用户名: 密码: 验证码:
粉煤灰充填重构土壤水盐变化特征与作物响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采与燃烧利用引发两大主要环境问题,一是大面积地表塌陷的形成造成耕地损失,破坏区域生态环境;二是煤矸石等煤系伴生物产生和燃煤电厂固体废弃物的排放压占土地,通过扬尘与淋滤液等污染周围大气、水体和土壤环境。为应对这些环境问题给矿区可持续发展带来的挑战,利用固体废弃物充填重构土壤剖面进行土地复垦和生态环境修复的工程措施在矿区被较多地实施,其中燃煤电厂废弃物(如粉煤灰)作为充填基质是一种重要的形式。这种复垦地的土地利用方式若为林地或耕地,其土壤剖面水分运动和溶质迁移机理是需要研究解决的关键问题之一。
     论文应用实验室土柱试验和现场小区试验,重点研究重构土壤水分入渗和作物生长条件下水量平衡规律,粉煤灰高可溶性盐的迁移和污染深部土壤或地下水环境的可能性,以及重构土壤盐分剖面变化特征。在此基础上,探讨复垦地作物生长对水盐条件变化的响应与重构土壤肥力质量。以期为完善煤矿区充填重构土壤水盐运动的理论研究和复垦地植物栽培的田间管理实践等作出重要贡献。
     (1)设计覆土厚度为20cm和35cm的试验土柱,并分别控制不同的地下水位(-115cm和-300cm),研究重构层状土壤水分入渗和盐分迁移规律。结果表明:实验设计的两种覆土厚度对入渗锋下移速率影响的差异性存在但不显著,表土和粉煤灰层间水分入渗有明显的界面特征。强供水条件下,粉煤灰层中的K+和Cl-随水分快速向下运动,若污染防治措施不当,容易造成深部土壤或周围地下水中盐分离子浓度的短期急剧升高。地下水位对重构土壤水分入渗有显著影响,低地下水位时,入渗锋呈规则下移;高地下水位时,入渗锋与毛管水上升面出现界面胶结现象,交锋面约在-40cm处,所需时间约为灌溉后12h。
     (2)对照安徽省淮南市2001-2010年降雨量和蒸发量资料,应用Hydraus-1D软件模拟极端气象条件下重构土壤水量平衡特征,发现当地下水位较低(-300cm)时,含水量明显受到气象条件的影响,干旱年份与湿润年份相差0.100cm3/cm3左右,尤其是表层土壤含水量变化明显。高地下水位(-115cm)时,粉煤灰层含水量基本不受气象条件影响,始终在近饱和状态,表层土壤虽有变化,但幅度相对较小。无论干旱或湿润年份,表层土壤含水量均在田间含水量上下波动,能够满足作物生长需求。此时,试验的两种覆土厚度对含水量的影响差异很小。
     (3)分别建立覆土厚度25cm和45cm的田间试验小区,设置对照小区并控制地下水位(约-150cm),研究小麦生长条件下重构土壤水分平衡和盐分剖面特征。结果表明,试验小区粉煤灰层的含水量在整个小麦生长周期均接近饱和含水量,受气象条件的影响程度低,而表层土壤含水量与降雨量呈显著正相关。试验小区的表层土壤含水量在小麦生长各时期都低于对照小区,有限的表土厚度增加并不能改变粉煤灰充填重构土壤的水分条件。通过验证发现根系吸水条件下的Richards方程在描述重构土壤田间含水量变化时存在缺陷,计算值与实测值相比明显偏低。文章据此对Richards方程的源汇项进行了修正,引入了λ值,其计算公式为λ=γ*(dpb/dθ)。同时,试验小区土壤中SO42-、Mg2+和Ca2+含量较高,C032-和HCO-含量较低。与对照小区相比,试验小区土壤总可溶性盐分含量较高,在小麦生长的整个周期内,表土厚度越薄,重构土壤对可溶性盐分的聚集和保持能力越差。可溶性盐组分在重构土壤中的剖面特征明显。C032-和HCO-在小麦生长的各个阶段,自土壤表层至粉煤灰层,含量逐渐降低,而Cl-、SO42-和四种阳离子的含量自土壤表层至粉煤灰层,含量逐渐增加。
     (4)粉煤灰充填重构土壤水盐条件与小麦籽粒产量间存在明显“相悖”现象,即试验小区粉煤灰层含水量始终高于对照小区,而籽粒产量却显著低于对照小区(p<0.05)。由研究结果揭示其原因主要有两个方面:一是粉煤灰有低容重、大颗粒比表面积、强水分吸持能力等性质,水分向上输送困难,表层土壤含水量受其影响较小;二是重构土壤盐分含量总体不高,肥力质量综合指数较低,影响小麦生长和籽粒产量。覆土厚度与小麦产量间关系可用dY/dH=(-0.3632+0.0021H)*H+11.315经验模型来描述。复垦地表层土壤的最优厚度为35~45cm。
     (5)论文在研究重构土壤理化性质基础上,构建肥力质量评价指标体系,并应用主成分分析法和专家打分法相结合,赋予各指标的权重系数,建立评价模型。评价结果揭示对照小区的土壤肥力综合指数最高,其次为覆土厚度45cm的试验小区,覆土厚度25cm的试验小区最低,这与小麦籽粒产量结果一致。重构土壤养分肥力指标NFI值和土壤肥力质量综合评价指标IFI值之间存在极显著相关性,相关系数为0.9784(p<0.01,n=12)。
There are many environmental problems from coal mining and coal combustion, the arable land loss and regional ecological environment destruction for a large area surface subsidence, the environmental pollution of atmosphere, water and soil through dust and leachate from solid waste, and so on. Furthmore, a great quantities of lands are occupied by the coal-series concomitants (i.e. coal gangue) and coal combustion residues (i.e. fly ash). Some engineering measures in coal mining areas were applied in response to the challenge of these environmental problems to sustainable development, that were the land reclamation and ecological environment restoration by reconstructing soil profiles filled with the solid waste. One of the important rilling matrix was fly ash (FA). Water movement and solute transport mechanism of reconstruction soil profiles are the key problems which should be studied and solved if the land use pattern of the reclamation soil is woodland or farmland.
     Soil columns and field plots were built to focuse on simulating water infiltration and water balance under the crop growing conditions in reconstruction soils. The possibility is also studied of high soluble salt in FA layers transporting to deeper soil layer or groundwater environment, including salinity concentration variation of reconstruction soil profiles. On this basis, the response of crop growth to water-salt conditions change and fertility quality of the reconstruction soil were discussed to improve the soil water-salt movement theories and plant cultivation field managements of coal mining areas.
