用户名: 密码: 验证码:
多功能金纳米核壳杂化材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于金纳米粒子(Au NPs)的研究已经有很悠久的历史,由于其独特的化学、物理、生物性能,被研究应用于催化、传感器、生物医药、能量转换存储等领域。特别是在催化方面,金纳米粒子的比表面积大,使其具有更高的利用效率。但是纳米粒子的小尺寸和高比表面能通常极易团聚从而降低性能。为了解决这一问题,将Au NPs固定在一些载体上,使材料具有更好的稳定结构和性能。同时为了进一步实现材料的简单回收和重复利用,制备磁性壳核微球固载的Au NPs,实现简单的磁可控分离。所以本课题在国家自然科学基金重点项目(基金编号:21236003)、自然科学基金(基金编号:20976054)、上海市科技创新项目(基金编号:09ZZ58)等的资助下,针对不同Au纳米壳核结构材料的特点,研究催化、电子传递、生物传感、SERS等领域内材料结构对应用性能的影响及作用机制,并完成了以下五个方面的工作:
     1.制备了多功能磁性复合微球,其尺寸、各成分的形态、表面化学可以被精确地控制,并可以通过各层组装形成壳核结构。Fe3O4@SiO2-LBL-Au(0)复合微球具有TiO2保护的磁性Fe3O4颗粒,在TiO2层表面通过层层静电自组装形成聚电解质包覆层,并通过原位生长合成活性Au纳米颗粒(约4nm)。所制备的复合微球具有高的磁性能(23.9emu g-1)、均匀的球型结构(约500nm)、表面固载有稳定活性的Au NPs。制备的复合微球由于其活性Au NPs对还原4-硝基苯酚的反应显示出高的催化活性(12min内转化95%以上),同时具有方便的磁性分离、优异的稳定性和良好的可重复性。其独特的纳米结构也可以使微球作为一种新型稳定、高效催化剂用于其他工业催化过程。
     2.设计制备了三明治结构的Fe3O4/SiO2/Au/TiO2光催化剂,该光催化剂具有磁分离性、高效选择性吸附/光催化特性,在可见光和模拟太阳光照射下可以光催化分解有机染料。设计的光催化剂具有致密、均匀的AuNPs(约4nm,1.63wt%)。由于非金属元素掺杂和Au NPs的等离子体共振特性使该光催化剂具有高效率的可见光催化活性。此外,锐钛矿型TiO2纳米晶体的晶粒尺寸较小,可以增强光的捕获和电荷分离,从而降低空穴和电子的复合率。更重要的是,通过界面控制可以使TiO2纳米晶颗粒暴露高活性{001}面,并可以利用表面修饰使光催化剂具有选择性吸附/光催化降解的性能。这些三明治结构的光催化剂可应用于其它催化体系如染料脱色、水分解、制氢等等。
     3.由于石墨烯优异的导电性和良好的生物相容性,使石墨烯在生物传感器中的应用变得越来越吸引人。但一个关键的挑战是如何获得组织结构良好多级结构石墨烯材料,同时在纳米尺度上控制构建大的结构材料也是发展纳米技术的基础和关键。为了解决这些问题,设计了一种新的制备方法,在外加磁场下将还原的氧化石墨烯封装的多功能磁性复合微球(rGOE-Ms)组装排列形成各向异性导电膜(ACF)。精心设计制备的rGOE-MS同时具有磁性和良好的电子传输性能。由于定向排列的rGOE-MS存在,所制备的ACF凝胶膜在其垂直方向的电阻率是水平方向的15倍以上。因此,此ACF可以扩展到其他应用领域,如化学/生物传感器、纳米电子器件等。
     4.设计制备了一种新的过氧化氢酶生物传感器载体材料,其结构是由连续的金纳米壳和Si02纤维核形成的核-壳杂化纤维。通过静电纺丝先制备Si02纤维,随后在纤维表面原位合成Au NPs种子,最后利用界面生长进一步形成连续的金壳包覆层。制备的SiO2@Au纤维具有优异的化学稳定性、生物相容性和高效率的电子传递特性,并可以潜在地应用于高灵敏化学或生物传感器。利用循环伏安法(CV)来评估SiO2@Au纳米纤维在ITO电极上的电化学性能。制备的H202酶传感器对于滴加的H202会产生一个快速的电流响应,其检测限约为2.0μmol L-1,线性范围为5μmol L-1至1.0mmol L-1。复合纤维形成的完整三维网络结构和Au纳米壳层的优异生物相容性有利于负载生物酶分子,并充当电子导线实现电子从酶活性中心到电极表面的直接传递,具有优异的电化学特性,并有望在其他生物传感中得到应用。
     5.Au和Ag的纳米结构具有表面增强拉曼散射(SERS)的特性,这种特性可以增强吸附在金属表面物质的拉曼信号。同时Au载体在水溶液中具有大的接触电位和高的生物相容性,使其在光谱电化学领域具有广泛的研究。但是Ag却比Au具有更广泛的应用光谱范围和SERS增强性能。所以本文设计制备了具有磁性核和Ag/Au双重特性的SERS基底材料。制备的Fe3O4@Ag/SiO2/Au复合微球具有粗糙的Au壳层表面和Ag-SiO2-Au的长程等离子耦合共振,使这种结构具有最强的SERS增强活性,对于RdB达到10-9M的检测限,其增强因子EF为2.2×104。制备的纳米结构可以作为稳定、灵敏和可重复使用的SERS基底。此外,低的信号干扰使这种材料可潜在地用于SERS传感器等领域。
Research in gold nanoparticles has been around for a long time, large number of Au nanoparticles exhibiting fantastic physical, chemical, and biological properties have been created and they demonstrate high potentials for biomedicine, catalysis, sensor, energy conversion, and so on. Especially, Au nanoparticles are attractive for catalysis because their large surface area-to-volume ratio allows effective utilization of expensive metals. In particular, gold nanoparticles are interesting because bulk gold is frequently an inactive catalyst, whereas gold nanoparticles are highly efficient catalytic. Moreover, variation of gold nanoparticle size sometimes allows control over catalytic activity. However, the high surface energy of nanoparticles with diameters in the low nanometer range often leads to aggregation and decreased catalytic activity. To overcome this problem, catalytic nanoparticles have been immobilized on solid supports, such as carbon, metal oxides, and zeolites, which also facilitates catalyst recycling. But these catalyst materials are sometimes separated by complex methods, and the separation is not sufficient. As an important family of separable materials, magnetic microspheres with magnetically responsive core and catalytic shell have gained much attention due to their unique separable features which makes it possible to realize controllable on-off reactions and convenient recycling of catalyst materials. And these core-shell nanostructure hybrid materials also can be used in catalyst, electron transfer, biosensors, SERS and so on. Main completed researchs are shown as follows:
     1. Multifunctional magnetic composite microspheres which possess the precise control of the size, morphology, surface chemistry, and assembly process of each component have been successfully prepared. These functional nanocomposite microspheres possess a core of silica-protected magnetite particles and in situ growth active gold nanoparticles (ca.4nm) on the outer shell by layer-by-layer electrostatic self-assembly. The well-designed microspheres have high magnetization (23.9emu g-1), uniform sphere size (ca.500nm), and stably confined and active small Au nanoparticles. As a result, the very little composite microspheres show high performance in catalytic reduction of4-nitrophenol (with conversion of95%in12min), special convenient magnetic separability, long life, and good reusability. The unique nanostructure makes the microsphere a novel stable and highly efficient catalyst system for various catalytic industry processes.
