用户名: 密码: 验证码:
新型高Cr铁素体耐热钢相变行为及焊接性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高Cr铁素体耐热钢广泛用于超(超)临界火力发电。为解决日益突出的能源和环境问题,开展旨在提高高Cr铁素体耐热钢耐热温度的研究势在必行。在此背景下,本文就自行开发的新型高Cr铁素体耐热钢在奥氏体化和淬火后的相变行为及其焊接性进行了系统的研究,结合显微组织分析研究了该钢种在650℃高温时效过程中的组织演化规律。在大量试验研究和理论分析的基础上得到了如下结论:
     (1)相变行为研究:第一,临界区奥氏体化后室温组织为奥氏体+铁素体的双相组织;完全奥氏体化时,M23C6沉淀相约在950~1000℃析出溶解,-铁素体在1050℃后开始逐渐形成。模型拟合确定的奥氏体晶粒长大激活能为58.7kJ/mol,马氏体相变的生长激活能和界面迁移速率均随奥氏体化温度和程度的提高而减小。第二,新型高Cr铁素体耐热钢淬火时只发生马氏体相变,室温组织中含有-铁素体和少量的残余奥氏体。随淬火温度降低,马氏体相变起止温度均升高,沉淀相的体积分数和颗粒尺寸均增大,残余奥氏体在700℃淬火时完全消失。实验结果与扩展相变动力学模型拟合结果吻合良好,马氏体板条横纵比随淬火温度降低而升高,形核率降低。
     (2)焊接性研究:第一,在达到焊接热循环峰值温度时,组织中只存在-铁素体相,且因不能完全转化为奥氏体而部分残留下来,并发现-铁素体内析出富硼M23C6沉淀相。基于晶界位置饱和形核理论和氮扩散控制相变进行了动力学建模,模型模拟结果与实验结果吻合较好,表明在焊接过程中氮可能是控制高温相变的主要合金元素。第二,对焊接接头的研究表明,焊缝组织发生回复再结晶,且受M23C6相的析出位置影响,超过70%的M23C6相在晶界析出,晶内和晶界的M23C6相颗粒尺寸都较大,通过理论计算证实MX沉淀相析出量很少。焊后热处理过程中,保温时间对马氏体板条尺寸的影响更显著。
     (3)等温时效研究:随着时效时间的延长,新型高Cr铁素体耐热组织中马氏体板条特征逐渐消失,形成等轴晶粒,晶界析出相形状和组分逐渐变化,最终形成Laves相。成分偏聚和粗大沉淀相颗粒周围位错网胞的形成促进焊缝组织发生回复,并形成富Mo的Laves相;此外,母材组织中的Laves相优先在M23C6相周边区域形核并长大。
High Cr ferritic heat-resistant steels are widely used in the keycomponents of the super/ultra-supercritical advanced power plants. Withthe increasingly prominent energy and environmental issues, the study onelevating the heat-resistant temperature of high Cr ferriticheat-resistant steel becomes imperative. In this paper, for the modifiedhigh Cr ferritic heat-resistant steel developed by our group, its phasetransformation behaviors during quenching and austenization process, theweldability were systematically analyzed, respectively. Furthermore, themicrostructure evolutions and precipitation processes during isothermalaging were also studied. The following conclusions could be drawn basedon the experimental observation and theoretical analysis.
     (1) Phase transformation: firstly, the microstructure ofaustenitization at the intercritical temperature was composed ofaustenite and ferrite dual-phase structures. At full austenizationtemperature, it was found that the dissolution of M23C6precipitates waswithin the range of950~1000℃. The delta ferrite gradually starts toform after1050℃. The experimental data were fitted by the phasetransformation model. The results indicate that: The activation energyfor growth of austenite grain is58.7kJ/mol; both the activation energyof growth and the interface velocity of martensite plates decreases withthe increase of austenization temperature. Secondly, only the martensitictransformation was found during quenching at various temperatures; thedelta ferrite and a small amount of residual austenite is also found inthe final microstructure. With decreasing quenching temperature, it isfound that both the starting and finishing temperatures of martensitictransformation increase, as the same as the size and amount of theprecipitates particles, whereas the delta ferrite content decreased. Whenquenching at700℃, retained austenite between martensite laths disappearcompletely. The results of calculation based on spread model indicatethat the aspect ratio of martensitic lath increases with the decrease ofquenching temperature, and the nucleation rate decreases.
     (2) Welding: first, during welding heat cycles, only the delta ferrite phase exists at the peak temperature,1320℃, which can not completelytransform to austenite. Amount of the residual delta ferrite is left atroom temperature. It is also found that the Boron-rich M23C6phaseprecipitates in the delta ferrite. Based on the grain boundaries sitesaturated nucleation theory, assuming nitrogen diffusion-controlledaustenite transformation, the results of model demonstrates that nitrogenis the main alloy elements to control the phase transformation duringwelding. Second, based on analyzed the welded joints, it is found thatthe location of M23C6precipitated affectes the recovery andrecrystallization of microstructures. More than70%M23C6phase isprecipitated at the grain boundaries of austenite and the lath boundaries.Annealing time is the significant factor for the size of martensite lathduring post weld heat treatment.
     (3) During isothermal aging, with time prolonging, recovery occursin the martensite lath, which leads to the decrease of dislocationdensities, the formation of equiaxed grains, and the change ofprecipitates shape at grain boundaries. The alloying elements around M23C6due to diffusion and the formation of dislocation network cells promotethe formation of Laves precipitates. The Mo-rich Laves phase forms in thewelded joints. For the high alloying elements contents and kinds of themodified high Cr ferritic heat resistant steel, it is easier to form Lavesphase which is prior located around M23C6precipitates and rapidly growsup.
引文
[1]解居臣,中国电力工业对煤炭需求的分析,煤炭加工与综合利用,2004,4:4~6
    [2]李德波,柳春明,杨丽茵,2010年和2020年全国煤炭供需预测,电力技术经济,2007,19(2):25~29
    [3]杨松,李宜男,高增福,日本新型铁素体耐热钢管的开发,焊接,2001,1(4):3~12
    [4]宁保群,刘永长,殷红旗等,超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景,材料导报,2006,20(12):83~83
    [5]朱丽慧,新型锅炉用耐热钢的研究进展,热处理,1999,4:6~12
    [6]樊险峰,董文武,国外电站锅炉蛇形管制造工艺简介,锅炉制造,1996,2:77~80
    [7]奚福坤,锅炉,压力容器手工电弧焊实用技术讲座(二)——锅炉及压力容器用钢,电焊机,1984,4:45~53
    [8]刘新权,杨钢,吴兴惠等,620℃长期时效对新型铁素体耐热钢1Cr11C03W3MoVNbNB组织和力学性能的影响,特殊钢,2010,31(5):67-70
    [9]阳燕,刘建华,包燕平等,高压锅炉管用钢P12的洁净度分析,钢铁钒钛,2010,31(4):62~66
    [10]杨瑞成,郑丽平,珠光体耐热钢高温时效后基体力学性能的变化,钢铁研究学报,2002,14(6):40~44
    [11]孙智,王温银,25Cr2MoV钢高温螺栓恢复热处理工艺研究,热加工工艺,1998,4:24~25
    [12] J. Yu, Carbide stability diagrams in2.25Cr-1Mo steels, Metallurgical andMaterials Transactions A,1989,20(8):1561~1564
    [13] S. M. Schlogl, J. Svoboda, E. Van der Giessen, Evolution of the methanepressure in a standard2.25Cr-1Mo steel during hydrogen attack, Acta Materialia,2001,49(12):2227~2238
    [14] R. L. Klueh, Interaction solid solution hardening in2.25Cr-1Mo steel, MaterialsScience and Engineering,1978,35(2):239~253
    [15] N. Komai, F. Masuyama, I. Ishihara et al., Development and application of2.25Cr-1.6W (HCM2S) steel large diameter and thick section pipe, Advanced heatresistant steels for power generation San Sebastian: San Sebastian,1998,234~241
    [16] Y. Sawaragi, M. Igarashi, A. Iseda et al., Development of high strength2%Crsteel tubes(HCM2S) for boilers, Sumitomo Metals(Japan),1997,49(1):77~88
    [17] J. Adamiec, Hot cracking of welded joints of the7CrMoVTiB10-10(T/P24)steel,14th International Research/Expert Conference, Mediterranean Cruise: IOPPublishing,2010,57~60
    [18] W. Bendick, J. Gabrel, B. Hahn et al., New low alloy heat resistant ferritic steelsT/P23and T/P24for power plant application, International Journal of PressureVessels and Piping,2007,84(1~2):13~20
    [19] R. L. Klueh, A. T. Nelson, Ferritic/martensitic steels for next-generation reactors,Journal of Nuclear Materials,2007,371(1~3):37~52
    [20] S.R. Pillai, N.S. Barasi, HS Khatak et al., Effect of external stress on thebehavior of oxide scales on9Cr-1Mo steel, Oxidation of Metals,1998,49(5):509~530
    [21] A. Levy, Y.F. Man, Elevated temperature erosion-corrosion of9Cr-1Mo steel,Wear,1986,111(2):135~159
    [22] C. R. Brinkman, D. J. Alexander, P. J. Maziasz, Modified9Cr-1Mo steel foradvanced steam generator applications, ASME/VGE international power plantsconference, Oak Ridge National Lab., TN (USA), Boston, MA (USA),1990,27
    [23] J. F. King, Weldability of Modified9Cr-1Mo Steel, ORNL,1986,6299:37