     (1) The soil columns of two different cover soil thickness (20cm and35cm) were designed for studying the water infiltration and salt migration of reconstruction layered soil, with controling two different groundwater levels (-115cm and-300cm). The results show that the differences exist but does not significantly of the experimental designed two topsoil thickness affecting on the infiltration front downshift rate and the moisture infiltration has obviously interface features between the cover soil and FA layer. At the same time, K+and Cl" of FA will rapidly move downward along with moisture under strong water supply. The short-term sharp rise of salt ion concentration is very easy in deeper soil layer or groundwater around if no proper pollution prevention measures. In addition, the groundwater table can remarkably affect on water infiltration of the reconstruction soil. The infiltration front is well-regulated down under the low groundwater table condition, while the interface cemented phenomenon appears between the infiltration front and capillary water rise surface under the high groundwater table condition, the surface confrontation-40cm and time12h after irrigation.
     (2) The field water balance of reconstruction soil under the extreme climate conditions were simulated by Hydraus-1D software according to precipitation and evaporation data from2001to2010in Huainan, China. The results show that reconstruction soil moisture contents are obvious influenced by the meteorological conditions when the groundwater level is low (-300cm), and the difference is about0.100cm3/cm3between dry years and wet years. Especially, moisture changes are significant in the cover soil. Moreover, the water content in FA layer is substantially independent of meteorological conditions under the high groundwater level (-115cm), always near saturated. And water content variable magnitude is also relatively small. While the topsoil moisture content fluctuates along to the field water content and can meet the demand for crop growth, whether drought or wet years. In this case, the effect difference is very small of the experimental two topsoil thickness to water content.
     (3) The water balance and salt distribution of reconstruction soil profiles with wheat growth were studied through establishing the experimental plots of cover soil25cm and45cm, setting the control plots and controlling the groundwater table (-150cm). The results show that the moisture content in FA layer of experimental plots is closed to the saturated water content in the whole wheat growth cycle and less subjected to weather conditions, while that of cover soil is the significant positive correlation to the rainfall. Furthermore, the topsoil water content of experimental plots is lower than those of the control plots in wheat growth periods and the limited cover soil thickness increase does not change the moisture conditions of reconstruction soil filled with FA. Even more, the Richards equation with root uptake has defect as describing field water content variation of reconstruction soil, namely the calculated values lower than measured ones. So the concept of compensation factor is put forward to Amending Richards equation, which is calculated as λ=γ*(dpb/d(?)). Meanwhile, SO42-, Mg2+, and Ca2+concentration of soil in experimental plots are higher than that in control plots, and the total soluble salt content also higher, while CO32-and HCO- concentration are lower. The thinner of topsoil, the poorer of the ability from accumulating and keeping soluble salt in whole wheat growth cycle. Besides, the distribution characteristics of soluble salt components is clear in reconstruction soil profiles. CO32-and HCO" concentration gradually decrease from the topsoil to FA layer, while those of Cl-, SO42-, and four cations gradually increase in relevant position in various stages of wheat growth.
