用户名: 密码: 验证码:
重型钢丝缠绕黑色金属挤压筒及挤压工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径厚壁无缝钢管是极为重要的基础工业产品,而垂直挤压工艺是生产该类产品的最佳工艺,对其进行研究具有重要的意义。360MN/150MN垂直挤压机组的投产使我国打破了国外对该类产品的垄断,本课题为此项目的组成部分。首先研究了重型钢丝缠绕黑色金属挤压筒,分析了钢丝缠绕挤压筒设计中存在的问题,包括预热、隔热与冷却和热应力等,提出了高温坯料内置挤压筒预热和电加热预热两种可行的方案。针对两种方案,分别研究了其设计中存在的问题和相应的解决方案,研究表明高温坯料内置预热挤压筒是一种简单易实现的方案,而电加热预热挤压筒则具备更好的性能和使用效果。提出了采用高温内衬和中衬预热膨胀后紧压在外衬上以产生预应力的方法,并基于此方法,完成了挤压筒的设计。
     针对黑色金属热挤压工艺中玻璃润滑研究的不足,对玻璃润滑行为进行了理论分析,提出了采用理论计算和数值模拟相结合预测挤压钢管表面玻璃润滑膜厚度的方法,通过小直径棒材挤压实验和TP347H不锈钢钢管的挤压生产验证,表明本论文提出的预测方法所计算的结果能够反映玻璃润滑膜厚度的变化趋势,并具有足够的精度,为润滑和挤压工艺提供了指导。通过计算,得出了大口径厚壁无缝钢管表面的玻璃润滑膜厚度以50μm~100μm为宜,与目前360MN压机生产的钢管进行了对比,分析了润滑工艺的不足并提出改进建议。
     建立了玻璃润滑热挤压工艺的数值模拟模型,并针对传热边界条件研究的不足,设计了测试坯料与模具之间以玻璃润滑剂隔开工况下的界面传热系数的实验装置,为挤压工艺的数值模拟提供了依据。通过数值模拟分析360MN压机挤压工艺,并与实测挤压力数据对比,得到了目前360MN压机生产工况下的摩擦和传热边界条件,分析了目前360MN压机挤压工艺存在的问题,并提出改进建议。
     依据本论文提出的挤压筒预应力产生方法,设计了内径φ170mm电加热预热钢丝缠绕挤压筒,测试了预紧状态下的应力场以及预热状态下的温度场和热应力。测试结果表明,预热后挤压筒具有合理的预应力分布,通过反挤压实验,证明了所设计的挤压筒效果更佳,为重型钢丝缠绕挤压筒的工程应用提供了重要的依据。
Large diameter and thick-walled seamless steel pipes are very importantbasic industrial products. The best way to fabricate such pipes is verticalextrusion process. The success of36,000tons vertical extrusion press broke themonopolization of such products by foreign companies. Supported by thisproject, the large wire winded steel extrusion container was investigated. Thebasic issues, including preheating, thermal insulation, cooling and thermal stress,were analyzed. Two preheating methods, the heated billet inside preheating andelectrical preheating, were proposed. As for each one, the design problems wereanalyzed and solutions were proposed. It was found that the heated billet insidepreheating was an easy way to design extrusion container which was applied by36,000tons extrusion press. But the electrical preheating extrusion containercan perform and function better. A new way to generate pre-stress field wasproposed. Since the inner and middle cylinder expand larger under hightemperature (350℃~400℃) than the outer cylinder and steel wire of which thetemperature is much lower, that would lead to high pressure between them. Thispressure could produce pre-stress on the inner cylinder. Based on this idea, thewhole design was proposed.
     Since it was still inadequate for the research on glass lubrication behaviorduring the extrusion process, theoretical analysis was conducted. By combiningthe theoretical model and numerical simulation results, the thickness of glassfilm on the surface of the extruded pipes can be calculated. To verify theeffectiveness of this method, bar extrusion experiment and TP347H pipesextrusion process was investigated. Results showed that the model proposed canpredict the variation trend of the glass film and can be used to predict thethickness. The glass film thickness for large diameter and thick-walled steelpipes was calculated. The reasonable glass film thickness is between50μm and100μm. By contrast with pipes extruded by36,000tons extrusion press, theproblems were analyzed and the suggestions for improvement were proposed.