    [24] T. Sasaki, K. Kobayashi, T. Yamaura, Production and properties of seamlessmodified9Cr-1Mo steel boiler tubes, Kawasaki Steel Technical Report,1991,25(4):78
    [25] V. K. Sikka, C. T. Ward, K. C. Thomas, Modified9Cr--1Mo Steel--an ImprovedAlloy for Steam Generator Application, Ferritic steels for high-temperatureapplications,1981,10(1):65~84
    [26] R. W. Swindeman, M. L. Santella, P. J. Maziasz et al., Issues in replacing Cr-Mosteels and stainless steels with9Cr-1Mo-V steel, International Journal ofPressure Vessels and Piping,2004,81(6):507~512
    [27] F. Kondo, S. Tsukamoto, Suppression of Type IV fracture and improvement ofcreep strength of9Cr steel welded joints by boron addition, International Journalof Pressure Vessels and Piping,2007,84(1~2):44~52
    [28] DM Escriba, E. Materna-Morris, RL Plaut et al., Chi-phase precipitation in aduplex stainless steel, Materials Characterization,2009,60(11):1214~1219
    [29] T. Yamamoto, High-temperature fatigue crack propagation property of mod.9Cr-1Mo steel under vacuum and Air conditions, JSME International Journal.Series A,1997,40(3):283~289
    [30] D. Richardot, J. C. Vaillant, A. Arbab et al., The T92/P92Book, Vallourec&Mannesmann Tubes,2000,238~246
    [31] V. JC, B. Vandenberghe, B. HahnP et al., Fired Power Plants-Properties andExperience, Creep&Fracture in High Temperature Components: Design&LifeAssessment Issues,2005:87
    [32] K.M. Chalk, P.H. Shipway, D.J. Allen, Austenite formation during heat treatmentof P92power plant steel welds: dependence of A1temperature on compositionalchanges, Science and Technology of Welding&Joining,2011,16(7):613~618
    [33] P. J. Ennis, A. Zielinska-Lipiec, O. Wachter et al., Microstructural stability andcreep rupture strength of the martensitic steel P92for advanced power plant,Acta Materialia,1997,45(12):4901~4907
    [34] B. Kim, C. Jeong, B. Lim, Creep behavior and microstructural damage ofmartensitic P92steel weldment, Materials Science and Engineering: A,2008,483:544~546
    [35] K. Yin, S. Qiu, R. Tang et al., Corrosion behavior of ferritic/martensitic steel P92in supercritical water, The Journal of Supercritical Fluids,2009,50(3):235~239
    [36] S. Kunimitsu, Y. You, N. Kasuya et al., Effect of thermo-mechanical treatment ontoughness of9Cr-W ferritic-martensitic steels during aging, Journal of NuclearMaterials,1991,179:689~692
    [37] J. An, H. Jing, G. Xiao et al., Analysis of the Creep Behavior of P92Steel WeldedJoint, Journal of Materials Engineering and Performance,2010:1~7
    [38] L. Cipolla, A. Di Gianfrancesco, G. Cumino et al., Long term creep behaviourand microstructural evolution of E911steel, Creep&Fracture in HighTemperature Components: Design&Life Assessment Issues,2005:288
    [39] J. Orr, L. W. Buchanan, H. Everson, The commercial development andevaluation of E911, a strong9%CrMoNbVWN steel for boiler tubes and headers,Advanced heat resistant steels for power generation, San Sebastian, ESPAGNE1998,258~269
    [40] F. Sket, K. Dzieciol, A. Borbély et al., Microtomographic investigation ofdamage in E911steel after long term creep, Materials Science and Engineering:A,2011,528(1):103~111
    [41] A. Kipelova, R. Kaibyshev, V. Skorobogatykh et al., Portevin-Le Chatelier effectin an E911creep resistant steel with3%Co additives, Journal of Physics:Conference Series,2010,240(1):12~20
    [42] R. E. Clausing, L. Heatherly, R. G. Faulkner et al., Radiation-induced segregationin HT-9martensitic steel, Journal of Nuclear Materials,1986,141:978~981
    [43] H. J. Chang, J. J. Kai, Effects of temperature on the low cycle fatigue andmicrostructures of HT-9ferritic steel, Journal of Nuclear Materials,1992,191:836~840
    [44] G. Gupta, P. Ampornrat, X. Ren et al., Role of grain boundary engineering in theSCC behavior of ferritic-martensitic alloy HT-9, Journal of Nuclear Materials,2007,361(2~3):160~173
    [45] X. Ren, K. Sridharan, T. R. Allen, Corrosion of ferritic-martensitic steel HT9insupercritical water, Journal of Nuclear Materials,2006,358(2~3):227~234
    [46] A. Iseda, Y. Sawaragi, H. Teranishi et al., Development of New12%ChromiumSteel Tubing(HCM12) for Boiler Application, Sumitomo Search,1989,(40):41~56
    [47] A. Iseda, Y. Sawaragi, K. Ogawa et al., High Temperature Properties of12%Chromium Steel Tube(HCM12) for Boilers, Sumitomo Search(Japan),1992,(48):21~32
    [48] K. Sakuraya, H. Okada, F. Abe, BN type inclusions formed in high Cr ferriticheat resistant steel, Energy Materials: Materials Science and Engineering forEnergy Systems,2006,1(3):158~166
    [49] K. Sakuraya, H. Okada, F. Abe, Influence of heat treatment on formationbehavior of boron nitride inclusions in P122heat resistant steel, ISIJInternational,2006,46(11):1712~1719
    [50] S. Y. Bae, H. G. Kang, H. S. Yun et al., Oxidation and fatigue crack propagationin the range of low stress intensity factor in relation to the microstructure in P122Cr-Mo steel, Materials Science and Engineering: A,2009,499(1~2):262~266
    [51] M. Hattestrand, M. Schwind, H. O. Andren, Microanalysis of9-12%chromiumsteels P92and P122, Institute of Materials, Advanced Heat Resistant Steel forPower Generation(UK),1999:199~211
    [52] M. Yoshizawa, M. Igarashi, K. Moriguchi et al., Effect of precipitates onlong-term creep deformation properties of P92and P122type advanced ferriticsteels for USC power plants, Materials Science and Engineering: A,2009,510:162~168
    [53] R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal powerplants—Boiler materials: Part1, Journal of Materials Engineering andPerformance,2001,10(1):81~95
    [54] S. J. Zinkle, N. M. Ghoniem, Prospects for accelerated development of highperformance structural materials, Journal of Nuclear Materials,2011,47(1~3):2~8
    [55] A. Nagode, L. Kosec, B. Ule et al., Review of creep resistant alloys for powerplant applications, Metalurgija,2011,50(1):45~48
    [56] GN Stamatelopoulos, E. Sadlon, Advancement in coal-fired power plants: HigherEfficiency using advanced materials, Process of Power, Gen Europe,2005,456~461
    [57] J. Hald, S. Straub, Materials for Advanced Power Engineering, Proceedings ofthe Sixth Liége Conference, Liége: Julich,1998,155~167
    [58] F. Abe, T.U. Kern, R. Viswanathan et al., Creep-resistant steels, Oxford:Woodhead Pub.,2008
    [59] Y. Wang, K. H. Mayer, A. Scholz et al., Development of new11%Cr heatresistant ferritic steels with enhanced creep resistance for steam power plantswith operating steam temperatures up to650oC, Materials Science andEngineering: A,2009,510(3):180~184
    [60] D. J. Abson, J. S. Rothwell, B. J. Cane et al., Advances in Welded CreepResistant9-12%Cr Steels,5th International Conference on Advances inMaterials Technology for Fossil Power Plants, UK: The Welding Institute,2007,5
    [61] T.R. Allen, D.C. Crawford, Lead-cooled fast reactor systems and the fuels andmaterials challenges, Science and Technology of Nuclear Installations,2007,10(2007):1~11
    [62] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJInternational,2001,41(6):612~625
    [63] B. Prabha, P. Sundaramoorthy, S. Suresh et al., Studies on Stress CorrosionCracking of Super304H Austenitic Stainless Steel, Journal of MaterialsEngineering and Performance,2009,18(9):1294~1299