     (4) The inconsistent phenomenon is obvious between water-salt conditions of reconstrucion soil filled with FA and wheat grain yield, that is, water content in FA layer of experimental plots is always higher than that of the control ones, but the wheat grain yield remarkably lower (p<0.05). Two reasons mainly are uncovered form research results. Although water content of FA layers is high nearly saturated one but the its impact on topsoil is less because of FA properties with low bulk density, large particles specific surface area, and strong water suction holding capacity firstly. Secondly, low salinity content and fertility quality in reconstruction soil affect on wheat growth and grain yield. Model dY/dH=(-0.3632+0.0021H)*H+11.315can be described the relation between topsoil thickness and wheat yield.
     (5) This paper built the fertility quality evaluation index system on the basis of studying soil physico-chemical properties. And the weight coefficients were assigned to each index with the method of principal component analysis and expert scoring combination to establishing the reconstruction soil fertility quality evaluation model. The assessment results that soil fertility composite index of the control plots is the highest, following cover soil45cm, and that of topsoil25cm in experimental plots is the minimum, which is consistent with the results of wheat grain yield on field plots. Additionally, the correlation coefficient is0.9784between nutrient fertility indexes NFI and fertility quality comprehensive index IFI of reconstruction soil, expressively remarkable correlation (p<0.01, n=12).
引文
[1]Alice T, Orville C S. Diffusion coefificient of chlorine in water at 25-60 ℃[J]. Journal of Chemical and Engneering Data,1985,30(2):189-191.
    [2]S. E. Allaire, S. Roulier, A. J. Cessna. Quantifying preferential flow in soils:A review of different techniques [J]. Journal of Hydrology,2009,378:179-204.
    [3]R. Anlauf, P. Rehrmann, H. Schacht. Simulation of Water Uptake and Redistribution in Growing Media during Ebb-and-Flow Irrigation[J]. Journal of Horticulture and Forestry,2012,4(1): 8-21.
    [4]Andreu L., Opmans J., Schwankl L.. Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree[J]. Agricultural Water Management,1997,35:123-146.
    [5]P. Asokan, M. Saxena, S. R. Asolekar. Coal combustion residues-environmental implications and recycling potentials[J]. Resources, Conservation and Recycling,2005,43(3): 239-262.
    [6]G. H. Baker, G. Brown, K. Butt, et al.. Introduced earthworms in agricultural and reclaimed land:their ecology and influences on soil properties, plant production and other soil biota[J]. Biological Invasions,2006,8:1301-1316.
    [7]Barnard J. H., Rensburg L. D., Bennie A. T.. Leaching irrigated saline sandy to sandy loam apedal soils with water of a constant salinity[J]. Irrigation Science,2010,28:191-201.
    [8]M. Bjoern, W. Eltje. Effects of physico-chemical soil characteristics on yield and root density of wheat at reclaimed fly ash fields in the mining area of Huainan (China) [D]. Osnabrueck University of Applied Sciences, Germany,2012,79-80.
    [9]C. K. Bowen, G. E. Schuman, R. A. Olson, et al. Influence of Topsoil Depth on Plant and Soil Attributes of 24-Year Old Reclaimed Mined Lands[J]. Arid Land Research and Management, 2005,19:267-284.
    [10]Brady N. C., Weil R. R.. The nature and properties of soils[M]. New Jersey:Pearson Education,2008,20-57.
    [11]Brunone B., Ferrante M., Romano N. et al.. Numerical simulations of one-dimensional infiltration into layered soils with the Richards equation using different estimates of the interlayer conductivity[J]. Vadose Zone Journal,2003,2 (2):193-200.
    [12]Da-Zuo Cao, Eva Selic, Jan-Dirk Herbell. Utilization of fly ash from coal-fired power plants in China[J]. Journal of Zhejiang University - Science A,2008,9(5):681-687.
