44(1973) 1489-1496.
    [153]G.G.Tibbets, Role of nitrogen atoms in ion-nitriding.Appl.Phys.,45(1974) 5072-5073.
    [154]M. Zlatanovic, A.Kunosic, B.Tomcik. Proceedings of Conference on Ion Nitriding, Cleveland,OH,1986, Am.Soc. for Metals, Metals Park, OH,1990,47.
    [155]J.Michalski. Ion nitriding of Armco iron in various glow discharges.Surf. Coat.Technol., 59(1993)21-324.
    [156]B.Xu and Y.Zhang. Collision dissociation model in ion nitriding. Surf. Eng.,3(1987)226-232.
    [157]J.A.Taylor,G.M.Lancaster, A.Ignatiev.et al. Interations of ion beams with surfaces.Reactions of nitrogen with silicon and its oxides.J.Chem.Phys.,68(1978)1776-1784.
    [158]H.D. Hagstrum.Reflection of noble gas ions at solidssurfaces.Phys.Rev.,123 (1961)758-765.
    [159]L.Petitjean, A.Ricard.Emissions spectroscopy study of N2-H2glow discharge for metal Surface nitriding. J.Phys.D 17(1984)919-929.
    [160]K.Rusnak, J.Vlcek. Emission spectroscopy of the plasma in the cathode region of N2-H2 abnormal glow discharges for steels surface nitriding.J.Phys.D,26(1993)585-589.
    [161]O.Matsumoto, M.Kunuma, Y. Kanzald. Nitriding of titanium in an RF discharge II.Effect of the addition of hydrogen to nitrogen on nitriding. J. Less-Common Met.,84 (1982)157-163.
    [162]B.Kulakowska-Pawlak, W.Zymicki.Spectroscopic investigations into plasma used for nitriding processes of steel and titanium.Thin Solid Films,230(1993)115-120.
    [163]T. Czerwiec, H. Michel, E. Bergmann. Low-pressure, high-density plasma nitriding: mechanisms, technology and results.Surf. Coat. Technol.,108/109(1998)182-190.
    [164]Y Sun, T. Bell. A numerical model for plasma nitriding of low alloy steels. Mater. Sci. Eng. A, 224(1997)33-47.
    [165]Jan Walkowicz. On the mechanisms of diode plasma nitriding in N2-H2 mixtures under DC-pulsed substrate biasing. Surf. Coat. Technol.,174-175(2003)1211-1219.
    [166]W. Moller, S. Parascandola, T. Telbizova,et al. Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium. Surface and Coatings Technology 136 (2001)73-79.
    [167]S. Parascandola, R. Giinzel, R. Griitzschel,et al.Analysis of deuterium induced nuclear reactions giving criteria for the formation process of expanded austenite.Nuclear Instruments and Methods in Physics Research B 136-138 (1998) 1281-1285.
    [168]S. Mandl, F. Scholze, H. Neumann, et al. Nitrogen diffusivity in expanded austenite.Surface and Coatings Technology 174-175(2003) 1191-1195.
    [169]Christiansen T., Dahl, K. V., Somers M. A. J..Nitrogen diffusion and nitrogen depth profiles in expanded austenitc:experimental assessment, numerical simulation and role of stress.Materials Science and Technology,24(2008) 159-167.
    [170]Practicians L, Templier C, Riviere J-P,et al. Surf Coat Technol 135(2001)250.
    [171]L. Pranevicius, L.L. Pranevicius, D. Milcius, et al. Mass-transport driven by surface instabilities under high-flux,low-energy nitrogen ion irradiation at elevated temperatures. Vacuum 72 (2004) 161-168.
    [172]Arvaidas Galdikas, Teresa Moskalioviene. Modeling of stress induced nitrogen diffusion in nitrided stainless steel. Surface & Coatings Technology 205 (2011) 3742-3746.
    [173]Teresa Moskalioviene, Arvaidas Galdikas.Stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel. Vacuum 86 (2012) 1552-1557.
    [174]Arvaidas Galdikas, Teresa Moskalioviene.Swelling effect on stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel.Computational Materials Science 72 (2013)140-145.
    [1]Lie Shen, Liang Wang, J.J. Xu. Plasma nitriding of AISI 304 austenitic stainless steel assisted with hollow cathode effect. Surface and Coatings Technology,228 (2013) 456-459.
    [1]冯端.金属物理学第一卷结构与缺陷.1987,科学出版社出版,p534。
    [2]L.E.Murr, K..P. Staudhammer, S.S.Hecher. Metall.Trans. A 13(1982)627.
    [3]P.L.Mangonon, G.Thomas. Metal.Trans.1(1970)157, Philos. Mag.7(1962)35.
    [4]K.P. Staudhammer, L.E. Murr, S.S. Hecker. Acta Metal.31(1983)267.
    [5]G.B.Olson, M.Cohen. Metall. Trans. A.6(4)(1975)791-795.
    [6]G.B.OIson,M.Cohen.Metall.Trans.A7(1976)1897.
    [7]S.Allain,J.P.Chateau,O.Bouaziz,Mater.Sci.Eng.A387-389(2004)143.