    [64] S. Tan, Z. Wang, S. Cheng et al., Processing maps and hot workability ofSuper304H austenitic heat-resistant stainless steel, Materials Science andEngineering: A,2009,517(1):312~315
    [65] A. Iseda, H. Okada, H. Semba et al., Long term creep properties andmicrostructure of SUPER304H, TP347HFG and HR3C for A-USC boilers,Energy Materials: Materials Science and Engineering for Energy Systems,2007,2(4):199~206
    [66] A. N. Hansson, L. Korcakova, J. Hald et al., Long term steam oxidation of TP347H FG in power plants, Materials at High Temperatures,2005,3(4):263~2670
    [67] C. Liu, J.A. Little, P.J. Henderson et al., Corrosion of TP347H FG stainless steelin a biomass fired PF utility boiler, Journal of Materials Science,2001,36(4):1015~1026
    [68] C. Liu, J.A. Little, P.J. Henderson et al., Localized corrosion of HR3C heatexchanger alloy under biomass deposit, Journal of Materials Science Letters,2000,19(14):1287~1292
    [69] Y. Sawagari, The development of HR3C steel with high elevated temperaturestrength and high corrosion resistance for boiler tubes, Sumitomo Metals,1985,37(2):66~78
    [70] T. Sourmail, H.K.D.H. Bhadeshia, Microstructural Evolution in Two Variants ofNF709at1023and1073K, Metallurgical and Materials Transactions A,2005,36(1):23~34
    [71] T. Takahashi, M. Sakakibara, M. Kikuchi et al., Development of high-strength20Cr-25Ni (NF709) steel for USC boiler tubes, Nippon steel technical report.Overseas,1988,(38):26~33
    [72] J.E. Oakey, L.W. Pinder, U.K. Powergen et al., Review of status of advancedmaterials for power generation, Annex A, Report COAL R,2003,224:30~45
    [73] R. Viswanathan, D. Gandy, K. Coleman, Advances in materials technology forfossil power plants, Florida, USA: ASM International (OH),2008
    [74] R. Viswanathan, J.F. Henry, J. Tanzosh et al., US program on materialstechnology for ultra-supercritical coal power plants, Journal of MaterialsEngineering and Performance,2005,14(3):281~292
    [75] H. Bhadeshia, A. Strang, D.J. Gooch, Ferritic power plant steels: remanent lifeassessment and approach to equilibrium, International Materials Reviews,1998,43(2):45~69
    [76] R.L. Klueh, D.R. Harries, High-chromium ferritic and martensitic steels fornuclear applications, West Conshohocken. PA. US: ASTM International,2001
    [77] G. Chai, J.O. Nilsson, M. Bostr m et al., Advanced Heat Resistant AusteniticStainless Steels, Advanced Steels,2011,(5):385~397
    [78] K. Hidaka, Y. Fukui, S. Nakamura et al., Development of heat resistant12%CrWCoB steel rotor for USC power plant, Advanced Heat Resistant Steel forPower Generation,1998:418~429
    [79] M. Yoshizawa, M. Igarashi, Long-term creep deformation characteristics ofadvanced ferritic steels for USC power plants, International Journal of PressureVessels and Piping,2007,84(1-2):37~43
    [80]赵之军,徐仁德,我国近期进口的部分火电大机组对比分析(一):(锅炉部分),发电设备,1991,(10):18~22
    [81]黄鉴,全国300MW及以上汽轮发电机组投产情况价绍,甘肃电力,1990,(4):43~52
    [82]孟繁茂,付俊岩,现代含铌不锈钢,北京:冶金工业出版社,2004
    [83]刘正东,程世长,包汉生等,钒对T122铁素体耐热钢组织和性能的影响,特殊钢,2006,27(1):7~10
    [84]宁保群,刘永长,徐荣雷等,形变热处理对T91钢组织和性能的影响,材料研究学报,2008,22(2):191~196
    [85] T. Okuda, M. Fujiwara, Dispersion behaviour of oxide particles in mechanicallyalloyed ODS steel, Journal of Materials Science Letters,1995,14(22):1600~1603
    [86] H. Sakasegawa, S. Ohtsuka, S. Ukai et al., Particle size effects in mechanicallyalloyed9Cr ODS steel powder, Journal of Nuclear Materials,2007,367:185~190
    [87] T. Uwaba, S. Ukai, T. Nakai et al., Properties of friction welds between9Cr-ODSmartensitic and ferritic–martensitic steels, Journal of Nuclear Materials,2007,367:1213~1217
    [88]王健,周张健,郭双全等, ODS钢的电化学腐蚀性能研究,装备制造技术,2011,1(001):15~17
    [89]胡本芙,郭丽娜,杨占兵等,12Cr-ODS钢中氧化物强化相(Y2O3)辐照损伤行为研究,原子能科学技术,2011,45(3):319~323
    [90] V. Foldyna, Z. Kubon, M. Filip et al., Evaluation of structural stability and creepresistance of9-12%Cr steels, Steel research,1996,67(9):375~381
    [91] J. Hald, L. Korcakova, Precipitate stability in creep resistant ferriticsteels-experimental investigations and modelling, ISIJ International,2003,43(3):420~427
    [92] J. D. Robson, H. Bhadeshia, Kinetics of precipitation in power plant steels*1,Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,1996,20(4):447~460
    [93] K. Yamada, M. Igarashi, S. Muneki et al., Effect of Co addition onmicrostructure in high Cr ferritic steels, ISIJ International,2003,43(9):1438~1443
    [94]雍歧龙,钢铁材料中的第二相,北京:冶金工业出版社,2006,
    [95]杨富,章应霖,任永宁等,新型耐热钢焊接,北京:中国电力出版社,2006
    [96] M. MacKenzie, AJ Craven, CL Collins, Nanoanalysis of very fine VNprecipitates in steel, Scripta Materialia,2006,54(1):1~5
    [97] K. Maruyama, K. Sawada, J. Koike, Strengthening mechanisms of creep resistanttempered martensitic steel, ISIJ International,2001,41(6):641~653
    [98] E. Orowan, Dislocations in metals, AIME, New York,1954,131
    [99] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: theFCC case, Progress in Materials Science,2003,48(3):171
    [100] M.F. Ashby, A first report on deformation-mechanism maps, Acta Metallurgica,1972,20(7):887~897
    [101] C. Zener, Theory of growth of spherical precipitates from solid solution, Journalof Applied Physics,1949,20(10):950~953
    [102] T. Gladman, On the theory of the effect of precipitate particles on grain growthin metals, Proceedings of the Royal Society of London. Series A. Mathematicaland Physical Sciences,1966,294(1438):298~309
    [103] N. Ridley, S. Maropoulos, J.D.H. Paul, Effects of heat treatment onmicrostructure and mechanical properties of Cr-Mo-3.5Ni-V steel, MaterialsScience and Technology,1994,10(3):239~249
    [104] F. Abe, Precipitate design for creep strengthening of9%Cr temperedmartensitic steel for ultra-supercritical power plants, Science and Technology ofAdvanced Materials,2008,9(1):2313~2327
    [105] F. Abe, Coarsening behavior of lath and its effect on creep rates in temperedmartensitic9Cr-W steels, Materials Science and Engineering: A,2004,387:565~569
    [106] H.G. Armaki, R.P. Chen, S. Kano et al., Effect of Cr content on the thermalstability of tempered lath structures and precipitates in strength enhanced ferriticsteels, Journal of Physics: Conference Series,2010,240(1):412~426
    [107] P. Hofer, H. Cerjak, B. Schaffernak et al., Quantification of precipitates inadvanced creep resistant9-12%Cr steels, Steel research,1998,69(8):343~348
    [108] F. Abe, S. Nakazawa, Microstructural evolution and creep behaviour of bainitic,martensitic, and martensite-ferrite dual phase Cr-2W steels, Materials Scienceand Technology,1992,8(12):1063~1069
    [109] F. Abe, Analysis of creep rates of tempered martensitic9%Cr steel based onmicrostructure evolution, Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing,2009,510~511:64~69
    [110] X.J. Gu, S.J. Poon, G.J. Shiflet, Effects of carbon content on the mechanicalproperties of amorphous steel alloys, Scripta Materialia,2007,57(4):289~292
    [111] M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at hightemperatures using nano-sized carbonitride dispersions, Nature,2003,424(6946):294~296
    [112] M.N. Mungole, G. Sahoo, S. Bhargava et al., Recrystalised grain morphology in9Cr-1Mo ferritic steel, Materials Science and Engineering: A,2008,476(1~2):140~145
    [113] F. Abe, S. Nakazawa, The effect of tungsten on creep, Metallurgical andMaterials Transactions A,1992,23(11):3025~3034