     The devices to measure the thermal transfer coefficient between the heatedbillet and hot working die steel was set up due to the lack of experimental dataof this coefficient. The coefficient was measured and can be used for numericalsimulations. Numerical simulation models were set up and the calculated resultswere compared with36,000tons press experimental data. The boundaryconditions for36,000tons press were determined and by contrast with the idealboundary conditions, the problems were analyzed and the suggestions forimprovement were proposed.
     Based on the design methods proposed in this dissertation, the innerdiameter φ170mm electrical preheating extrusion container was designed andmanufactured. The pre-stress field after wire winding, the temperature andthermal stress field after preheating were measured. Results showed that afterpreheating the pre-stress field can meet the requirement. Backward extrusionexperiment showed that the designed extrusion container can function well forextrusion process, thus provide important foundation for its practicalapplication.
引文
[1]魏军.金属挤压机.北京:化学工业出版社,2006.
    [2]刘静安,谢建新.金属挤压理论与技术.北京:冶金工业出版社,2001.
    [3]国内首台110MN卧式双动正向铝挤压机问世.锻压装备与制造技术,2010(4):8.
    [4]秦月明.铝挤压机模拟等温挤压控制系统.锻压装备与制造技术,2007(5):52-54.
    [5]魏军.有色金属挤压加工技术的现状及其发展趋势.铜加工,2006(1):29-33.
    [6]江永静,成海涛.我国无缝钢管生产现状、差距及发展建议.钢管,2004(3):1-6.
    [7]谷力功.我国无缝钢管市场供需情况分析.钢管,2008(4):57-62.
    [8]李晓红.国内大直径无缝钢管生产发展的装备选择.钢管,2006(6):4-11.
    [9]何炜,景德喜,李燕.国外不锈钢管生产的发展.特殊钢,1995(1):1-8.
    [10]顾永山.热挤压钢管机组.钢管技术,1982(3):77-81.
    [11]陈群立.无缝钢管的热挤压技术探讨.钢管,2007(4):43-46.
    [12] Bendick W, Gabrel J, Hahn B, et al. New low alloy heat resistant ferritic steels TP23andTP24for power. International Journal Of Pressure Vessels And Piping,2007,84:13-20.
    [13]张显.超临界/超超临界锅炉选材用材.发电设备,2004(5):307-312.
    [14]成海涛,郭元蓉.核电用管现状及国产化进展.钢管,2008(4):1-5.
    [15]赵毓.超超临界机组在我国发展的必要性与可行性.锅炉制造,2005(4):75-76.
    [16]杨富,李为民,任永宁.超临界、超超临界锅炉用钢.电力设备,2004(10):41-46.
    [17]张学先,朱彩群.超临界、超超临界为当今电力发展新趋势.电器工业,2006(10):12-13.
    [18]赵彦芬,遆文新,汪小龙,等.核电站用钢管材料及其国产化.钢管,2007(2):11-14.
    [19]张永忠.挤压工艺及模具设计.北京:化学工业出版社,2009.
    [20]洪泽深.挤压工艺及模具设计.北京:机械工业出版社,1996.
    [21]樊刚.热挤压模具设计与制造基础.重庆:重庆大学出版社,2001.
    [22]邹子和,欧新哲,倪履安.钢管热挤压成形技术与装备的发展.宝钢技术,2008(5):15-19.
    [23] Company C F. Cameron Forge Company Extruded Products[G].1988.
    [24]张浩然.250/60MN单牌坊双缠绕式钢管挤压机[博士学位论文].北京:清华大学机械工程系,2009.
    [25]彭俊斌.预应力重型承载机架的剖分组合技术[博士学位论文].北京:清华大学机械工程系,2007.
    [26]邹子和.我国不锈钢管生产技术的进展及其与国外的差距.钢管,2000(6):7-14.