    [8]G. F. Boiling and R. H. Richman. Scripta Met.,4 (1970) 539.
    [9]G. F. Boiling and R. H. Richman. Phil. Mag.,19 (1969) 247.
    [10]G. F. Boiling and R. H. Richman. Acta Met,18 (1970) 673.
    [11]R.H. Richman and G.F. Bolling. Met. Trans.,2 (1971) 2451.
    [12]J. Talonen, H. Hanninen. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels.Acta Materialia 55 (2007) 6108-6118.
    [13]李晓春,韦习成,HUA Meng,等.SUS304奥氏体不锈钢的摩擦变形层研究.摩擦学学报,27(2007)341-345。
    [14]Z.Y. Yang, M.G.S. Naylor, D.A. Rigney. Sliding wear of 304 and 310 stainless steels.Wear 105 (1)(1985)73-86.
    [15]K.-L. Hsu, T.M. Ahn, D.A. Rigney. Friction, wear and microstructure of unlubricated austenitic stainless steels. Wear 60 (1)(1980) 13-37.
    [16]J.-P. Riveire, C. Brin, J.P. Villain, Structure and topography modifications of austenitic steel surfaces after friction in sliding contact. Appl. Phys. A:Mater.Sci. Process.76 (2003) 277-283.
    [17]W. Hubner. Phase transformation in austenitic stainless steels during low temperature tribological stressing. Tribol. Int.34 (2001) 231-236.
    [18]W. Hubner, A. Pyzalla, K. Assmus, et al.Phase stability of AISI 304 stainless steel during sliding wear at extremely low temperature. Wear 255(2003) 476-480.
    [19]J.P. Riviere, C. Brin, J.P. Villain. Structure and topography modifications of austenitic steel surfaces after friction in sliding contact. Appl. Phys. A 76 (2003),277-283.
    [20]J.-Y. Choi, W. Jin. Strain induced formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scripta Mater.36 (1) (1997) 99-104.
    [21]M. Hua, X.C. Wei, J. Li.Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load. Wear 265 (2008)799-810.
    [1]Thomas Christiansen, Marcel A.J. Somers. On the crystallographic structure of S-phase. Scripta Materialia50(2004)35-37,
    [2]K. Ichii, K. Fujimura, T. Takase. Structure of the ion-nitrided layer of 18-8 stainless steel. Tech. Rep. Kansai Univ.27 (1986) 135-144.
    [3]Angelini, E., Burdese, A., de Benedetti. Ion-Nitriding of Austenitic Stainless Steel. Metall. Sci. Technol.6 (1988)33-39.
    [4]Williamason DL, Ozturk O.Wei R, Wilbur PJ. Surf Coat Technol 65 (1994)15.
    [5]K. Marchev, C.V. Cooper, J.T. Blucher, et al. Surf. Coat. Technol.99 (1998)225.
    [6]K. Marchev, R. Hildago, M. Landis, et al. Surf. Coat. Technol.112 (1999) 67.
    [7]Sun Y, Li XY, Bell T. Stainless steel 2000. UK:The Institute of Materials;2001.263.
    [8]K. Marchev, M. Landis, R. Vallerio, et al. Surf. Coat. Technol.119 (1999) 184.
    [9]Jie Liu, Peide Han, Minghui Dong, et al.Influence of Ni and N on generalized stacking-fault energies in Fe-Cr-Ni alloy:A first principle study. Physica B 407 (2012) 891-895.
    [10]Thomas Christiansen, Marcel A.J. Somers. On the crystallographic structure of S-phase. Scripta Material ia 50 (2004) 35-37.
    [11]S.K. Kim, J.S. Yoo, J.M. Priest,et al.Characteristics of martensitic stainless steel nitrided in a low-pressure RF Plasma.Surface and Coatings Technology 163-164 (2003) 380-385.
    [12]K. Zhan, C.H. Jiang.Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes.material letters 99 (2013) 61-64.
    [13]H. Kuwahara, H. Matsuoka, J.Takada, et al. Plasma nitriding of Fe-18 Cr-9 Ni in the range of 723-823K. Oxidation of Metals,36(1991)143-156.
    [14]V.1. Dimitrov, J.Dhaen, G.Knuyt,et al. A method for determination of the effective diffusion coefficient and sputtering rate during plasma diffusion treatment.Surf. Coat. Technol.99(1998)234.
    [15]E. Menthe, K.-T. Rie.Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding. Surface and Coatings Technology 116-119 (1999) 199-204.
    [16]C. Muratore, D. Leonhardt, S.G. Walton, et al.Low-temperature nitriding of stainless steel in an electron beam generated plasma. Surface & Coatings Technology 191 (2005) 255-262.
    [17]J. Hirovonen, A. Anttila, Appl. Phys. Lett.46 (1985) 835.
    [18]M.P. Fewell, J.M. Priest, M.J. Baldwin,et al. Surf. Coat. Technol.131 (2000) 284.
    [19]S.K. Kim, J.S. Yoo, J.M. Priest, et al.Characteristics of martensitic stainless steel nitrided in a low-pressure RF. Plasma Surface and Coatings Technology 163-164 (2003) 380-385.