    [114] K. Sawada, M. Takeda, K. Maruyama et al., Effect of W on recovery of lathstructure during creep of high chromium martensitic steels, Materials Scienceand Engineering A,1999,267(1):19~25
    [115]雍岐龙,阎生贡,钒在钢中的物理冶金学基础数据,钢铁研究学报,1998,10(005):63~66
    [116] K. Hamada, K. Tokuno, Y. Tomita et al., Effects of Precipitate Shape on HighTemperature Strength of Modified9Cr-1Mo Steels, ISIJ International,1995,35(1):86~91
    [117] O. Prat, J. Garcia, D. Rojas et al., Investigations on coarsening of MX andM23C6precipitates in12%Cr creep resistant steels assisted by computationalthermodynamics, Materials Science and Engineering: A,2010,527(21~22):5976~5983
    [118] M. Hattestrand, H.O. Andren, Evaluation of particle size distributions ofprecipitates in a9%chromium steel using energy filtered transmission electronmicroscopy, Micron,2001,32(8):789~797
    [119] J.A. Cabral Miramontes, J.D.O. Barceinas Sánchez, F. Almeraya Calderón et al.,Effect of Boron Additions on Sintering and Densification of a Ferritic StainlessSteel, Journal of Materials Engineering and Performance,2010,19(6):880~884
    [120] L. Lundin, S. Fallman, H.O. Andren, Microstructure and mechanical propertiesof a10%chromium steel with improved creep resistance at600°C, MaterialsScience and Technology,1997,13(3):233~242
    [121] M. Selecka, A. Salak, H. Danninger, The effect of boron liquid phase sinteringon properties of Ni-, Mo-and Cr-alloyed structural steels, Journal of MaterialsProcessing Technology,2003,143:910~915
    [122] M. Hattestrand, H.O. Andrén, Boron distribution in9-12%chromium steels,Materials Science and Engineering A,1999,270(1):33~37
    [123] H.C. Furtado, L.H. de Almeida, I. Le May, Precipitation in9Cr-1Mo steel aftercreep deformation, Materials Characterization,2007,58(1):72~77
    [124] K. Sawada, H. Kushima, K. Kimura, Z-phase Formation during Creep andAging in9–12%Cr Heat Resistant Steels, ISIJ International,2006,46(5):769~775
    [125] K. Sawada, H. Kushima, K. Kimura et al., TTP Diagrams of Z Phase in9–12%Cr Heat-Resistant Steels, ISIJ International,2007,47(5):733~739
    [126] Z. Kubon, V. Foldyna, The effect of Nb, V, N and Al on the creep rupturestrength of9-12%Cr steel, Steel research,1995,66(9):389~393
    [127] F. Abe, M. Taneike, K. Sawada, Alloy design of creep resistant9Cr steel using adispersion of nano-sized carbonitrides, International Journal of Pressure Vesselsand Piping,2007,84(1~2):3~12
    [128] N. Takahashi, T. Fujita, T. Yamada, Effect of B on the Long TermCreep-Rupture Strength of12per cent Cr Heat-Resistant Steel, Tetsu-to-Hagane,1975,61(9):2263~2273
    [129] F. Abe, H. Semba, T. Sakuraya, Effect of boron on microstructure and creepdeformation behavior of tempered martensitic9Cr steel: Trans Tech Publ,2007,2982~2987
    [130] R. G. Faulkner, J. A. Williams, E. G. Sanchez et al., Influence of Co, Cu and Won microstructure of9%Cr steel weld metals, Materials Science and Technology,2003,19(3):347~354
    [131] H. Okada, S. Muneki, K. Yamada et al., Effects of Alloying Elements on CreepProperties of9Cr-3.3W-0.5Pd-V, Nb, N, B Steels, ISIJ International,2002,42(10):1169~1174
    [132] X.X. Shen, J.L. Liu, Z. Xu, The Effect of Co and Cu on the Creep Properties ofHigh Chromium (12%Cr) Ferritic Steel, Advanced Materials Research,2011,311:944~947
    [133] Y. Toda, K. Seki, K. Kimura et al., Effects of W and Co on the Microstructureand Creep Strength of the Precipitation Strengthened15Cr Ferritic Steels, JSMEInternational Journal Series A,2002,45(1):25~29
    [134] M. Igarashi, Y. Sawaragi, Report of the123rd Committee on Heat-ResistingMaterials and Alloys, JSPS,1996,37:77
    [135] M. Igarashi, S. Muneki, H. Hasegawa et al., Creep deformation and thecorresponding microstructural evolution in high-Cr ferritic steels, ISIJInternational,2001,41:101~105
    [136]朱平,赵建仓,柴晓岩等, SUPE-H奥氏体耐热钢焊接材料匹配与接头性能研究,电力设备,2007,8(1):4~9
    [137]尹士科,郭怀力,日本焊接材料的发展动向,焊接,2000,4:32~33
    [138] BJ Kim, SH Ryu, BS Lim, Fatigue crack growth behavior of heat affected zonein P92steel weldment, Metals and Materials International,2004,10(1):19~25
    [139] L. Falat, A. Vyrostkova, V. Homolova et al., Creep deformation and failure ofE911/E911and P92/P92similar weld-joints, Engineering Failure Analysis,2009,16(7):2114~2120
    [140] D Cole, H Bhadeshia, Design of Creep Resistant Steel Welds,BOOK-INSTITUTE OF MATERIALS,2001,738:431~448
    [141] AK Bhaduri, G Srinivasan, TPS Gill et al., Effect of aging on the microstructureand tensile properties of an alloy800/9Cr-1Mo steel joint, International Journalof Pressure Vessels and Piping,1995,61(1):25~33
    [142]范长信,周荣灿,李太江等,9%~12%Cr新型马氏体耐热钢的焊后热处理,超(超)临界锅炉用钢焊接技术协作网第二次论坛大会论文集,西安:超(超)临界锅炉用钢焊接技术协作网,2007,16~21
    [143] D Deng, H Murakawa, Prediction of welding residual stress in multi-passbutt-welded modified9Cr–1Mo steel pipe considering phase transformationeffects, Computational Materials Science,2006,37(3):209~219
    [144] B. Arivazhagan, S. Sundaresan, M. Kamaraj, Effect of TIG arc surface meltingprocess on weld metal toughness of modified9Cr-1Mo (P91) steel, MaterialsLetters,2008,62(17):2817~2820
    [145] AS Aloraier, RN Ibrahim, J Ghojel, Eliminating post-weld heat treatment inrepair welding by temper bead technique: role bead sequence in metallurgicalchanges, Journal of Materials Processing Technology,2004,153:392~400
    [146] A. Al-Mazrouee, R.K. Raman, R.N. Ibrahim, Effect of post weld heat treatmenton the oxide scaling of Cr-Mo steel weldments, Journal of Materials ProcessingTechnology,2005,164~165:964~970
    [147] M Vijayalakshmi, S Saroja, R Mythili et al., Mechanisms and kinetics oftempering in weldments of9Cr-1Mo steel, Journal of Nuclear Materials,2000,279(2~3):293~300
    [148] JA Francis, W. Mazur, H. Bhadeshia, Review Type IV cracking in ferritic powerplant steels, Materials Science and Technology,2006,22(12):1387~1395
    [149] H. Bhadeshia, Strong Ferritic-Steel Welds, Materials Science Forum,2007,539~543:6~11
    [150] Y. Hasegawa, M. Ohgami, H. Naoi, High strength, ferritic heat-resistant steelhaving improved resistance to intermetallic compound precipitation-inducedembrittlement, U. S. A: Google Patents,1998
    [151] M. Sireesha, S. Sundaresan, S.K. Albert, Microstructure and mechanicalproperties of weld fusion zones in modified9Cr-1Mo steel, Journal of MaterialsEngineering and Performance,2001,10(3):320~330
    [152] H. Wang, H. Zhang, J. Li, Microstructural evolution of9Cr-1Mo depositedmetal subjected to weld heating, Journal of Materials Processing Technology,2009,209(6):2803~2811
    [153] J.B. Brozda, Weldability and properties of joints welded in the new-generationcreep-resistant steels: T/P23steel, Welding international,2004,18(10):761~770
    [154] B. Arivazhagan, S. Sundaresan, M. Kamaraj, A study on influence of shieldinggas composition on toughness of flux-cored arc weld of modified9Cr-1Mo (P91)steel, Journal of Materials Processing Technology,2009,209(12~13):5245~5253
    [155] J. Onoro, Weld metal microstructure analysis of9–12%Cr steels, InternationalJournal of Pressure Vessels and Piping,2006,83(7):540~545
    [156] E. Lucon, A. Leenaers, W. Vandermeulen, Post-irradiation mechanicalproperties of three EUROFER97joints, Fusion Engineering and Design,2008,83(4):620~624