     2. We have demonstrated a sandwich-structured Fe3O4/SiO2/Au/TiO2photocatalyst, which shows magnetic separability, selective absorption and photocatalysis activity, and high efficiency, in catalyzing the decomposition of organic compounds under illumination of visible-light and simulated sunlight. The structural design of the photocatalyst takes advantage of the dense, homogeneous structure and the AuNPs content (ca.4nm,1.63wt%), which is prepared by a simple method. It possesses high efficiency visible-light photocatalytic activity due to the stable from nonmetal-doping and the plasmonic metal decoration, which enhances light harvesting and charge separation, and the small grain size of the anatase nanocrystals, which reduces the exciton recombination rate. More importantly, the catalyst is synthesized by a combination of plasmonic metal decoration of TiO2nanocrystals with exposed{001} face, and the selective adsorption and photocatalytic decomposition of azo dyes is accomplished by design of the surface chemistry. Additionally, these sandwich-structured photocatalysts can be applied to other catalytic system such as dye decoloration, water decomposition, hydrogen generation, and so on.
     3. Due to the fast electron transportation and good biocompatibility, the use of graphene in biosensors is becoming more and more appealing. But a key challenge is how to obtain well-organized2D or3D graphene structures to build larger objects, and the development of methods for controlling the organization of functional objects on a nanometre scale to build larger objects is of fundamental and technological interest. To overcome this problem, we demonstrate a novel strategy for the fabrication of the reduced graphene oxide-encapsulated multifunctional magnetic composite microspheres (rGOEMs)-based anisotropic conductive film (ACF). The well-designed rGOE-Ms possess both magnetization and good electron transport properties. Magnetic properties can be detected by their movement in the gel film under an external magnet. Most interestingly, the prepared gel film has displayed the existence of rGOE-Ms alignment and anisotropy in the ACF, and the electrical resistivity of the vertical ACF was almost fifteen times higher than the horizontal. Therefore, the ACF can be extended to various advanced applications, such as chemical/biosensors, nanoelectronics, and so on.
     4. We describe the preparation and characterization of a novel type of core-shell hybrid material for application in a novel hydrogen peroxide biosensor, where the structure consists of a continuous gold shell that encapsulates the silica fiber. The SiO2@Au nanofibers had been synthesized by electrospinning silica sol, and then golden seeds were in situ grown on the fiber, lastly the gold-seeded silica fibers were further coated by continuous gold shells. The above nanocomposites had satisfactory chemical stability, excellent biocompatibility and efficient electron transfer property, which may have potential application for the highly sensitive chemical or biological sensors. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the SiO2@Au nanocomposites at indium tin oxide (ITO). The biosensor showed high sensitivity and fast response upon the addition of H2O2and the linear range to H2O2was from5×10-6to1.0×10-3M with a detection limit of2μM (S/N=3). The apparent Michaelis-Menten constant of the biosensor was1.11mmol L-1. These results indicated that SiO2@Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.
     5. Noble metallic nanostructures exhibit a phenomenon known as surface-enhanced Raman scattering (SERS) in which the Raman scattering cross sections are dramatically enhanced for the molecules adsorbed thereon. Due to their wide accessible potential range in aqueous solutions and the high biocompatibility, Au supports are preferred for spectro-electrochemical investigations. However, the optical range in SERS spectroscopy is restricted to excitation lines above600nm, which is shorter than the Ag supports. In addition, these SERS-activity materials are not easy to separate and reused. Herein, the present article reports the novel multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres that display long-range plasmon transfer of Ag to Au leading to enhanced Raman scattering. The well-designed microspheres have high magnetization and uniform sphere size. As a result, Fe3O4@Ag/SiO2/Au microspheres have the best enhancement effect in the Raman active research by using Rhodamine-b (RdB) as a probe molecule. The enhancement factor is estimated to be2.2x104for RdB from the long-range plasmon transfer of Ag to Au, corresponding to an attenuation of the enhancement by a factor of only0.672x104compared to RdB adsorbed directly on the Fe3O4@Ag microspheres. RdB can be detected down to10-9M even without the resonance SERS effect. The unique nanostructure makes the microspheres novel stable and a high-enhancement effect for Raman detection.
引文
[1]Dreaden E C, Alkilany A M, Huang X, Murphy C J, EI-sayed M A. The golden age: gold nanoparticles for biomedicine [J]. Chem. Soc. Rev.2012,41:2740-2779.
    [2]Chen M S, Goodman D W. The Structure of Catalytically Active Gold on Titania [J]. Science.2004,306:252-255.
    [3]Valden M, Lai X, Goodman D. W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties [J]. Science.1998,281: 1647-1650.
    [4]Green I X, Tang W, Neurock M, Yates J T. Spectroscopic Observation of Dual catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst [J]. Science.2011,333:736-739.
    [5]Shaw C F. Gold-Based Therapeutic Agents [J]. Chem. Rev.1999,99:2589-2600.
    [6]Dreaden E C, Mackey M A, Huang X, Kang B, El-Sayed M A. Beating cancer in multiple ways using nanogold [J]. Chem. Soc. Rev.2011,40:3391-3404.
    [7]Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev.2005,105:1025-1102.
    [8]Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics [J]. Chem. Rev.2005,105: 1547-1562.
    [9]Nie S, Emory S R. Probing Single molecules and single nanoparticles by surfaceenhanced Rmnan scattering [J]. Science.1997,275:1102-1106.