    [13]X. Chen, J. Yan, X. Yang. Physico-chemical properties and hydraulic characteristics of reconstruction soil filling with fly ash[J]. Advanced Materials Research,2012,356-360: 2669-2672.
    [14]Christoph E., Gerhard E..Influence of modern soil restoration techniques on litter decomposition in forest soils[J]. Applied Soil Ecology,1998,9:501-507.
    [15]Colman E. A., Bodman G. B.. Moisture and energy conditions during downward entry of water into moist and layered soil[J]. Proceeding of soil science Society of America,1945,9:3-11.
    [16]Daniel Hillel. Environmental soil physics[M].London:Academic Press,1998.155-158.
    [17]R. Davies, A. Younger, R. Chapman. Water availability in a restored soil[J]. Soil Use and Management,1992,8(2):67-73.
    [18]J. A. Doolittle, M. E. Collins. Use of soil information to determine application of ground penetrating radar[J]. Journal of Applied Geophysics,1995,33:101-108.
    [19]A. Fiori, I. Jankovic. On Preferential Flow, Channeling and Connectivity in Heterogeneous Porous Formations [J]. Math. Geosci.,2012,44:133-145.
    [20]Freijer J. I., Post T.M., Ploeger B.A., et al.. Application of the convection-dispersion equation to modelling oral drug absorption[J]. Bulletin of Mathematical Biology,2007,69(1): 181-195.
    [21]J. Gerardo L. A., Javier F. L., Jaime M. O., et al.. Salt Leaching Process in an Alkaline Soil Treated with Elemental Sulphur under Dry Tropic Conditions[J]. World Journal of Agricultural Sciences,2007,3:356-362.
    [22]H. H. Gerke, A. Badorreck, M. Einecke. Single- and dual-porosity modelling of flow in reclaimed mine soil cores with embedded lignitic fragments[J]. Journal of Contaminant Hydrology, 2009,104:90-106.
    [23]D. K. Gupta, U. N. Rai, R. D. Tripathi, et al.. Impacts of fly-ash on soil and plant responses[J]. Journal of Plant Research,2002,115:401-409.
    [24]Hansonaa B. R., Schwankla L. J., Schulbachb K. F., et al.. A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water[J]. Agricultural Water Management,1997,33:139-157.
    [25]P. Hartmann, H. Fleige, R. Horn. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash[J]. Journal of Soils and Sediments,2010,10: 231-239.
    [26]IUSS Working Group WRB. World reference base for soil resources 2006[M]. FAO, Rome,2006,71-72.
    [27]D. Jacques, J. Simunek, A. Timmerman, et al.. Calibration of Richards' and convection-dispersion equations to field-scale water flow and solute transport under rainfall conditions[J]. Journal of Hydrology,2002,259:15-31.
    [28]G. Y. Jayasinhe, Y. Tokashiki, K. Kinjo. Recycling of coal fly ash and paper waste to improve low productive red soil in Okinawa, Japan[J]. Clean,2009,37(9):687-695.
    [29]Jozefaciuk G., Toth T., Szendrei G. Surface and micropore properties of saline soil profiles[J]. Geoderma,2006,135:1-15.
    [30]Kang S. Z., Zhang L., Hu X. T., et al.. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots[J]. Scientia Horticulturae,2001, 89(4):257-267.
    [31]T. Kowalkowski, B. Buszewski. Soil reclamation by municipal sewage compost:Heavy metals migration study[J]. Journal of Environmental Science and Health Part A,2009,44:522-527.
    [32]Lee H., Ha H.S., Lee C.S., et al.. Fly ash effect on improving soil properties and rice productivity in Korean paddy soil[J]. Bioresource Technology,2006,97:1490-1497.
    [33]H. Lin. Earth's Critical Zone and hydropedology:concepts, characteristics,and advances [J]. Hydrology and Earth System Sciences,2010,14:25-45.
    [34]Makowsky L., Nix K., Meuser H. et al.. Towards a sustainable use of cover soil for agricultural reclamation of coal mining waste and fly ash deposits-A case study at the hard coal mining region of Huainan, China[M]. The 1st International Workshop on Diffuse Pollution (IWDIP), Huainan, China:Proceedings, Scientific Research Publishing, USA,2010,235-239.
    [35]A.B. McBratney, T.F.A. Bishop, I.S. Teliatnikov. Two soil profile reconstruction techniques[J]. Geoderma,2000,97:209-221.
    [36]H. Meuser. Conteminated urban soils[M]. New York:Springer,2010,121-194.