    [157] X. Jia, Y. Dai, Micro-hardness measurement and micro-structurecharacterization of T91weld metal irradiated in SINQ Target-3, Journal ofNuclear Materials,2005,343(1~3):212~218
    [158] Y. Dai, B. Long, Z.F. Tong, Tensile properties of ferritic/martensitic steelsirradiated in STIP-I, Journal of Nuclear Materials,2008,377(1):115~121
    [159] R. Sugiura, A.T. Yokobori, M. Tabuchi et al., Comparison of creep crack growthrate in heat affected zone of welded joint for9%Cr ferritic heat resistant steelbased on C*, d delta/dt, K and Q*parameters, Engineering Fracture Mechanics,2007,74(6):868~881
    [160] B.J. Cane, Mechanistic control regimes for intergranular cavity growth in2.25Cr-1Mo steel under various stresses and stress states, Metal Science,1981,15(7):302~310
    [161] J. Rothwell, D. Abson, Performance of weldments in advanced9%Cr steel'FB2',Materials at High Temperatures,2010,27(3):253~264
    [162] T. Kojima, K. Hayashi, Y. Kajita, HAZ softening and creep rupture strength ofhigh Cr ferritic steel weldments, ISIJ International,1995,35(10):1284~1290
    [163] I. Sattari-Far, Y. Javadi, Influence of welding sequence on welding distortions inpipes, International Journal of Pressure Vessels and Piping,2008,85(4):265-274
    [164] J.A. Francis, W. Mazur, H. Bhadeshia, Estimation of type IV cracking tendencyin power plant steels, ISIJ International,2004,44(11):1966~968
    [165] S.K. Albert, M. Matsui, T. Watanabe et al., Variation in the Type IV crackingbehaviour of a high Cr steel weld with post weld heat treatment, InternationalJournal of Pressure Vessels and Piping,2003,80(6):405~413
    [166] K. Laha, K.S. Chandravathi, P. Parameswaran et al., Type IV CrackingSusceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel,Metallurgical and Materials Transactions a-Physical Metallurgy and MaterialsScience,2009,40A(2):386~397
    [167] T. Watanabe, M. Tabuchi, M. Yamazaki et al., Creep damage evaluation of9Cr–1Mo–V–Nb steel welded joints showing Type IV fracture, InternationalJournal of Pressure Vessels and Piping,2006,83(1):63~71
    [168] C.J. Middleton, J.M. Brear, R. Munson et al., An Assessment of the Risk ofType IV Cracking in Welds to Header, Pipework and Turbine ComponentsConstructed from the Advanced Ferritic9%and12%Chromium Steels,BOOK-INSTITUTE OF MATERIALS,2001,770:69~78
    [169] F. Abe, H. Okada, S. Wanikawa et al., Guiding principles for development ofadvanced ferritic steels for650C USC boilers, Proc. of Seventh LiegeConference on Materials for Advanced Power Engineering, ForschungszentrumJulich,2002,1397~1406
    [170] F. Abe, M. Tabuchi, Microstructure and creep strength of welds in advancedferritic power plant steels, Science and Technology of Welding&Joining,2004,9(1):22~30
    [171] S. Fujibayashi, T. Endo, Effect of carbide morphology on the susceptibility toType IV cracking of a1.25Cr-0.5Mo steel, ISIJ International,2003,43(5):790~797
    [172] F. Abe, T. Horiuchi, M. Taneike et al., Stabilization of martensiticmicrostructure in advanced9Cr steel during creep at high temperature, MaterialsScience and Engineering: A,2004,378(1):299~303
    [173] M. Morinaga, R. Hashizume, Y. Murata, Materials for advanced powerengineering, Part I, Kluwer Academic Publishers, Dordrecht,1994,56~72
    [174] K. Laha, K.S. Chandravathi, P. Parameswaran et al., Characterization ofmicrostructures across the heat-affected zone of the modified9Cr-1Mo weldjoint to understand its role in promoting type IV cracking, Metallurgical andMaterials Transactions A,2007,38(1):58~68
    [175] F. Hofer, P. Warbichler, B. Buchmayr et al., On the detection ofMX‐precipitates in microalloyed steels using energy‐filtering TEM, Journalof microscopy,1996,184(3):163~174
    [176] N. Abe, Y. Kunisada, T. Sugiyama et al., Improvement of creep rupture strengthof welded joints in9Cr Mo V Nb steels (ASTM A387-Gr.91), Weldinginternational,1991,5(8):618~621
    [177] M. DeWitte, C. Coussement, Creep properties of12%Cr and improved9%Crweldments, Materials at High Temperatures,1991,9(4):178~184
    [178] G. Kirchner, T. Nishizawa, B. Uhrenius, The distribution of chromium betweenferrite and austenite and the thermodynamics of the/γ equilibrium in the Fe-Crand Fe-Mn Systems, Metallurgical and Materials Transactions B,1973,4(1):167~174
    [179] E.D. Moor, J.G. Speer, D.K. Matlock et al., Effect of Carbon and Manganese onthe Quenching and Partitioning Response of CMnSi Steels, ISIJ International,2011,51(1):137~144
    [180] T. Tokunaga, K. Hasegawa, F. Masuyama, Phase transformation behavior ofGrade91ferritic steel, Materials Science and Engineering: A,2009,510:158~161
    [181] M. Goji, M. Su eska, M. Raji Thermal analysis of low alloy Cr-Mo steel,Journal of Thermal Analysis and Calorimetry,2004,75(3):947~956
    [182] A.J. Ramirez, J.C. Lippold, S.D. Brandi, The relationship between chromiumnitride and secondary austenite precipitation in duplex stainless steels,Metallurgical and Materials Transactions A,2003,34(8):1575~1597
    [183] C Yue, L Zhang, S Liao et al., Kinetic Analysis of the Austenite Grain Growthin GCr15Steel, Journal of Materials Engineering and Performance,2010,19(1):112~115
    [184]韩利战,陈睿恺,顾剑锋等, X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究,金属学报,2009,45(012):1446~1450
    [185]包汉生,程世长,刘正东等,化学成分和热处理温度对T122耐热钢中-铁素体含量的影响,钢铁,2009,44(012):74~78
    [186] J.G. Zhang, H.B. Xu, H.S. Shi et al., Microstructure and properties of sprayformed Cr12MoV steel for rolls, Journal of Materials Processing Technology,2001,111(1~3):79~84
    [187] S. Raju, B.J. Ganesh, A. Banerjee et al., Characterisation of thermal stabilityand phase transformation energetics in tempered9Cr-1Mo steel using drop anddifferential scanning calorimetry, Materials Science and Engineering: A,2007,465(1~2):29~37
    [188] B. Smetana, S. Zlá, M. aludováet al., Application of high temperature DTA tomicro-alloyed steels, Metalurgija,2011,51(1):121~124
    [189] M. Campos, L. Blanco, J.M. Torralba, Thermal analysis of prealloyedFe–3Cr–0.5Mo sintered steel, Journal of Thermal Analysis and Calorimetry,2006,84(2):483~487
    [190] P. Cotterill, P.R. Mould, Recrystallization and grain growth in metals, London:Surrey University Press,1976
    [191] B. Dutta, E.J. Palmiere, C.M. Sellars, Modelling the kinetics of strain inducedprecipitation in Nb microalloyed steels, Acta Materialia,2001,49(5):785~794
    [192] M. Fazarinc, M. Ter elj, D. Bomba et al., Transformation and PrecipitationKinetics in30Cr10Ni Duplex Stainless Steel, Metallurgical and MaterialsTransactions A,2010,41(9):1~11
    [193] C.P. Scott, D. Chaleix, P. Barges et al., Quantitative analysis of complexcarbo-nitride precipitates in steels, Scripta Materialia,2002,47(12):845~849
    [194] B. Hwang, D.W. Suh, S.J. Kim, Austenitizing temperature and hardenability oflow-carbon boron steels, Scripta Materialia,2011,64(12):1118~1120
    [195] A. Dehghan-Manshadi, P.D. Hodgson, Effect of-ferrite co-existence on hotdeformation and recrystallization of austenite, Journal of Materials Science,2008,43(18):6272~6277
    [196] M. Hillert, On the theory of normal and abnormal grain growth, ActaMetallurgica,1965,13(3):227~238
    [197] P. Feltham, Grain growth in metals, Acta Metallurgica,1957,5(2):97~105
    [198] C.J. Simpson, K.T. Aust, W.C. Winegard, The four stages of grain growth,Metallurgical and Materials Transactions B,1971,2(4):987~991