    [10]Faraday M. The Bakerian Lecture:Experimental Relations of Gold (and Other Metals) to Light [J]. Philos. Trans. R. Soc. London.1857,147:145-181.
    [II]Mie G Beitrage zur Optik triiber Medien, speziell kolloidaler Metallosungen [J]. Ann. Phys.1908,25:377-445.
    [12]Knoll M, Ruska E. Das Elektronenmikroskop [J]. Z. Phys.1932,78:318-339.
    [13]Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss. Faraday Soc.1951,11:55-75.
    [14]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature.1973,241:20-22.
    [15]LaMer V K, Dinegar R H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols [J]. J. Am. Chem. Soc.1950,72:4847-4854.
    [16]Pong B -K, Elim H I, Chong J -X, Ji W, Trout B L, Lee J -Y. New insights on the nanoparticle growth mechanism in the citrate reduction of gold(Ⅲ) salt Formation of the Au nanowire intermediate and its nonlinear optical properties [J]. J. Phys. Chem. C. 2007,111:6281-6287.
    [17]Wang H, Halas N J. Mesoscopic Au "Meatball" Particles [J]. Adv. Mater.2008,20: 820-825.
    [18]Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis G H M, Velden J W A van der. Au55[P(C6H5)3]12CI6-ein Goldcluster ungewohnlicher Groβe [J]. Chem. Ber.1981, 114:3634-3642.
    [19]Weare W W, Reed S M, Warner M G, Hutchison J E. Improved Synthesis of Small (dCORE≈1.5 nm) Phosphine-Stabilized Gold Nanoparticles[J]. J. Am. Chem. Soc.2000, 122:12890-12891.
    [20]Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. Chem. Commun.1994: 801-802.
    [21]Shimizu T, Teranishi T, Hasegawa S, Miyake M. Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State [J]. J. Phys. Chem. B.2003,107:2719-2724.
    [22]Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage[J]. Small.2009,5:2067-2076.
    [23]Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-Dependent Cytotoxicity of Gold Nanoparticles [J]. Small. 2007,3:1941-1949.
    [24]Faulk W P, Taylor G M. Communication to the editors:An immunocolloid method for the electron microscope [J]. Immunochemistry.1971,8:1081-1083.
    [25]Holgate C S, Jackson P, Cowen P N, Bird C C. Immunogold-silver staining:new method of immunostaining with enhanced sensitivity [J]. J. Histochem. Cytochem. 1983,31:938-944.
    [26]Hainfeld J F, Slatkin D N, Focella T M, Smilowitz H M. Gold nanoparticles:a new X-ray contrast agent [J]. Br. J. Radiol.2006,79:248-253.
    [27]Hainfeld J F, Dilmanian F A, Zhong Z, Slatkin D N, Kalef-Ezra J A, Smilowitz H. M. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma [J]. Phys. Med. Biol.2010,55:3045.
    [28]Masuda H, Tanaka H, Baba N. Preparation of Porous Material by Replacing Microstructure of Anodic Alumina Film with Metal [J]. Chem. Lett.1990:621-622.
    [29]Martin C R. Template synthesis of polymeric and metal microtubules [J]. Adv. Mater. 1991,3:457-459.
    [30]Hartland G V. Optical studies of dynamics in noble metal nanostructures [J]. Chem. Rev. 2011,111:3858-3887.
    [31]Payne E K, Shuford K L, Park S, Schatz G C, Mirkin C A. Multipole Plasmon Resonances in Gold Nanorods [J]. J. Phys. Chem. B.2006,110:2150-2154.
    [32]Yu Y Y, Chang S S, Lee C L, Wang C R C. Gold Nanorods:Electrochemical Synthesis and Optical Properties [J]. J. Phys. Chem. B.1997,101(34):6661-6664.
    [33]Gans R. Uber die Form ultramikroskopischer Goldteilchen [J]. Ann. Phys.1912,342(5): 881-900.
    [34]Jana N R, Gearheart L, Murphy C J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template [J]. Adv. Mater.2001,13(18):1389-1393.
    [35]Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method [J]. Chem. Mater.2003,15(10): 1957-1962.
    [36]Sau T K, Murphy C J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution [J]. Langmuir.2004,20(15):6414-6420.
    [37]Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Shape control in gold nanoparticle synthesis [J]. Chem. Soc. Rev.2008,37:1783-1791.
    [38]Wang Z L, Mohamed M B, Link S, El-Sayed M A. Crystallographic facets and shapes of gold nanorods of different aspect ratios [J]. Surf. Sci.1999,440:L809-L814.
    [39]Carbo-Argibay E, Rodriguez-Gonzalez B, Pacifico J, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan L M. Chemical Sharpening of Gold Nanorods:The Rod-to-Octahedron Transition [J]. Angew. Chem., Int. Ed.2007,46(47):8983-8987.
    [40]Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis [J]. J. Mater. Chem. 2002,12:1765-1770.
    [41]Nikoobakht B, El-Sayed M A. Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods [J]. Langmuir,2001,17(20):6368-6374.
    [42]Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J, Alkilany A M, Sisco P N. Gold nanorod crystal growth:From seed-mediated synthesis to nanoscale sculpting [J]. Curr. Opin. Colloid Interface Sci.2011,16(2): 128-134.
    [43]Khanal B P, Zubarev E R. Purification of High Aspect Ratio Gold Nanorods:Complete Removal of Platelets[J]. J. Am. Chem. Soc.2008,130(38):12634-12635.
    [44]Aden A L, Kerker M. Scattering of Electromagnetic Waves from Two Concentric Spheres [J]. J. Appl. Phys.1951,22(10):1242-1246.
    [45]Oldenburg S J, Averitt R D, Westcott S L, Halas N J. Nanoengineering of optical resonances [J]. Chem. Phys. Lett.1998,288:243-247.
    [46]Brinson B E, Lassiter J B, Levin C S, Bardhan R, Mirin N, Halas N J. Nanoshells Made Easy:Improving Au Layer Growth on Nanoparticle Surfaces [J]. Langmuir.2008, 24(24):14166-14171.
    [47]Wang H, Brandl D W, Nordlander P, Halas N J. Plasmonic Nanostructures:Artificial Molecules[J]. Acc. Chem. Res.2006,40(1):53-62.
    [48]Chen J, McLellan J M, Siekkinen A, Xiong Y, Li Z-Y, Xia Y. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface [J]. J. Am. Chem. Soc. 2006,128(46):14776-14777.
    [49]Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y. Gold Nanocages: Synthesis, Properties, and Applications [J]. Acc. Chem. Res.2008,41(12):1587-1595.