    [27]广文.国际先进的钢挤压生产线在久立投产[N].中国冶金报,2006-10-21(01).
    [28]周群.久立集团3500吨钢挤压机建成投产[N].中国冶金报,2006-11-18(07).
    [29]廖文根.我国研制成功世界最大黑色金属垂直挤压机[N].中国矿业报,2009-07-23(B04).
    [30]贺勇.中国制成压力最大垂直挤压机[N].人民日报海外版,2009-07-15(01).
    [31]司建楠本报.自主研制360MN垂直挤压机成功试产[N].中国工业报,2009-07-21(A01).
    [32]杨琳.最大垂直挤压机挤出首支钢管.机械制造,2009(9):88.
    [33]秦伟.“极端制造”的跨越——中国兵器北方重工首台360MN垂直挤压机问世.装备制造,2009(8):79.
    [34]邓晨曦.重型预应力机架自适应钢丝缠绕技术研究[硕士学位论文].北京:清华大学机械工程系,2007.
    [35] Gianetti Franco,杨秋霜.采用挤压设备生产不锈钢无缝钢管.钢铁,2008(9):92-94.
    [36]曾攀,颜永年,张磊,等.钢丝缠绕坎合原理与4万吨航空模锻液压机的应用:2008年中国机械工程学会年会暨甘肃省学术年会,中国甘肃兰州,2008[C].
    [37]刘海霞,颜永年,曾攀,等.钢丝缠绕预应力嵌合结构基础性原理.科学技术与工程,2010(29):7274-7278.
    [38]彭俊斌,颜永年,张人佶,等.机械结构预应力坎合连接的原理.清华大学学报(自然科学版),2007(8):1274-1277.
    [39]彭俊斌,颜永年,张人佶,等.预应力钢丝缠绕机架坎合梁的整体性分析.机械工程学报,2008(12):308-313.
    [40]颜永年,刘海霞,曾攀,等.重型钢丝缠绕预应力剖分-坎合结构概述.机械工程学报,2009(11):306-311.
    [41]彭俊斌,颜永年,张人佶,等.重型机械领域中的预应力坎合连接原理及应用.机械工程学报,2008(6):107-113.
    [42]张浩然,张人佶,颜永年,等.重型装备中坎合因数影响因素的实验研究.中国机械工程,2009(23):2824-2827.
    [43]林宗棠.重型预应力混凝土水压机研究.北京:清华大学出版社,1988.
    [44]冶金工业部图书编辑室.钢的热挤压.北京:中国工业出版社,1963.
    [45]王宝顺,林奔,罗坤杰,等.玻璃润滑剂在钢热挤压工艺中的应用.世界钢铁,2010(3):44-50.
    [46]刘长勇,张人佶,颜永年,等.钢热挤压中的玻璃润滑工艺.热加工工艺,2010(5):108-111.
    [47]马英仁.玻璃润滑剂及其在热挤压中的应用.固体润滑,1984(2):84-88.
    [48]南莉,杨正键,曲恒磊.玻璃粉粒度和挤压速度对镍合金挤压管润滑效果的影响.稀有金属快报,2006(6):35-37.
    [49] Wifi A S, Shatla M N, Abdel-Hamid A. An optimum-curved die profile for the hot forwardrod extrusion process. Journal Of Materials Processing Technology,1998,73:97-107.
    [50] Kim N H, Kang C G, Kim B M. Die design optimization for axisymmetric hot extrusion ofmetal matrix. Journal of Mechanical Sciences,2001,43:1507-1520.
    [51] Xie J X, Murakami T, Ikeda K, et al. Experimental simulation of metal flow in porthole-dieextrusion. Journal Of Materials Processing Technology,1995,49:1-11.
    [52] Lee S K, Ko D C, Kim B M. Optimal die profile design for uniform microstructure in hotextruded product. International Journal Of Machine Tools&Manufacture,2000,40:1457-1478.