    [199] C.J. Simpson, K.T. Aust, W.C. Winegard, Activation energies for normal graingrowth in lead and cadmium base alloy, Metallurgical and Materials TransactionsB,1971,2(4):993~997
    [200] W. Krauss, S.K. Pabi, H. Gleiter, On the mechanism of martensite nucleation,Acta Metallurgica,1989,37(1):25~30
    [201] A. Garcia-Junceda, C. Capdevila, F.G. Caballero et al., Dependence ofmartensite start temperature on fine austenite grain size, Scripta Materialia,2008,58(2):134~137
    [202] J.C. Fisher, J.H. Hollomon, D. Turnbull, Kinetics of the austenite-martensitetransformation, Trans. AIME,1949,185:691~700
    [203] H.S. Yang, H. Bhadeshia, Austenite grain size and the martensite-starttemperature, Scripta Materialia,2009,60(7):493~495
    [204]曹金荣,刘正东,程世长等, T122耐热钢平衡相转变的热力学计算和分析,特殊钢,2006,26(6):16~19
    [205] B. Jansson, B. J nsson, B. Sundman et al., The thermo Calc project,Thermochimica Acta,1993,214(1):93~96
    [206] J.O. Andersson, T. Helander, L. H glund et al., Thermo-Calc&DICTRA,computational tools for materials science, Calphad-Computer Coupling ofPhase Diagrams and Thermochemistry,2002,26(2):273~312
    [207] SA Khan, HKD Bhadeshia, Kinetics of Martensitic transformation in partiallybainitic300M steel, Materials Science and Engineering: A,1990,129(2):257~272
    [208] SMC Van Bohemen, J. Sietsma, Martensite Formation in Partially and FullyAustenitic Plain Carbon Steels, Metallurgical and Materials Transactions A,2009,40(5):1059~1068
    [209] C.L. Magee, The kinetics of martensite formation in small particles,Metallurgical and Materials Transactions B,1971,2(9):2419~2430
    [210] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of theaustenite-martensite transformation in pure iron-carbon alloys and plain carbonsteels, Acta Metallurgica,1959,7(1):59~60
    [211] J. Speer, D.K. Matlock, B.C. De Cooman et al., Carbon partitioning intoaustenite after martensite transformation, Acta Materialia,2003,51(9):2611~2622
    [212] S.H. Kang, Y.T. Im, Three-dimensional finite-element analysis of the quenchingprocess of plain-carbon steel with phase transformation, Metallurgical andMaterials Transactions A,2005,36(9):2315~2325
    [213] GB Olson, New directions in martensite theory, Materials Science andEngineering: A,1999,273:11~20
    [214] SMC van Bohemen, J. Sietsma, Effect of composition on kinetics of athermalmartensite formation in plain carbon steels, Materials Science and Technology,2009,25(8):1009~1012
    [215] KW Andrews, Empirical formulae for calculation of some transformationtemperatures, Iron and Steel Institute Journal,1965,203(7):721~727
    [216] C. L. Magee, Nucleation of martensite, Phase transformations, ASM.,1970:115~156
    [217] C. L. Magee, The nucleation of Martensite//H.I. Aaronson, Phasetransformation, ASM International, Metals Park,1968, Ohio:1766~1767
    [218] F Liu, F Sommer, C Bos et al., Analysis of solid state phase transformationkinetics: models and recipes, International Materials Reviews,2007,52(4):193~212
    [219] MJ Starink, On the meaning of the impingement parameter in kinetic equationsfor nucleation and growth reactions, Journal of Materials Science,2001,36(18):4433~4441
    [220] SR Pati, M. Cohen, Nucleation of the isothermal martensitic transformation,Acta Metallurgica,1969,17(3):189~199
    [221] AR Entwisle, The kinetics of martensite formation in steel, Metallurgical andMaterials Transactions B,1971,2(9):2395~2407
    [222]张丽芳,高Cr铁基合金连续冷却固态相变与动力学模拟:[博士学位论文],天津:天津大学,2012
    [223] D. Wang, Y. Liu, Y. Zhang, Improved analytical model for isochronaltransformation kinetics, Journal of Materials Science,2008,43(14):4876~4885
    [224] F. Liu, SJ Song, F. Sommer et al., Evaluation of the maximum transformationrate for analyzing solid-state phase transformation kinetics, Acta Materialia,2009,57(20):6176~6190
    [225]高秋志,张旦天,刘家泳等,高Cr铁素体耐热钢连续冷却相变行为,材料热处理学报,2011,32(9):67~71
    [226] Z. Nishiyama, M.E. Fine, M. Meshii et al., Martensitic transformation:Academic Press,1978
    [227] M. Umemoto, H. Guo, I. Tamura, Effect of cooling rate on grain size of ferritein a carbon steel, Materials Science and Technology,1987,3(4):249~255
    [228] S. Kustov, J. Pons, E. Cesari et al., Chemical and mechanical stabilization ofmartensite, Acta Materialia,2004,52(15):4547~4559
    [229] WJ Harris, M Cohen, Stabilization of the austenite-martensite transformation,Trans. AIME,1949,180:447~470
    [230]殷红旗,刘永长,宁保群等,冷却速度对T91相变速度和产物的影响,材料科学与工程学报,2007,25(1):118~121
    [231] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Abnormal austenite-ferritetransformation behaviour in substitutional Fe-based alloys, Acta Materialia,2003,51(2):507~519
    [232]刘云旭,金属热处理原理,北京:机械工业出版社,1981
    [233] G. Thomas, Retained austenite and tempered martensite embrittlement,Metallurgical and Materials Transactions A,1978,9(3):439~450
    [234] V. Raghavan, Formation sequence of plates in isothermal martensitetransformation, Acta Metallurgica,1969,17(10):1299~1303
    [235] FJ Schoen, WS Owen, Interfacial drag and the growth of martensite,Metallurgical and Materials Transactions B,1971,2(9):2431~2442
    [236] J.R.C. Guimaraes, P.R. Rios, Unified Model for Plate and Lath Martensite withAthermal Kinetics, Metallurgical and Materials Transactions A,2010,41(8):1928~1935
    [237] JRC. Guimaraes, PR Rios, Driving force and thermal activation in martensitekinetics, Metallurgical and Materials Transactions A,2009,40(10):2264~2272
    [238] FJ Gil, JM Manero, JA Planell, Effect of grain size on the martensitictransformation in NiTi alloy, Journal of Materials Science,1995,30(10):2526~2530
    [239] R.E. Cech, Evidence for solidification of a metastable phase in Fe-Ni alloys,Trans. AIME,1956,206:585~589
    [240] L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitictransformations, Progress in metal physics,1958,7:165~246
    [241] Y. Liu, F. Sommer, E.J. Mittemeijer, Abnormal Austenite-Ferrite TransformationKinetics of Ultra-Low-Nitrogen Fe-N Alloy, Metallurgical and MaterialsTransactions A,2008,39(10):2306~2318
    [242] M. Fischlschweiger, E.R. Oberaigner, Kinetics and rates of martensitic phasetransformation based on statistical physics, Computational Materials Science,2011,52(1):189~192
    [243] N. Zhu, Y. He, W. Liu et al., Modeling of Nucleation and Growth of M23C6Carbide in Multi-component Fe-based Alloy, J. Mater. Sci. Technol,2011,27(8):725~728
    [244] T.Y. Hsu, Y. Linfah, The effect of quenched-in vacancies on the martensitictransformation, Journal of Materials Science,1983,18(11):3213~3218
    [245] G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part I.General concepts and the FCC→HCP transformation, Metallurgical andMaterials Transactions A,1976,7(12):1897~1904
    [246] SK Albert, M. Matsui, H. Hongo et al., Creep rupture properties of HAZs of ahigh Cr ferritic steel simulated by a weld simulator, International Journal ofPressure Vessels and Piping,2004,81(3):221~234
    [247]牛济泰,材料和热加工领域的物理模拟技术,北京:国防工业出版社,1999
    [248] V. Muthupandi, P. Bala Srinivasan, SK Seshadri et al., Effect of weld metalchemistry and heat input on the structure and properties of duplex stainless steelwelds, Materials Science and Engineering: A,2003,358(1):9~16