    [20]Carlos E. Pinedo, Waldemar A. Monteiro.On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420. Surface and Coatings Technology 179 (2004) 119-123.
    [21]M.J. Carmezim, S.M.Simoes. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corrosion Science 47(2005)581-591.
    [22]I. Olefjord, L. Wegrelius. Corros. Sci.31 (1990) 89-98.
    [23]M. Janik-Czachor, E. Lunarska, Z. Szklarska-Smialowska. Corrosion 31 (1975) 394.
    [24]R.C. Newman, T. Shahrabi. Corros. Sci.27 (1987) 827.
    [25]R. Bandy, Y.C. Lu, R.C. Newman, C.R. Clayton.Proc. Electrochem. Soc.84 (1984) 471.
    [26]U.K. Mudali, B. Reynders, M. Stratmann. Corros. Sci.41 (1999) 179.
    [27]F.M. Bayoumi, W.A. Ghanem.Mater. Lett.59 (2005) 3311.
    [28]Y. Fu, X.Q. Wu, E. Han, et al. Electrochim. Acta 54 (2009) 1618.
    [29]G.P. Halada, C.R. Claton, D. Kim,et al. NACE/Corrosion, (1995)531.
    [30]R.F.A. Jargeilus-Pettersson. Corros. Sci.41 (1999) 1639.
    [31]M. Janik-Czachor, E. Lunarska, Z. Szklarska. Corrosion 31 (1975) 394.
    [32]Osozawa, Okada, in:R. Staehle, H. Okada (Eds.). Passivity and its Breakdownon Iron and Iron-base Alloys. NACE, Houston, TX, USA,1976,p.135.
    [33]X.M.Zhu, M.K. Lei.Surf. Coat.Technol.131(2000) 400-403.
    [34]R.C. Newman, Y.C. Lu, R. Bandy, et al. Proc.9th Int. Conf. Metallic Corrosion,3 (1984) 394.
    [35]Y.C. Lu, R. Bandy, C.R. Clayton, R.C. Newman, J. Electrochem. Soc.130 (1983) 1774.
    [36]C.R. Clayton, L. Rosenzweig, M. Oversluizen, et al. Proc. Electrochemical Society,86 (1986) 323.
    [37]G.P. Halada, C.R. Claton, D. Kim, J.R. Kearns. NACE/Corrosion,1995, p.531.
    [38]C.R. Clayton, GP. Halada, J.R. Kearns. Mater. Sci. Eng. A 198 (1995) 135.
    [39]M. Kamrunnahar, J. Bao, D.D. Macdonald. Corros. Sci.47 (2005) 3111-3139.
    [40]Y. Zhang, D.D. Macdonald, M. Urquidi-Macdonald, et al. Corros. Sci.48 (2006) 3812-3823.
    [41]Jae-Bong Lee, Sang-In Yoon.Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels.Materials Chemistry and Physics 122 (2010) 194-199.
    [42]S. Ningshen, U. Kamachi Mudali, V.K. Mittal.et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steelsCorrosion Science 49 (2007) 481-496.
    [43]C.Y. Chao, L.F. Lin, D.D. Macdonald.et al. Soc.128 (1981) 1187.
    [44]M.F. Montemor, A.M.P. Simoes, M.G.S. Ferreira. Corros. Sci.41(1999)17.
    [45]R.Kirchheim, B.Heine, H.Fischmeister, et al. Corros. Sci.29(1989)899.
    [1]E. Menthe, K.T. Rie. Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding. Surface and Coatings Technology 116-119(1999) 199-204.
    [2]E. Menthe, A. Bulak, J. Olfe, et al.Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding. Surface and Coatings Technology 133-134 (2000)259-263.
    [3]R. Valencia-Alvarado,A. de la Piedad-Beneitez, J. de la Rosa-Va'zquez, et al. Nitriding of AISI 304 stainless steel in a 85% H2/15% N2 mixture with an inductively coupled plasma source.Vacuum 82(2008) 1360-1363.
    [4]Liang Wang, Shijun Ji, Juncai Sun. Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel.Surface & Coatings Technology 200 (2006) 5067-5070.
    [5]H. Dong, P.Y. Qi, X.Y. Li, et al.Improving the erosion--corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C. Materials Science and Engineering:A 431 (2006) 137-145.
    [6]E. Skolek-Stefaniszyn, J. Kaminski, J. Sobczak, et al. Modifying the properties of AISI 316L steel by glow discharge assisted low-temperature nitriding and oxynitriding. Vacuum 85 (2010)164-169.
    [7]C.X. Li, J.Georges, X.Y. Li. Active screen plasma nitriding of austenitic stainless steel. Surface Engineering (2002) 453-457.
    [8]M.K. Lei.Phase transformations in plasma source ion nitrided austenitic stainless steel at low temperature. Journal of Materials Science 34 (1999) 5975-5982.
    [9]Wang liang, Sun jun cai,Xu xuao lei.Low pressure plasma arc source ion nitriding compared with glow-discharge plasma nitriding of stainless steel, surface and coating technology 145 (2001)31-37.
    [10]Wang L,Xu X L. Thin solid films,391 (2001)11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700