    [50]Lu X, Au L, McLellan J, Li Z -Y, Marquez M, Xia Y. Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO3)3 or NH4OH [J]. Nano Lett.2007,7(6):1764-1769.
    [51]Liang Z, Susha A, Caruso F. Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof [J]. Chem. Mater.2003,15(16):3176-3183.
    [52]Liang H P, Wan L J, Bai C L, Jiang L. Gold Hollow Nanospheres:Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes [J]. J. Phys. Chem. B.2005, 109(16):7795-7800.
    [53]Kim F, Connor S, Song H, Kuykendall T, Yang P. Platonic Gold Nanocrystals [J]. Angew. Chem., Int. Ed.2004,43(28):3673-3677.
    [54]Sau T K, Murphy C J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution [J]. J. Am. Chem. Soc.2004,126(28): 8648-8649.
    [55]Seo D, Park J C, Song H. Polyhedral Gold Nanocrystals with Oh Symmetry:From Octahedra to Cubes [J]. J. Am. Chem. Soc.2006,128(46):14863-14870.
    [56]Seo D, Yoo C I, Park J C, Park S M, Ryu S, Song H. Directed Surface Overgrowth and Morphology Control of Polyhedral Gold Nanocrystals [J]. Angew. Chem., Int. Ed.2008, 47(4):763-767.
    [57]Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals [J]. J. Am. Chem. Soc.,2009,131(2):697-703.
    [58]Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. Concave Cubic Gold Nanocrystals with High-Index Facets [J]. J. Am. Chem. Soc.2010,132(40): 14012-14014.
    [59]Ming T, Feng W, Tang Q, Wang F, Sun L, Wang J, Yan C. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets [J]. J. Am. Chem. Soc.,2009,131(45): 16350-16351.
    [60]Personick M L, Langille M R, Zhang J, Harris N, Schatz G C, Mirkin C A. Synthesis and Isolation of{110}-Faceted Gold Bipyramids and Rhombic Dodecahedra [J]. J. Am. Chem. Soc.2011,133(16):6170-6173.
    [61]Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method [J]. Angew. Chem., Int. Ed.2008,47(46):8901-8904.
    [62]Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms [J]. Nat. Mater.2004,3:482-488.
    [63]Millstone J E, Park S, Shuford K L, Qin L, Schatz G C, Mirkin C A. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms [J]. J. Am. Chem. Soc.2005,127(15):5312-5313.
    [64]Liu X Y, Wang A, Zhang T, Mou C Y. Catalysis by gold:New insights into the support effect [J]. Nano Today.2013,8:403-416.
    [65]Park E D, Lee D, Lee H C. Recent progress in selective CO removal in a H2-rich stream [J]. Cata. Today.2009,139:280-290.
    [66]Liu K, Wang A Q, Zhang T. Recent Advances in Preferential Oxidation of CO Reaction over Platinum Group Metal Catalysts [J]. ACS Catal.2012,2(6):1165-1178.
    [67]McEwan L, Julius M, Roberts S, Fletcher J C Q. A review of the use of gold catalysts in selective hydrogenation reactions [J]. Gold Bull.2010,43(4):298-306.
    [68]Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts [J]. Angew. Chem., Int. Ed. 2011,50(34):7815-7819.
    [69]Wong M S, Alvarez P J J, Fang Y L, Akcin N, Nutt M O, Miller J T. Cleaner water using bimetallic nanoparticle catalysts [J]. J. Chem. Technol. Biotechnol.2009,84(2): 158-166.
    [70]Miah M R, Ohsaka T. Kinetics of oxygen reduction reaction at tin-adatoms-modified gold electrodes in acidic media [J]. Electrochim. Acta.2009,54:5871-5876.
    [71]Murray R W. Nanoelectrochemistry:Metal Nanoparticles, Nanoelectrodes, and Nanopores [J]. Chem. Rev.2008,108(7):2688-2720.
    [72]Bertelsen S, Jorgensen K A. Organocatalysis—after the gold rush [J]. Chem. Soc. Rev. 2009,38:2178-2189.
    [73]Wu P, Loh K P, Zhao X S. Supported Gold Catalysts for Selective Oxidation of Organics [J]. Sci. Adv. Mater.2011,3(6):970-983.
    [74]Vinod C P, Wilson K, Lee A F. Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols [J]. J. Chem. Technol. Biotechnol.2011,86(2): 161-171.
    [75]Katryniok B, Kimura H, Skrzynska E, Girardon J, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeiqnil F. Selective catalytic oxidation of glycerol:perspectives for high value chemicals [J]. Green Chem.2011,13:1960-1979.
    [76]Sohel S M A, Liu R S. Carbocyclisation of alkynes with external nucleophiles catalysed by gold, platinum and other electrophilic metals [J]. Chem. Soc. Rev.2009,38: 2269-2281.
    [77]Pina C D, Falletta E, Prati L, Rossi M. Selective oxidation using gold [J]. Chem. Soc. Rev.2008,37:2077-2095.
    [78]Gong J, Mullins C B. Surface Science Investigations of Oxidative Chemistry on Gold [J]. Acc. Chem. Res.2009,42(8):1063-1073.
    [79]Pina C D, Falletta E, Rossi M. Update on selective oxidation using gold [J]. Chem. Soc. Rev.2012,41:350-369.
    [80]Turner M, Golovko V B, Vaughan O P H, Abdulkin P, Berenguer-Murcia A, Tikhov M S, Johnson B F G, Lambert R M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters [J]. Nature.2008,454:981-983.
    [81]Yang X F, Wang A Q, Wang Y L, Zhang T, Li J. Unusual Selectivity of Gold Catalysts for Hydrogenation of 1,3-Butadiene toward cis-2-Butene:A Joint Experimental and Theoretical Investigation [J]. J. Phys. Chem. C.2010,114(7):3131-3139.
    [82]Hutchings G J, Brust M, Schmidbaur H. Gold-an introductory perspective [J]. Chem. Soc. Rev.2008,37:1759-1765.
    [83]Haruta M. When Gold Is Not Noble:Catalysis by Nanoparticles[J]. Chem. Rec.2003, 3(2):75-87.
    [84]Bond G C, Thompson D T. Gold-catalysed oxidation of carbon monoxide[J]. Gold Bull. 2000,33(2):41-50.
    [85]Bond G, Thompson D. Formulation of mechanisms for gold-catalysed reactions [J]. Gold Bull.2009,42(4):247-259.
    [86]Guzman J, Carrettin S, Corma A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2 [J]. J. Am. Chem. Soc.2005,127(10):3286-3287.