    [249] GM Evans, The Effect of Heat Input on the Microstructure and Properties ofC--Mn All-Weld-Metal Deposits, Welding journal,1982,61(4):125~132
    [250] Y. Shi, D. Chen, Y. Lei et al., HAZ microstructure simulation in welding of aultra fine grain steel, Computational Materials Science,2004,31(3-4):379~388
    [251] D. Wojnowski, YK Oh, JE Indacochea, Metallurgical assessment of the softenedHAZ region during multipass welding, Journal of manufacturing science andengineering,2000,122:310
    [252] S. Yamada, M. Yaguchi, T. Ogata, Observation of Microstructural Change inCreep Damaged9%and12%Cr Steel Weld Joints, Lancaster: DestechPublications, Inc,2009
    [253]石德珂,朱维斗,材料物理,北京:机械工业出版社,2006
    [254] P. Patriarca, S.D. Harkness, J.M. Duke et al., US advanced materialsdevelopment program for steam generators, Nuclear Technology,1976,28(3):516~536
    [255] G. George, H. Shaikh, N. Parvathavarthini et al., On the microstructurepolarization behavior correlation of a9Cr-1Mo steel weld joint, Journal ofMaterials Engineering and Performance,2001,10(4):460~467
    [256] C.R. Das, S.K. Albert, A.K. Bhaduri et al., Effect of prior microstructure onmicrostructure and mechanical properties of modified9Cr-1Mo steel weld joints,Materials Science and Engineering: A,2008,477(1~2):185~192
    [257] P. Mayra, T.A. Palmerb, J.W. Elmerb et al., Direct observation of phasetransformations in the simulated heat-affected zone of a9Cr martensitic steel,International Journal of Materials Research,2008,99(4):110~115
    [258] A. Moitra, S. Sathyanarayanan, S. K. Albert et al., A dynamicfracture-toughness-based reference temperature characterization for the weldmetals of modified9Cr-1Mo steel in two different weld positions, InternationalJournal of Pressure Vessels and Piping,2008,85(7):478~485
    [259] A. Moitra, P. Parameswaran, P.R. Sreenivasan et al., A toughness study of theweld heat-affected zone of a9Cr-1Mo steel, Materials Characterization,2002,48(1):55~61
    [260] S. Hertzman, B. Brolund, P.J. Ferreira, An experimental and theoretical study ofheat-affected zone austenite reformation in three duplex stainless steels,Metallurgical and Materials Transactions A,1997,28(2):277~285
    [261] H Hemmer, Grong, A process model for the heat-affected zone microstructureevolution in duplex stainless steel weldments: Part I. the model, Metallurgicaland Materials Transactions A,1999,30(11):2915~2929
    [262] H. Sieurin, R. Sandstrom, Austenite reformation in the heat-affected zone ofduplex stainless steel2205, Materials Science and Engineering: A,2006,418(1~2):250~256
    [263] W Zhang, T DebRoy, TA Palmer et al., Modeling of ferrite formation in aduplex stainless steel weld considering non-uniform starting microstructure, ActaMaterialia,2005,53(16):4441~4453
    [264] J.W. Cahn, The kinetics of grain boundary nucleated reactions, ActaMetallurgica,1956,4(5):449~459
    [265] M. Avrami, Kinetics of phase change. I General theory, The Journal ofChemical Physics,1939,7:1103
    [266] M. Avrami, Kinetics of phase change. II Transformation‐time relations forrandom distribution of nuclei, The Journal of Chemical Physics,1940,8:212
    [267] G. Engberg, M. Hillert, A. Odén, Estimation of the Rate of Diffusion-controlledGrowth by Means of a Quasi-stationary Model, Scandinavian Journal ofMetallurgy,1975,4(2):93~96
    [268] M Eroglu, M Aksoy, N Orhan, Effect of coarse initial grain size onmicrostructure and mechanical properties of weld metal and HAZ of a lowcarbon steel, Materials Science and Engineering: A,1999,269(1):59~66
    [269] M. Tong, D. Li, Y. Li, Modeling the austenite-ferrite diffusive transformationduring continuous cooling on a mesoscale using Monte Carlo method, ActaMaterialia,2004,52(5):1155~1162
    [270] R. Trivedi, GM Pound, Effect of Concentration‐Dependent DiffusionCoefficient on the Migration of Interphase Boundaries, Journal of AppliedPhysics,1967,38(9):3569~3576
    [271] H. Hemmer, S. Klokkehaug, Grong, A process model for the heat-affected zonemicrostructure evolution in duplex stainless steel weldments: Part II. Applicationto electron beam welding, Metallurgical and Materials Transactions A,2000,31(3):1035~1048
    [272] Y. Maehara, Y. Ohmori, Microstructural change during superplastic deformationof-ferrite/austenite duplex stainless steel, Metallurgical and MaterialsTransactions A,1987,18(5):663~672
    [273] M. Vladimir, L. Zhonglin, O. Hitoshi et al., Microstructural Investigations onDecomposition Behaviour of MA Constituent and Recovery of Ductility due toPWHT in Simulated HAZ of HSLA Steels, Transactions of JWRI,1991,20(1):69~75
    [274] JA Jimenez, M Carsi, OA Ruano et al., Characterization of a/γ duplexstainless steel, Journal of Materials Science,2000,35(4):907~915
    [275] DB Moharil, I Jin, GR Purdy, The effect of-ferrite formation on thepost-solidification homogenization of alloy steels, Metallurgical and MaterialsTransactions B,1974,5(1):59~63
    [276] E. I. Samuel, B. K. Choudhary, K. B. S. Rao, Influence of post-weld heattreatment on tensile properties of modified9Cr-1Mo ferritic steel base metal,Materials Science and Technology,2007,23(8):992~999
    [277] R.K. Shiue, K.C. Lan, C. Chen, Toughness and austenite stability of modified9Cr-1Mo welds after tempering, Materials Science and Engineering A,2000,287(1):10~16
    [278] M van Warmelo, D Nolan, J Norrish, Mitigation of sensitisation effects inunstabilised12%Cr ferritic stainless steel welds, Materials Science andEngineering: A,2007,464(1~2):157~169
    [279] SS Babu, The mechanism of acicular ferrite in weld deposits, Current Opinionin Solid State and Materials Science,2004,8(3~4):267~278
    [280] Standards Association of Australia, AS4458-1997, Australian standard:pressureequipment manufacture, North Sydney: Standards Australia,1997
    [281]王娟,李亚江, T91钢焊缝及热影响区显微组织图象分析,材料科学与工艺,2001,9(001):95~99
    [282] H. Schneider, Investment casting of high-hot strength12%chrome steel,Foundry Trade Journal,1960,108:562~563
    [283] G. Eggeler, The effect of long-term creep on particle coarsening in temperedmartensite ferritic steels, Acta Metallurgica,1989,37(12):3225~3234
    [284] RA Grange, CR Hribal, LF Porter, Hardness of tempered martensite in carbonand low-alloy steels, Metallurgical and Materials Transactions A,1977,8(11):1775~1785
    [285] J. Pesicka, R. Kuzel, A. Dronhofer et al., The evolution of dislocation densityduring heat treatment and creep of tempered martensite ferritic steels, ActaMaterialia,2003,51(16):4847~4862
    [286] V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability ofmodified9Cr-1Mo steel during long term exposures at elevated temperatures,Journal of Nuclear Materials,2008,378(3):273~281
    [287] M. Regev, S. Berger, BZ Weiss, Investigation of microstructure mechanical andcreep properties of weldments between T91and T22steels, Welding journal,1996,75(8):261~268
    [288]张路,王正品,刘江南等,回火对国产P91钢组织和性能的影响,铸造技术,2003,24(6):537~539
    [289] GF Li, EA Charles, J. Congleton, Effect of post weld heat treatment on stresscorrosion cracking of a low alloy steel to stainless steel transition weld,Corrosion Science,2001,43(10):1963~1983
    [290] S.J. Kim, M. Okido, K.M. Moon, The electrochemical study on mechanical andhydrogen embrittlement properties of HAZ part as a function of post-weld heattreatment in SMAW, Surface and Coatings Technology,2003,169:163~167