    [37]Miller D E, Gardner W H. Water infiltration into stratified soil[J]. Soil Science Society of America Proceedings,1962,26 (2):115-119.
    [38]Mualem Y.. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12:513-522.
    [39]D. L. Mummeya, P. D. Stahla, J. S. Buyerb. Soil microbiological properties 20 years after surface mine reclamation:spatial analysis of reclaimed and undisturbed sites[J]. Soil Biology and Biochemistry,2002,34:1717-1725.
    [40]D. R. Nielsen, M. Th. van Genuchten, J. W. Biggar. Water flow and solute transport processes in the unsaturated zone[J]. Water Resources Research,1986,22:89-108.
    [41]V. C. Pandey, N. Singh. Impact of fly ash incorporation in soil systems[J]. Agriculture, Ecosystems and Environment,2010,136:16-27.
    [42]Parlange J. Y. Theory of water movement in soils:2. one dimensional infiltration[J]. Soil Science,1972a,111:170-174.
    [43]Parlange J. Y. Theory of water movement in soils:8. one dimensional infiltration with constant flux at the surface[J]. Soil Science,1972b,114:1-4.
    [44]Radcliffe D.E., Tillotson P. M., Hendrix P. F., et al.. Anion transport in a piedmont ultisol: I. Field-scale parameters[J]. Soil Science Society of America Journal,1996,60:755-761.
    [45]A. Riehl, F. Elsass, J. Duplay, et al.. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash[J]. Geoderma,2010,155:67-74.
    [46]Romano N., Brunone B., Santini A.. Numerical analysis of one-dimensional unsaturated flow in layered soils[J].Advances in Water Resources,1998,21 (4):315-324.
    [47]Roth K., Jury W. A., Fluhler H., et al.. Transport of chloride through an unsaturated field soil[J]. Water Resources Research,1991,27:2533-2541.
    [48]Seong-Won Na, Loukas F. Kallivokas. On the inverse problem of soil profile reconstruction:a comparison of time-domain approaches[J]. Computational Mechanics,2008, 42:921-942.
    [49]S. K. Sharma, N. Kalra. Effect of fly ash incorporation on soil properties and productivity of crops:A review[J]. Journal Scientific and Industrial Research,2006,65:383-390.
    [50]Shenggao Lu, Lei Zhu. Effect of fly ash on physical properties of ultisols from subtropical China[J]. Communications in Soil Science and Plant Analysis,2004,35(5-6):703-717.
    [51]R. K. Shrestha, R. Lal. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil[J]. Environment International,2006,32:781-796.
    [52]H. W. Scherer, H. E. Goldbach, J. Clemens. Potassium dynamics in soil and yield formation in a long-term field experiment[J]. Plant, Soil and Environment,2003,49(12):531-535.
    [53]Simunek J., van Genuchten M Th., Sejna M.. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal,2008,7 (2):587-600.
    [54]M. J. Tedesco, E. C. Teixeira, C. Medina, et al.. Reclamation of Spoil and Refuse Material Produced by Coal Mining using Bottom Ash and Lime[J]. Environmental Technology, 1999,20:523-529.
    [55]Tiwari S., Kumari B., Singh S.N.. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps[J]. Bioresource Technology,2008,99:1305-1310.
    [56]Tosio C., Maaharu K... Symposium R.2. International Commission on Irigation and Drainage:Management and evaluation of water saving irrigation on farm[J]. Thieteen Congress, Rabat,1987,19-40.
    [57]M. Th. van Genuchten. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [58]Victor M.M. Lobo, Ana C.F. Ribeiro, Luis M.P. Verissimo. Diffusion coefficients in aqueous solutions of potassium chloride at high and low concentrations[J]. Journal of Molecular Liquids,1998,78:139-149.
    [59]Vijayakumar K., Dey S., Chandrasekhar T.. Irrigation requirement of rubber trees (Heavea brasiliensis) in the subhumid tropics[J]. Agricultural Water Management,1998, 35:245-259.
    [60]Wallach D.. Evaluating Crop models. In:Wallach, D., Makowski, D. and Jones, J.W. (Ed.):Working with dynamic crop models[M]. Elsevier,2006,11-53.
    [61]Wang Lan, Cui Yuansheng. The application and development of fly ash in China[J].2007 World of Coal Ash (WOCA), May 7-10,2007, Northern Kentucky USA.
    [62]Wang Q. J., Shao M., Horton R.. Modified Green and AMPT models for layered soil and muddy water infiltration[J]. Soil Science,1999,164(7):445-453.