    [87]Li L, Wang A Q, Qiao B, Lin J, Huang Y, Wang X, Zhang T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation:Direct evidence for a redox mechanism [J]. J. Catal.2013,299:90-100.
    [88]Daniells S, Overweg A R, Makkee M, Moulijn J A. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts:a combined Mossbauer, FT-IR, and TAP reactor study [J]. J. Catal.2005,230(1):52-65.
    [89]Date M, Okumura M, Tsubota S, Haruta M. Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles [J]. Angew. Chem. Int. Ed.2004,43(16): 2129-2132.
    [90]Haruta M. Spiers Memorial Lecture Role of perimeter interfaces in catalysis by gold nanoparticles [J]. Faraday Discuss.2011,152:11-32.
    [91]Widmann D, Behm R J. Active Oxygen on a AuTiO2 Catalyst Formation, Stability, and CO Oxidation Activity [J]. Angew. Chem. Int. Ed.2011,50(43):10241-10245.
    [92]Gao F, Sheble G B. Electricity market equilibrium model with resource constraint and transmission congestion [J]. Catal. Lett.2010,80(1):9-18.
    [93]Fujitani T, Nakamura I. Mechanism and Active Sites of the Oxidation of CO over Au/TiO2 [J]. Angew. Chem. Int. Ed.2011,50(43):10144-10147.
    [94]Kim K J, Chung M C, Ahn H G. Effect of Water Addition on Catalytic Activity of Nanosized Gold Catalysts for CO Oxidation [J]. J. Nanosci. Nanotechnol.2011,11(8): 7471-7474.
    [95]Brown M A, Fujimori Y, Ringleb F, Shao X, Stavale F, Nilius N, Sterrer M, Freund H J. Oxidation of Au by Surface OH:Nucleation and Electronic Structure of Gold on Hydroxylated MgO(001) [J]. J. Am. Chem. Soc.2011,133(27):10668-10676.
    [96]Fierro-Gonzalez J C, Gates B C. Evidence of active species in CO oxidation catalyzed by highly dispersed supported gold [J]. Catal. Today.2007,122:201-210.
    [97]Kung M C, Davis R J, Kung H H. Understanding Au-Catalyzed Low-Temperature CO Oxidation [J]. J. Phys. Chem. C.2007,111(32):11767-11775.
    [98]Cies J M, Delgado J J, Lopez-Haro M, Pilasombat R, Perez-Omil J A, Trasobares S, Bernal S, Calvino J J. Contributions of Electron Microscopy to Understanding CO Adsorption on Powder Au/Ceria-Zirconia Catalysts [J]. Chem. Eur. J.2010,16(31): 9536-9543.
    [99]Green I X, Tang W, Neurock M, Yates J T. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst [J]. Science.2011,333(6043): 736-739.
    [100]Green I X, Tang W, McEntee M, Neurock M, Yates J T. Inhibition at Perimeter Sites of Au/TiO2 Oxidation Catalyst by Reactant Oxygen [J]. J. Am. Chem. Soc.2012,134(30): 12717-12723.
    [101]Uchiyama T, Yoshida H, Kuwauchi Y, Ichikawa S, Shimada S, Haruta M, Takeda S. Systematic Morphology Changes of Gold Nanoparticles Supported on CeO2 during CO Oxidation [J]. Angew. Chem. Int. Ed.2011,50(43):10157-10160.
    [102]Kuwauchi Y, Yoshida H, Akita T, Haruta M, Takeda S. Intrinsic catalytic structure of gold nanoparticles supported on TiO2 [J]. Angew. Chem. Int. Ed.2012,51(31): 7729-7733.
    [103]Yoshida H, Kuwauchi Y, Jinschek J R, Sun K J, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S. Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions [J]. Science.2012,335(6066): 317-319.
    [104]Ta N, Liu J J, Chenna S, Crozier P A, Li Y, Chen A, Shen W. Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring [J]. J. Am. Chem. Soc.2012,134(51):20585-20588.
    [105]Akita T, Kohyama M, Haruta M. Electron Microscopy Study of Gold Nanoparticles Deposited on Transition Metal Oxides[J]. Acc. Chem. Res.2013,46(8):1773-1782.
    [106]Cosandey F, Madey T E. Growth, morphology, interfacial effects and catalytic properties of Au on TiO2 [J]. Surf. Rev. Lett.2001,8:73-93.
    [107]Akita T, Tanaka K, Tsubota S, Haruta M. Analytical High-resolution TEM Study of Supported Gold Catalysts:Orientation Relationship between Au Particles and TiO2 supports [J]. J. Electron Microsc.2000,49:657-662.
    [108]Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M. TEM Observation of Gold Nanoparticles Deposited on Cerium Oxide [J]. J. Mater. Sci.2005,40:3101-3106.
    [109]Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation [J]. Science.2008, 321(5894):1331-1335.
    [110]Molina L M, Hammer B. Some recent theoretical advances in the understanding of the catalytic activity of Au [J]. Appl. Catal. A:Gen.2005,291:21-31.
    [111]Ishida T, Haruta M. Gold Catalysts:Towards Sustainable Chemistry [J]. Angew. Chem. Int. Ed.2007,46(38):7154-7156.
    [112]Prati L, Villa A, Lupini A R, Veith G M. Gold on carbon:one billion catalysts under a single label [J]. Phys. Chem. Chem. Phys.2012,14:2969-2978.
    [113]Yoon B, Hakkinen H, Landman U, Worz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO [J]. Science.2005,307(5708):403-407.
    [114]Lin H P, Chi Y S, Lin J N, Mou C Y, Wan B Z. Direct synthesis of MCM-41 mesoporous aluminosilicates containing Au nanoparticles in aqueous solution [J]. Chem. Lett.2001,11:1116-1117.
    [115]Liu J H, Chi Y S, Lin H P, Mou C Y, Wan B Z. Design of a high-performance catalyst for CO oxidation:Au nanoparticles confined in mesoporous aluminosilicate [J]. Catal. Today.2004,93-95:141-147.
    [116]Daniel M C, Astruc D, Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev.2004,104(1):293-346.
    [117]Chiang C W, Wang A Q, Mou C Y. CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15:Pretreatment methods [J]. Catal. Today.2006,117(1-3):220-227.
    [118]Chi Y S, Lin H P, Mou C Y. CO oxidation over gold nanocatalyst confined in mesoporous silica [J]. Appl. Catal. A:Gen.2005,284(1-2):199-206.