    [53] Zou Lin, Xia Juchen, Wang Xinyun, et al. Optimization of die profile for improving die life inthe hot extrusion process. Journal Of Materials Processing Technology,2003,142:659-664.
    [54]孙宪萍.挤压成形弹-塑性接触磨损微观机理及磨损控制[博士学位论文].江苏:江苏大学材料系,2008.
    [55]林宗棠,王传志,俞新陆,等.重型预应力混凝土水压机研究[G].北京:清华大学出版社,1988.
    [56] Groenbaek J, Nielsen E R. Stripwound containers for combined radial and axial prestressing.Journal of Materials Processing Technology,1997,71:30-35.
    [57]俞新陆.液压机的设计与应用.北京:机械工业出版社,2007.
    [58]林峰,林智琳,张磊,等.预应力钢丝缠绕技术在锻造/挤压压机上的应用.锻压装备与制造技术,2010(1):37-42.
    [59]林智琳.预应力钢丝蠕变性能研究及在锻造压机机架上的应用[硕士学位论文].北京:清华大学机械工程系,2009.
    [60]刘静安,谢建新.大型铝合金型材挤压技术与工模具优化设计.北京:冶金工业出版社,2003.
    [61]颜永年,俞新陆.机械设计中的预应力结构.北京:机械工业出版社,1989.
    [62]徐峰,张雪芹,华七三.建筑保温隔热材料与应用.北京:中国建筑工业出版社,2007.
    [63]张凌燕.矿物保温隔热材料及应用.北京:化学工业出版社,2007.
    [64]俞新陆.液压机的设计与应用.北京:机械工业出版社,2007.
    [65]刘长勇,张人佶,颜永年,等.预应力钢丝缠绕剖分-组合大型挤压筒的热应力分析.工程力学,2011(5):207-211.
    [66]赵镇南.传热学.北京:高等教育出版社,2008.
    [67]李维特,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004.
    [68]任世铮.传热学.北京:冶金工业出版社,2007.
    [69]王泽鹏,张秀辉,胡仁喜. ANSYS12.0热力学有限元分析从入门到精通.北京:机械工业出版社,2010.
    [70]张国智,胡仁喜,陈继刚. ANSYS10.0热力学有限元分析实例指导教程.北京:机械工业出版社,2007.
    [71]张君,杨合,何养民,等.铝型材等温挤压温度控制的研究.机械工程学报,2004(4):149-153.
    [72]李良福.挤压钢管复合生产工艺及玻璃润滑材料的应用.钢管,2000(2):47-49.
    [73] Sejournet J. Development of steel extrusion with glass lubricant: Friction and lubrication inmetal processing,1966[C]. American Society of Mechanical Engineers.
    [74] Baque P, Pantin J, Jacob G. Theoretical and experimental study of the glass lubricatedextrusion process. Journal of Lubrication Technology,1975:18-24.
    [75] Damodaran D, Shivpuri R. Effect of lubricant behavior on the surface quality of extrudates inglass-lubricated hot extrusion. Annals of the CIRP,1997,46(1):179-182.
    [76]田英良,孙诗兵.新编玻璃工艺学.北京:中国轻工业出版社,2009.
    [77]马英仁.玻璃润滑剂及其在热挤压中的应用.固体润滑,1984(2):84-88.
    [78] Kovalev L K, Ryabov V A. Glass lubricants in metallurgy. Glass and Ceramics,1960(7):352-357.
    [79] Gupta A K, Hughes K E, Sellars C.M. Glass lubricated hot extrusion of steel. MetalsTechnology,1980:323-331.
    [80] Damodaran D, Shivpuri R. Prediction and control of part distortion during the hot extrusion oftitanium alloys. journal of materials processing technology,2004,150:70-75.
    [81]谢水生.金属塑性成形的有限元模拟技术及应用.北京:科学出版社,2008.
    [82] Liu Changyong, Zhang Renji, Yan Yongnian. Thermo-mechanical numerical simulation onP91closed upsetting process. Advanced Materials Research,2010,97-101:135-139.