    [63]Yang H, Rahardjo H, Leong E C, et al. A study of infiltration on three sand capillary Barriers[J]. Canadian Geotechnical Journal,2004,41 (4):629-643.
    [64]Yates S R, van Genuchten M Th, Warrick A W, et al. Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program [J]. Soil Science Society of America Proceedings,1992,56:347-354.
    [65]D. O. Yawson, P. K. Kwakye, F. A. Armah, et al. The dynamics of potassium(K) in representative soil series of Ghana[J]. ARPN Journal of Agricultural and Biological Science,2011, 6(1):49-55.
    [66]N. A. Yeledhalli, S. S. Prakash, S. B. Gurumurthy, et al. Coal Fly Ash as Modifier of Physico-Chemical and Biological Properties of Soil[J]. Karnataka Journal of Agricultural Science, 2007,20:531-534.
    [67]N. A. Yeledhalli, S. S. Prakash, M. V. Ravi, et al.. Long-Term Effect of Fly Ash on Crop Yield and Soil Properties[J]. Karnataka Journal of Agriculture Science,2008,21 (4):507-512.
    [68]巴建文,刘振华,田辽西,等.电导率在土壤盐渍化研究中的应用—以张掖城市湿地为例[J].地下水,2010,32(2):32-46.
    [69]曹洪志,周健民,等.中国土壤质量[M].北京:科学出版社,2008,5-10.
    [70]陈海滨,邓成,毛毅.城镇生活垃圾资源化处理方案的技术经济比选研究[J].环境工程学报,2007,1(1):130-133.
    [71]陈丽湘,刘伟.土壤次生盐渍化之水盐运动规律研究[J].工程热物理学报,2006,27(3):466-468.
    [72]陈丽湘,.刘伟.基于多孔介质模型的土壤次生盐渍化过程模拟[J].华中科技大学学报(自然科学版),2009,37(4):105-110.
    [73]陈星彤,高荣久,王宇亮,等.复垦土壤盐分污染的微波无损探测及定量分析[J].辽宁工程技术大学学报(自然科学版),2008,27(2):309-311.
    [74]陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报,1997,(5):77-83.
    [75]崔龙鹏,刘培陶,白建峰,等.淮南粉煤灰处置场周围土壤中若干金属污染调查[J].土壤通报,2008a,39(3):660-664.
    [76]丁青坡,王秋兵,魏忠义,等.抚顺矿区不同复垦年限土壤的养分及有机碳特性研究[J].土壤通报,2007,38(2):262-267.
    [77]董霁红,卞正富,雷少刚,等.徐州矿区充填复垦土壤特性实验研究[J].水土保持研究,2008,15(1):234-237.
    [78]范晓梅,刘高焕,唐志鹏,等.黄河三角洲土壤盐渍化影响因素分析[J].水土保持学报,2010,24(1):139-144.
    [79]付薇,邵明安,黄明斌.神府东胜煤田复垦区土壤入渗特性的试验研究[J].水土保持学报,2008,22(3):14-17.
    [80]郭全恩,王益权,郭天文,等.半干旱地区环境因素与表层土壤积盐关系的研究[J].土壤学报,2008,45(5):957-963.
    [81]郭群善,雷志栋,杨诗秀.作物生长条件下田间土壤水量平衡计算的研究[J].水利学报,1997(增刊),35-38.
    [82]胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,(6):617-618.
    [83]胡振琪,戚家忠,司继涛.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6):639-643.
    [84]胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J].农业工程学报,2003,19(2):214-218.
    [85]胡振琪,魏忠义,秦萍.塌陷地粉煤灰充填复垦土壤的污染性分析[J].中国环境科学,2004,24(3):311-315.
    [86]胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤,2005,37(1):8-12.
    [87]胡振琪,陈星彤,卢霞,等.复垦土壤盐分污染的微波频谱分析[J].农业工程学报,2006,22(6):56-60.
    [88]胡振琪,张学礼.基于ANN的复垦土壤水分特征曲线的预测研究[J].农业工程学报,2008,24(10):15-19.
    [89]黄强,殷志刚,田长彦,等.两种覆盖方式下的土壤溶液盐分含量变化[J].干早区地理,2001,24(1):52-56.
    [90]焦晓燕,王立革,卢朝东,等.采煤塌陷地复垦方式对土壤理化特性影响研究[J].水土保持学报,2009,23(4):123-145.
    [91]焦艳平,康跃虎,万书勤,等.干旱区盐碱地滴灌土壤基质势对土壤盐分分布的影响[J].农业工程学报,2008,24(6):53-58.