    [119]Chiang C W, Wang A Q, Wan B Z, Mou C Y. High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures [J]. J. Phys. Chem. B.2005,109(38):18042-18047.
    [120]Liu X Y, Li Y N, Lee J W, Hong C Y, Mou C Y, Jang B W L. Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au-Ag bimetallic catalyst [J]. Appl. Catal. A:Gen.2012,439:8-14.
    [121]Liu X Y, Mou C Y, Lee S, Li Y, Secrest J, Jang B W L. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene [J]. J. Catal.2012,285(1):152-159.
    [122]Zanella R, Sandoval A, Santiago P, Basiuk V A, Saniger J M. New Preparation Method of Gold Nanoparticles on SiO2 [J]. J. Phys. Chem. B.2006,110(17):8559-8565.
    [123]Zhu H, Liang C, Yan W, Overbury S H, Dai S. Preparation of Highly Active Silica-Supported Au Catalysts for CO Oxidation by a Solution-Based Technique [J]. J. Phys. Chem. B.2006,110(22):10842-10848.
    [124]Li H, Zheng Z, Cao M, Cao R. Stable gold nanoparticle encapsulated in silica-dendrimers organic-inorganic hybrid composite as recyclable catalyst for oxidation of alcohol [J]. Microporous Mesoporous Mater.2010,136(1-3):42-49.
    [125]Yin H, Wang C, Zhu H, Overbury S H, Sun S, Dai S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles [J]. Chem. Commun.2008,36:4357-4359.
    [126]Perez-Cabero M, Haskouri J E, Solsona B, Vazquez I, Dejoz A, Garcia T, Alvarez-Rodriguez J, Beltran A, Beltran D, Amoros P. Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials [J]. J. Mater. Chem.2010, 20:6780-6788.
    [127]Qian K, Huang W, Jiang Z, Sun H. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive [J]. J. Catal.2007,248(1):137-141.
    [128]Ma G, Binder A, Chi M, Liu C, Jin R, Jiang D, Fan J, Dai S. Stabilizing gold clusters by heterostructured transition-metal oxide-mesoporous silica supports for enhanced catalytic activities for CO oxidation [J]. Chem. Commun.2012,48:11413-11415.
    [129]Yan W, Chen B, Mahurin S M, Hagaman E W, Dai S, Overbury S H. Surface Sol-Gel Modification of Mesoporous Silica Materials with TiO2 for the Assembly of Ultrasmall Gold Nanoparticles [J]. J. Phys. Chem. B.2004,108(9):2793-2796.
    [130]Tai Y, Tajiri K. Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts[J]. Appl. Catal. A:Gen.2008, 342(1-2):113-118.
    [131]Somodi F, Borbath I, Hegedus M, Tompos A, Sajo IE, Szegedi A, Rojas S, Fierro J L G, Margitfalvi J L. Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation [J]. Appl. Catal. A:Gen.2008,347(2):216-222.
    [132]Wu S H, Tseng C T, Lin Y S, Lin C H, Hung Y, Mou C Y. Catalytic nano-rattle of Au@hollow silica:towards a poison-resistant nanocatalyst [J]. J. Mater. Chem.2011, 21:789-794.
    [133]Lin C H, Liu X Y, Wu S H, Liu K H, Mou C Y. Corking and Uncorking a Catalytic Yolk-Shell Nanoreactor:Stable Gold Catalyst in Hollow Silica Nanosphere [J]. J. Phys. Chem. Lett.2011,2(23):2984-2988.
    [134]Ma Z, Dai S. Development of novel supported gold catalysts:A materials perspective [J].Nano Res.2011,4(1):3-32.
    [135]Galeano C, Guttel R, Paul M, Arnal P, Lu A H, Schiith F. Yolk-Shell Gold Nanoparticles as Model Materials for Support-Effect Studies in Heterogeneous Catalysis:Au,@C and Au,@ZrO2 for CO Oxidation as an Example [J]. Chem. Eur. J. 2011,17(30):8434-8439.
    [136]Lee I, Joo J B, Yin Y, Zaera F. A Yolk@Shell Nanoarchitecture for Au/TiO2 Catalysts [J]. Angew. Chem. Int. Ed.2011,50(43):10208-10211.
    [137]Zhang Q, Lee I, Joo J B, Zaera F, Yin Y. Core-shell Nanostructured Catalysts[J]. Acc. Chem. Res.2013,46(8):1816-1824.
    [138]Zaera F. New Challenges in Heterogeneous Catalysis for the 21st Century [J]. Catal. Lett.2012,142:501-516.
    [139]Xiong Y, Wiley B J, Xia Y. Nanocrystals with Unconventional Shapes-a Class of Promising Catalysts [J]. Angew. Chem. Int. Ed.2007,46:7157-7159.
    [140]Tao A R, Habas S, Yang P. Shape Control of Colloidal Metal Nanocrystals [J]. Small. 2008,4:310-325.
    [141]Albiter M, Crooks R, Zaera F. Adsorption of Carbon Monoxide on Dendrimer-Encapsulated Platinum Nanoparticles:Liquid Versus Gas Phase [J]. J. Phys. Chem. Lett.2010,1:38-40.
    [142]Pernicone N. Catalysis at the Nanoscale Level [J]. CATTECH.2003,7:196-204.
    [143]Somorjai G A, Tao F, Park J Y. The Nanoscience Revolution:Merging of Colloid Science, Catalysis and Nanoelectronics [J]. Top. Catal.2008,47:1-14.
    [144]Bell A T. The Impact of Nanoscience on Heterogeneous Catalysis [J]. Science.2003, 299:1688-1691.
    [145]Lee I, Morales R, Albiter M A, Zaera F. Synthesis of Heterogeneous Catalysts with Well Shaped Platinum Particles to Control Reaction Selectivity [J]. Proc. Natl. Acad. Sci. U.S.A.2008,105:15241-15246.
    [146]Lee I, Delbecq F, Morales R, Albiter M A, Zaera F. Tuning Selectivity in Catalysis by Controlling Particle Shape [J]. Nat. Mater.2009,8:132-138.
    [147]Grunes J, Zhu J, Somorjai G A. Catalysis and Nanoscience [J]. Chem. Commun.2003: 2257-2260.
    [148]Bartholomew C H. Mechanisms of Catalyst Deactivation [J]. Appl. Catal. A.2001,212: 17-60.
    [149]Hutchings G J, Haruta M. A Golden Age of Catalysis:A Perspective [J]. Appl. Catal. A. 2005,291:2-5.