    [291] K. Elangovan, V. Balasubramanian, Influences of post-weld heat treatment ontensile properties of friction stir-welded AA6061aluminum alloy joints,Materials Characterization,2008,59(9):1168~1177
    [292] A. Martinez-de-Guerenu, F. Arizti, I. Gutierrez, Recovery during annealing in acold rolled low carbon steel. Part II: Modelling the kinetics, Acta Materialia,2004,52(12):3665~3670
    [293] S. Arrhenius, On the theory of chemical reaction velocity, Zeitschrift furPhysikalische Chemie,1899,28:317
    [294] M. SF, M. JE, Influence of alloying elements in solution on staticrecrystallization kinetics of hot deformed steels, ISIJ International,1996,36:1063~1069
    [295] F.R. Beckitt, B.R. Clark, The shape and mechanism of formation of M23C6carbide in austenite, Acta Metallurgica,1967,15(1):113-129
    [296] X. Du, JA Whiteman, RC Thomson et al., Modelling the carbide compositionchanges in CrMoV steel during long-term tempering, Materials Science andEngineering: A,1992,154(2):197~205
    [297] AE Korneev, IA Stepanova, EI Yaropolova, Analysis of the phase compositionof steels, Metal Science and Heat Treatment,2006,48(7):335~341
    [298] WM Rainforth, MP Black, RL Higginson et al., Precipitation of NbC in a modelaustenitic steel, Acta Materialia,2002,50(4):735~747
    [299] JM Vitek, RL Klueh, Precipitation reactions during the heat treatment of ferriticsteels, Metallurgical and Materials Transactions A,1983,14(6):1047~1055
    [300] K. Suzuki, S. Kumai, H. Kushima et al., Heterogeneous recovery andprecipitation of Z phase during long term creep deformation of modified9Cr-1Mo steel, Tetsu-to-Hagane(Journal of the Iron and Steel Institute ofJapan)(Japan),2000,86(8):550~557
    [301] M. Tamura, H. Sakasegawa, A. Kohyama et al., Effect of MX type particles oncreep strength of ferritic steel, Journal of Nuclear Materials,2003,321(2):288~293
    [302] K.A. Taylor, Solubility products for titanium-, vanadium-, and niobium-carbidein ferrite, Scripta Metallurgica et Materialia;(United States),1995,32(1):7~12
    [303] J.A. Todd, P. Li, Microstructure-mechanical property relationships inisothermally transformed vanadium steels, Metallurgical and MaterialsTransactions A,1986,17(7):1191~1202
    [304] H.K. Danielsen, J. Hald, A thermodynamic model of the Z-phase Cr (V, Nb) N,Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,2007,31(4):505~514
    [305] C.G. Panait, W. Bendick, A. Fuchsmann et al., Study of the microstructure ofthe Grade91steel after more than100,000h of creep exposure at600oC,International Journal of Pressure Vessels and Piping,2010,87(6):326~335
    [306] S Spigarelli, E Quadrini, Analysis of the creep behaviour of modified P91(9Cr-1Mo-NbV) welds, Materials&Design,2002,23(6):547~552
    [307] G. Dimmler, P. Weinert, E. Kozeschnik et al., Quantification of the Laves phasein advanced9–12%Cr steels using a standard SEM, Materials Characterization,2003,51(5):341~352
    [308] M. Hattestrand, H.O. Andrén, Microstructural development during ageing of an11%chromium steel alloyed with copper, Materials Science and Engineering A,2001,318(1-2):94~101
    [309] H.K. Danielsen, J. Hald, Behaviour of Z phase in9-12%Cr steels, EnergyMaterials: Materials Science and Engineering for Energy Systems,2006,1(1):49~57
    [310] G.B. Olson, M. Cohen, Early stages of aging and tempering of ferrousmartensites, Metallurgical and Materials Transactions A,1983,14(5):1057~1065
    [311] R.C. Thomson, H.K.D.H. Bhadeshia, Carbide precipitation in12Cr1MoVpower plant steel, Metallurgical and Materials Transactions A,1992,23(4):1171~1179
    [312] C. Liu, D. Zhang, Y. Liu et al., Investigation on the precipitation behavior ofM3C phase in T91ferritic steels, Nuclear Engineering and Design,2011,241(7):2411~2415
    [313] AF Crawley, B. Lagowski, Effect of two-step aging on the precipitate structurein magnesium alloy AZ91, Metallurgical and Materials Transactions B,1974,5(4):949~951
    [314] I. Shapiro, IM Kolthoff, Studies on aging of precipitates and coprecipitation.XLIII. Thermal aging of precipitated silica (silica gel), Journal of the AmericanChemical Society,1950,72(2):776~782
    [315] T.H. Hyde, M. Saber, W. Sun, Testing and Modelling of Creep Crack Growth inCompact Tension Specimens from a P91Weld at650°C, Engineering FractureMechanics,2010,77(15):2946~2957
    [316] TH Hyde, AA Becker, W Sun et al., Finite element creep failure analyses of P91large tensile cross-weld specimens tested at625C,2006,24~26
    [317] J.R. Lane, N.J. Grant, Carbide reactions in high temperature alloys:Massachusetts Institute of Technology. Dept. of Metallurgy,1950
    [318] JH Shim, E Kozeschnik, WS Jung et al., Numerical simulation of long-termprecipitate evolution in austenitic heat-resistant steels, Calphad-ComputerCoupling of Phase Diagrams and Thermochemistry,2010,34(1):105~112
    [319]张红军,周荣灿,于在松, P92钢时效过程中冲击性能和硬度变化的试验,动力工程学报,2010,30(7):550~553
    [320]王亮,刘宗德,陈鹏等, T92钢高温时效硬度变化试验及蠕变性能研究,热力发电,2009,37(12):26~30
    [321] B. Jeyaganesh, S. Raju, S. Murugesan et al., A study on the effect of thermalageing on the specific-heat characteristics of9Cr–1Mo–0.1C (mass%) steel,International Journal of Thermophysics,2009,30(2):619~634
    [322]胡正飞,杨振国,长期高温时效F12耐热合金钢中碳化物形态和组分变化,金属学报,2003,39(2):131~135
    [323]刘福广,李太江,梁军等,高温时效对P92钢焊接接头显微组织和力学性能的影响,中国电机工程学报,2011,31(14):121~126
    [324]潘家祯,压力容器材料实用手册:碳钢及合金钢,北京:化学工业出版社,2000
    [325] J.H. Hollomon, L.D. Jaffe, Time-temperature relations in tempering steel, Trans.AIME,1945,162:223~249
    [326] L.D. Jaffe, D.C. Buffum, Upper Nose Temper Embrittlement of a Ni-Cr Steel,Journal of Metals,1957:8~16
    [327] P. Fernández, AM Lancha, J. Lape a et al., Creep strength of reduced activationferritic/martensitic steel Eurofer’97, Fusion Engineering and Design,2005,75:1003~1008
    [328] O. Prat, J. Garcia, D. Rojas et al., Investigations on the growth kinetics of Lavesphase precipitates in12%Cr creep-resistant steels: Experimental and DICTRAcalculations, Acta Materialia,2010,58(18):6142~6153
    [329] C.T. Sims, Contemporary view of cobalt-base alloys, Journal of Metals,1969,21(12):21-27
    [330] I.M. Moustafa, M.A. Moustafa, A.A. Nofal, Carbide formation mechanismduring solidification and annealing of17%Cr-ferritic steel, Materials Letters,2000,42(6):371~379
    [331] H. Djebaili, H. Zedira, A. Djelloul et al., Characterization of precipitates in a7.9Cr-1.65Mo-1.25Si-1.2V steel during tempering, Materials Characterization,2009,60(9):946~952
    [332] N. Fujita, H. Bhadeshia, M. Kikuchi, Precipitation sequence in niobium-alloyedferritic stainless steel, Modelling and Simulation in Materials Science andEngineering,2004,12(2):273~278
    [333] M.P. Sello, W.E. Stumpf, Laves phase precipitation and its transformationkinetics in the ferritic stainless steel type AISI441, Materials Science andEngineering: A,2011,528(3):1840~1847
    [334] H. Cui, F. Sun, K. Chen et al., Precipitation behavior of Laves phase in10%Crsteel X12CrMoWVNbN10-1-1during short-term creep exposure, MaterialsScience and Engineering: A,2010,527(29~30):7505~7509
    [335] M. Hattestrand, M. Schwind, H.O. Andrén, Microanalysis of two creep resistant9-12%chromium steels, Materials Science and Engineering A,1998,250(1):27~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700