    [92][英]E.W.腊塞尔著;谭世文,林振骐,郭公佑,等译.土壤条件与植物生长[M].北京:科学出版社,1979,577-592.
    [93]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988,5-6,25-30.
    [94]李冬顺,杨劲松,姚荣江.生态风险分析用于苏北滩涂土壤盐渍化风险评估研究[J].土壤学报,2010,47(5):857-864.
    [95]李建熹,侯乐.不同灌溉方法下保护地土壤盐分分布特征的研究[J].环境保护科学,2011,(3):48-51.
    [96]李开丽,陈杰,檀满枝,等.封丘县土壤盐分的演变特征研究[J].土壤,2010,42(6):966-971.
    [97]李玲,宋莹,陈胜华,等.矿区土壤环境修复[J].中国水土保持,2007,(4):22-24.
    [98]李明,张长利,房俊龙.基于图像处理技术的小麦叶面积指数的提取[J].农业工程学报,2010,26(1):205-209.
    [99]李新举,张志国.秸秆覆盖对土壤水分蒸发及土壤盐分的影响[J].土壤通报,1999,30(6):257-258.
    [100]刘广明,杨劲松,李冬顺.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,39(3):384-389.
    [101]刘广柱.利用黄河泥沙治理巨野煤田沉陷区初探[J].山东国土资源,2010,26(10):66-67.
    [102]刘建国,聂永丰,王洪涛.填埋场水分运移模拟实验研究[J].清华大学学报(自然科学版),2001,41(4/5):244-247.
    [103]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,35(2):68-78.
    [104]刘培陶,崔龙鹏,沈卫星,等.粉煤灰堆放场土壤环境微量元素分析与风险评价[J].农业环境科学学报,2008b,27(1):207-211.
    [105]刘庆生,刘高焕,赵军.土壤类型、质地和土地类型对土壤盐渍化水平的指示[J].中国农学通报,2008,24(1):297-300.
    [106]刘庆生,刘高焕,范晓梅.黄河三角洲土壤盐分剖面类型时空分布研究[J].山东农业科学,2010,1:57-62.
    [107]牟洪臣,虎胆·吐马尔白,苏里坦,等.不同耕种年限下土壤盐分变化规律试验研究[J].节水灌溉,2011,(8):29-32.
    [108]牟守国,董霁红,王辉,等.采煤塌陷地充填复垦土壤呼吸研究[J].中国矿业大学学报,2007,36(5):663-668.
    [109]单成钢,廖树华,龚宇,等.应用数字图像技术估测冬小麦冠层生物量垂直分布特征的研究[J].作物学报,2007,33(3):419-424.
    [110]尚松浩,毛晓敏,雷志栋,等.土壤水分动态模拟模型及其应用[M].北京:科学出版社,2009,1-6.
    [111]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006,62-64,90-94,110-111.
    [112]时唯伟,支月娥,王景,等.土壤次生盐渍化与微生物数量及土壤理化性质研究[J].水土保持学报,2009,23(6):166-170.
    [113]宋长春,邓伟,李取生.松嫩平原土壤次生盐渍化过程模型研究[J].水土保持学报,2002,16(5):23-26.
    [114]孙建书,余美.不同灌排模式下土壤盐分动态模拟与评价[J].干早地区农业研究,2011,29(4):157-163.
    [115][美]S.A.泰勒著;华孟,陈志雄,杨苑璋,等译.物理的土壤学—灌溉与非灌溉土壤的物理学[M].北京:农业出版社,1983,107-112.
    [116]谭军利,康跃虎,焦艳平,等.不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J].农业工程学报,2008,26(4):59-63.
    [117]王桂琴,郑丽敏,朱虹,等.图像处理技术在冬小麦叶面积指数测定中的应用[J].麦类作物学报,2004,24(4):108-112.
    [118]王辉,韩宝平,卞正富.充填复垦区土壤水分空间变异性研究[J].河南农业科学,2007,(7):67-70.
    [119]王辉,韩宝平,卞正富.充填复垦土壤水分竖直运动模拟研究[J].中国矿业大学学报,2007,36(5):690-695.
    [120]王煜琴,李新举,胡振琪,等.煤矿区复垦土壤压实时空变异特征[J].农业工程学报,2009,25(5):223-227.
    [121]王全九,邵明安,郑继勇.土壤中水分运动与溶质迁移[M].北京:中国水利水电出版社,2007,5-9,78-87.
    [122]王文焰,张建丰,汪志荣,等.波涌灌溉条件下土壤致密层的形成及其对入渗特性的影响[J].水利学报,1996(7):75-81.