    [150]Zhang Q, Lee I, Ge J, Zaera F, Yin Y. Surface-Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts [J]. Adv. Funct. Mater.2010,20: 2201-2214.
    [151]Lu J, Fu B, Kung M C, Xiao G, Elam J W, Kung H H, Stair P C. Coking- and Sintering-Resistant Palladium Catalysts Achieved through Atomic Layer Deposition [J]. Science.2012,335:1205-1208.
    [152]Schartl W. Current Directions in Core-Shell Nanoparticle Design [J]. Nanoscale.2010, 2:829-843.
    [153]Yin Y, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect [J]. Science.2004, 304:711-714.
    [154]Zhu Y, Shen J, Zhou F, Chen C, Yang X, Li C. Multifunctional Magnetic Composite Microspheres with in Situ Growth Au Nanoparticles:A Highly Efficient Catalyst System [J]. J. Phys. Chem. C.2011,115(5):1614-1619.
    [155]Chen C, Fang X, Wu B, Huang L, Zheng N. A Multi-Yolk-Shell Structured Nanocatalyst Containing Sub-10 nm Pd Nanoparticles in Porous CeO2 [J]. ChemCatChem.2012,4:1578-1586.
    [156]Zhang Q, Lima D Q, Lee I, Zaera F, Chi M, Yin Y. A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration [J]. Angew. Chem. Int. Ed.2011,50:7088-7092.
    [157]Zaera F. Outstanding Mechanistic Questions in Heterogeneous Catalysis [J]. J. Phys. Chem. B.2002,106:4043-4052.
    [158]Kim S H, Yin Y, Alivisatos A P, Somorjai G A, Yates J T. IR Spectroscopic Observation of Molecular Transport through Pt@CoO Yolk-Shell Nanostructures [J]. J. Am. Chem. Soc.2007,129:9510-9513.
    [159]Liang X, Li J, Joo J B, Gutierrez A, Tillekaratne A, Lee I, Yin Y, Zaera F. Diffusion through the Shells of Yolk-Shell and Core-Shell Nanostructures in the Liquid Phase [J]. Angew. Chem. Int. Ed.2012,51:8034-8036.
    [160]Zaera F. Infrared Absorption Spectroscopy of Adsorbed CO:New Applications in Nanocatalysis for an Old Approach [J]. ChemCatChem.2012,4:1525-1533.
    [161]Lee I, Zhang Q, Ge J, Yin Y, Zaera F. Encapsulation of Supported Pt Nanoparticles with Mesoporous Silica for Increased Catalyst Stability [J]. Nano Res.2011,4:115-123.
    [162]Zhang Q, Zhang T, Ge J, Yin Y. Permeable Silica Shell through Surface-Protected Etching [J]. Nano Lett.2008,8:2867-2871.
    [163]Graciani J, Nambu A, Evans J, Rodriguez J A, Sanz J F. Au-N Synergy and N-Doping of Metal Oxide-Based Photocatalysts [J]. J. Am. Chem. Soc.2008,130(36): 12056-12063.
    [164]Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L, Chen Z, Yin Y. Magnetically Recoverable Core-Shell Nanocomposites with Enhanced Photocatalytic Activity [J]. Chem. Eur. J. 2010,16:6243-6250.
    [165]Anpo M, Shima T, Kodama S, Kubokawa Y. Photocatalytic Hydrogenation of Propyne with Water on Small-Particle Titania:Size Quantization Effects and Reaction Intermediates [J]. J. Phys. Chem.1987,91(16):4305-4310.
    [166]Lim J K, Majetich S A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging [J]. Nano Today.2013,8:98-113.
    [167]Lim J K, Tilton R D, Eggeman A, Majetich S A. Design and synthesis of plasmonic magnetic nanoparticles [J]. J. Magn. Magn. Mater.2007,311(1):78-83.
    [168]Goon I Y, Leo M H, Lim M, Munroe P, Gooding J J, Amal R. Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles:Systematic Control Using Polyethyleneimine [J]. Chem. Mater.2009,21(4):673-681.
    [169]Lim J K, Majetich S A, Tilton R D. Stabilization of Superparamagnetic Iron Oxide Core-Gold Shell Nanoparticles in High Ionic Strength Media [J]. Langmuir.2009, 25(23):13384-13393.
    [170]Lim J K, Tilton R D, Eggeman A, Lanni F, Majetich S A. Synthesis and Single-Particle Optical Detection of Low-Polydispersity Plasmonic-Superparamagnetic Nanoparticles [J]. Adv. Mater.2008,20(9):1721-1726.
    [171]Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic Enhancement of Molecular Fluorescence [J]. Nano Lett.2007,7(2):496-501.
    [172]Seino S, Kinoshita T, Otome Y, Nakagawa T, Okitsu K, Mizukoshi Y, Nakayama T, Sekino T, Niihara K, Yamamoto T A. Gamma-ray synthesis of magnetic nanocarrier composed of gold and magnetic iron oxide [J]. J. Magn. Magn. Mater.2005,293(1): 144-150.
    [173]Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y. Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation [J]. ACS Nano.2007,1(4):293-298.
    [174]Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S. Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles [J]. Nano Lett.2005,5(2):379-382.
    [175]Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, Zhao W, Liu X, Liu C, Shi J. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy [J]. Adv. Mater.2011, 23(45):5392-5397.
    [176]Robinson I, Tung L D, Maenosono S, Walti C, Thanh N T K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA [J]. Nanoscale.2010,2:2624-2630.
    [177]Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A P. Gold/Iron Oxide Core/Hollow-Shell Nanoparticles [J]. Adv. Mater.2008,20(22):4323-4329.
    [178]Gole A, Stone J W, Gemmill W R, Loye H C, Murphy C J. Iron Oxide Coated Gold Nanorods:Synthesis, Characterization, and Magnetic Manipulation [J]. Langmuir.2008, 24(12):6232-6237.
    [179]Kinoshita T, Seino S, Mizukoshi Y, Nakagawa T, Yamamoto T A. Functionalization of magnetic gold/iron-oxide composite nanoparticles with oligonucleotides and magnetic separation of specific target [J]. J. Magn. Magn. Mater.2007,311(1):255-258.
    [180]Wang C, Yin H, Dai S, Sun S. A General Approach to Noble Metal-Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation [J]. Chem. Mater.2010,22(10):3277-3282.
    [181]Zhou W L, Carpenter E E, Lin J, Kumbhar A, Sims J, O'Connor C J. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field [J]. Eur. Phys. J. D.2001,16(1):289-292.