    [83] Carrino L, Giuliano G, Napolitano G. A posteriori optimisation of the forming pressure insuperplastic forming processes by the finiteelement method. Finite Element Analysis andDesign,2003,39(11):1083-1093.
    [84] Macdonald B J, Hashmi M S. Analysis of die behavior during bulge forming operations usingthe finite element method. Finite Element Analysis and Design,2002,39(2):137-151.
    [85] Zhang P, Li F. Microstructure-based simulation of plastic deformation behavior of SiCparticle reinforced Al matrix composites. Chinese Journal of Aeronautics,2009,22(8):663-669.
    [86]陈慧琴,刘建生,郭会光. Mn18Cr18N钢热成形晶粒变化的模拟研究.金属学报,1999(1):53-56.
    [87] Hanlin D, Kazuki H, Tomoyuki H, et al. Numerical simulation for microstructure evolution inAM50Mg alloy during hot rolling. Computational Materials Science,2010,47(4):919-925.
    [88]张国滨.高速线材热连轧时组织结构的计算机模拟.河北理工学院学报,2001(2):6-12.
    [89]高中庸,徐武彬,李宝灵,等.辊—轨摩擦磨损模拟实验研究与分析.钢铁,2002(6):25-27.
    [90]薛利平,鹿守理,窦晓峰,等.金属热变形时组织演化的有限元模拟及性能预报.北京科技大学学报,2000(1):34-37.
    [91]王广春,管婧,马新武,等.金属塑性成形过程的微观组织模拟与优化技术研究现状.塑性工程学报,2002(1):1-5.
    [92]庞祖高,丁洋,栗育琴,等.铝型材挤压模芯早期磨损失效模拟与分析.模具工业,2010(5):30-32.
    [93]李俊,李润方,游理华.热锻成型工件的微观组织模拟.塑性工程学报,1999(2):10-14.
    [94]辛启斌.材料成形计算机模拟.北京:冶金工业出版社,2006.
    [95]董湘怀.材料成形计算机模拟.北京:机械工业出版社,2002.
    [96] Liu C Y, Zhang R J, Yan Y N. Hot deformation behavior and constitutive modelling of P92heat resistant steel. Materials Science And Technology, London,2011,28(8):1281-1286.
    [97]王雪凤,吴任东,邓晨曦,等.新型耐热高强钢P91的高温力学性能.机械工程学报,2008(6):243-247.
    [98]吴任东,王雪凤,张磊.钢管玻璃润滑热挤压工艺的边界条件.塑性工程学报,2009(4):95-99.
    [99] Hanssona S, Jansson T. Sensitivity analysis of a finite element model for the simulation ofstainless steel tube extrusion. Journal Of Materials Processing Technology,2010,210:1386-1396.
    [100]王雪凤.大口径厚壁钢管垂直挤压的模具和工艺研究[硕士学位论文].北京:清华大学,2009.
    [101]朱德才.固体界面接触换热系数的实验研究[硕士学位论文].大连理工大学,2007.
    [102]张兴致.高温合金及钛合金与模具材料接触换热实验研究[硕士学位论文].大连理工大学,2009.
    [103]张涛,徐烈,熊炜,等.接触热阻研究中理论模型的比较与分析.低温与超导,1998(2).
    [104]李鹏.粗糙表面热接触有限元数值分析[硕士学位论文].西北工业大学,2001.
    [105] Zhang X Z, Zhang L W, Xing L. Study of thermal interfacial resistance. ExperimentalThermal and Fluid Science,2010,34:48-52.
    [106]马红,罗群生,季锡林,等.变温场中热应力测试技术研究.兵工自动化,2002(3):37-39.
    [107]魏先英,余耀.改进型A152(z)主汽阀阀壳热应力实测及分析.流体工程,1991(2):1-7.
    [108]高晶波,武新华,夏松波,等.一种汽轮机转子的热应力测试系统.热能动力工程,1999(6):90-92.
    [109]天津大学材料力学教研室电测组.电阻应变测试技术.北京:科学出版社,1980.
    [110]马良.应变电测与传感技术.北京:中国计量出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700