    [123]王文焰,张建丰,汪志荣,等.黄土中砂层对入渗特性的影响[J].岩土工程学报,1995,17(5):33-41.
    [124]王香治.城市建筑垃圾资源化利用探讨[J].环境卫生工程,2012,20(2):49-52.
    [125]王仰仁,孙小平.山西农业节水理论与作物高效用水模式:供水不足条件下作物蒸发蒸腾量的计算[C].北京:中国科学技术出版社,2003,65-95.
    [126]王仰仁,孙书洪,叶澜涛,等.农田土壤水分二区模型的研究[J].水利学报,2009,40(8):904-909.
    [127]王云平,师学义,金志南,等.煤矿塌陷区不同复垦方法及年限土壤肥力变化研究[J].山西农业科学,1999,27(1):64-67.
    [128]王卓理,马建华,耿鹏旭,等.平顶山市煤矿塌陷区复垦土壤重金属分布及污染分析[J].农业环境科学学报,2009,28(4):668-672.
    [129]魏光辉,董新光,杨鹏年,等.棉花膜下滴灌土壤盐分运移规律分析[J].农业工程学报,2009,16(6):162-166.
    [130]魏忠义,胡振琪,白中科.露天煤矿排土场平台“堆状地面”土壤重构方法[J].煤炭学报,2001,26(1):19-22.
    [131]魏忠义,胡振琪,司继涛,等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J].农业环境保护,2002,21(1):13-15,18.
    [132]吴梦喜.饱和-非饱和土中渗流Richards方程有限元算法[J].水利学报,2009,40(10):1274-1279.
    [133]席琳乔,余建勇,张利莉.TDR技术测定盐碱地土壤盐分和水分及标定研究[J].塔里木大学学报,2007,19(3):6-10.
    [134][美]B.T.肖著;冯兆林译.土壤物理条件与植物生长[M].北京:科学出版社,1965,103-230.
    [135]徐建明,张甘霖,谢正苗,等.土壤质量指标与评价[M].北京:科学出版社,2010,89-167.
    [136]杨萍果,杨苗,毛任钊.海河低平原不同地貌土壤盐分特征研究[J].土壤,2011,43(2):285-288.
    [137]杨奇勇,杨劲松.基于GIS的土壤盐分空间变异及盐分监测样点合理布设研究[J].灌溉排水学报,2011a,30(2):10-14.
    [138]杨奇勇,杨劲松,刘广明.土壤盐分空间异质性的指示克里格阈值研究[J].灌溉排水学报,2011b,30(3):72-76.
    [139]杨玉建,杨劲松.典型潮土区土壤耕层盐分含量的趋势效应研究[J].灌溉排水学报,2004,23(6):10-13.
    [140]姚荣江,杨劲松,姜龙.黄河下游三角洲盐渍区表层土壤积盐影响因子及其强度分 析[J].土壤通报,2008,39(5):1116-1119.
    [141]查元源,周发超,杨金忠.一种由土壤剖面含水率估算土壤水力参数的方法[J].水利学报,2011,42(8):883-890.
    [142]张宾,赵明,董志强,等.作物高产群体LAI动态模拟模型的建立与检验[J].作物学报,2007,33(4):612-619.
    [143]张晶,崔龙鹏,唐修义.淮南平圩电厂粉煤灰中微量元素的迁移性评价[J].环境化学,2008,27:387-388.
    [144]章明奎.污染土壤中重金属的优势流迁移[J].环境科学学报,2005,25(2):192-197.
    [145]张乃明,武雪萍,谷晓滨,等.矿区复垦土壤养分变化趋势研究[J].土壤通报,2003,34(1):58-60.
    [146]赵秀芳,杨劲松,姚荣江.苏北典型滩涂区土壤盐分动态与水平衡要素之间的关系[J].农业工程学报,2010,26(3):52-57.
    [147]于君宝,刘景双,王金达,等.矿山复垦土壤典型元素时空变化研究[J].中国环境科学,2001,21(3):235-239.
    [148]于君宝,王金达,刘景双,等.矿山复垦土壤营养元素时空变化研究[J].土壤学报,2002,39(5):750-753.
    [149]周锦华,胡振琪,高荣久.矿山土地复垦与生态重建技术研究现状与展望[J].金属矿山,2007,(10):11-13.
    [150]周在明,张光辉,王金哲,等.环渤海低平原区土壤盐渍化风险的多元指示克立格评价[J].水利学报,2011,42(10):1144-1151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700