    [182]Mikhaylova M, Kim D K, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M. Superparamagnetism of Magnetite Nanoparticles:Dependence on Surface Modification [J]. Langmuir.2004,20(6):2472-2477.
    [183]Cho S J, Idrobo J C, Olamit J, Liu K, Browning N D, Kauzlarich S M. Growth Mechanisms and Oxidation Resistance of Gold-Coated Iron Nanoparticles [J]. Chem. Mater.2005,17(12):3181-3186.
    [184]Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter E E, O'Connor C J. Gold-Coated Iron (Fe@Au) Nanoparticles:Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly [J]. J. Solid State Chem.2001,159(1):26-31.
    [185]Cho S J, Kauzlarich S M, Olamit J, Liu K, Grandjean F, Rebbouh L, Long G J. Characterization and magnetic properties of core/shell structured Fe/Au nanoparticles [J]. J. Appl. Phys.2004,95:6804.
    [186]Cho S J, Shahin A M, Long G J, Davies J E, Liu K, Grandjean F, Kauzlarich S M. Magnetic and Mossbauer Spectral Study of Core/Shell Structured Fe/Au Nanoparticles [J]. Chem. Mater.2006,18(4):960-967.
    [187]Lo C K, Xiao D, Choi M M F. Homocysteine-protected gold-coated magnetic nanoparticles:Synthesis and characterization [J]. J. Mater. Chem.2007,17(23): 2418-2427.
    [188]Wang L, Luo J, Fan Q, Suzuki M, Suzuki I S, Engelhard M H, Lin Y, Kim N, Wang J Q, Zhong C J. Monodispersed Core-Shell Fe3O4@Au Nanoparticles [J]. J. Phys. Chem. B. 2005,109(46):21593-21601.
    [189]Wang L, Kong L, Wu F, Bai Y, Burton R. Preventing chronic diseases in China[J]. Lancet.2005,366(9499):1821-1824.
    [190]Park H Y, Schadt M J, Wang L, Lim I S, Njoki P N, Kim S H, Jang M Y, Luo J, Zhong C J. Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation [J]. Langmuir.2007,23(17):9050-9056.
    [191]Song H M, Wei Q, Ong Q K, Wei A. Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores:Synthesis and Magnetomotive Imaging [J]. ACS Nano.2010, 4(9):5163-5173.
    [192]Xu Z, Hou Y, Sun S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties [J]. J. Am. Chem. Soc.2007,129(28):8698-8699.
    [193]Levin C S, Hofmann C, Ali T A, Kelly A T, Morosan E, Nordlander P, Whitmire K H, Halas N J. Magnetic-Plasmonic Core-Shell Nanoparticles [J]. ACS Nano.2009,3(6): 1379-1388.
    [194]Lim J K, Tan D X, Lanni F, Tilton R D, Majetich S A. Optical imaging and magnetophoresis of nanorods [J]. J. Magn. Magn. Mater.2009,321(10):1557-1562.
    [195]Lacatusu I, Badea N, Nita R, Giurginca M, Bojin D, Iosub I, Meghea A. Synthesis of high fluorescent silica hybrid materials by immobilization of orange peel extract in silica-silsesquioxane matrix [J]. J. Phys. Org. Chem.2009,22(11):1015-1021.
    [196]Ermakova M A, Ermakov D Y, Kuvshinov G G, Fenelonov V B, Salanov A N. Synthesis of high surface area silica gels using porous carbon matrices [J]. J. Porous Mater.2000,7(4):435-441.
    [197]Lee I, M. Albiter A, Zhang Q, Ge J, Yin Y, Zaera F. New nanostructured heterogeneous catalysts with increased selectivity and stability [J]. Phys. Chem. Chem. Phys.2011, 13(7):2449-2456.
    [198]Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:A Highly Integrated Catalyst System [J]. J. Am. Chem. Soc.2010, 132(24):8466-8473.
    [199]Lee S S, Riduan S N, Erathodiyil N, Lim J, Cheong J L, Cha J, Han Y, Ying J.Y. Magnetic Nanoparticles Entrapped in Siliceous Mesocellular Foam:A New Catalyst Support [J]. Chem.-A Eur. J.2012,18(24):7394-7403.
    [200]Zhang D, Zhou C, Sun Z, Wu L Z, Tung C H, Zhang T. Magnetically recyclable nanocatalysts (MRNCs):a versatile integration of high catalytic activity and facile recovery [J]. Nanoscale.2012,4:6244-6255.
    [201]Ge J, Zhang Q, Zhang T, Yin Y. Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell:Controllable Reactivity, High Stability, and Magnetic Recyclability [J]. Angew. Chem., Int. Ed.2008,47(46):8924-8928.
    [202]Kim J, Lee J E, Lee J, Jang Y, Kim S W, An K, Yu J H, Hyeon T. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angew. Chem., Int. Ed.2006,45(29):4789-4793.
    [203]Ge J, Huynh T, Hu Y, Yin Y. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports [J]. Nano Lett.2008,8(3):931-934.
    [204]Pelisson C H, Vono L L R, Hubert C, Denicourt-Nowicki A, Rossi L M, Roucoux A. Moving from surfactant-stabilized aqueous rhodium (0) colloidal suspension to heterogeneous magnetite-supported rhodium nanocatalysts:Synthesis, characterization and catalytic performance in hydrogenation reactions [J]. Catal. Today,2012,183(1): 124-129.
    [205]Li X, Liu Y, Xu Z, Yan H. Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer [J]. Eur. Polym.J.2011,47(10):1877-1884.
    [206]Yuan D, Zhang Q, Dou J. Supported nanosized palladium on superparamagnetic composite microspheres as an efficient catalyst for Heck reaction [J]. Catal. Commun. 2010,11(7):606-610.
    [207]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science. 1996,271(5251):933-937.
    [208]Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers[J]. Science.2001,292(5523): 1897-1899.
    [209]Deng Y H, Wang C C, Shen X Z, Yang W L, Jin L, Gao H, Fu S K. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells[J]. Chem.-A Eur. J. 2005,11(20):6006-6013.
    [210]Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science.2006,312(5771):242-246.
    [211]Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science.1998,281(5376): 538-540.
    [212]Ye W C, Yan J F, Ye Q, Zhou F. Template-Free and Direct Electrochemical Deposition of Hierarchical Dendritic Gold Microstructures:Growth and Their Multiple Applications [J]. J. Phys. Chem. C.2010,114(37):15617-15624.
    [213]Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution[J]. Langmuir 2002,18(12):4921-4925.
    [214]Zhao M, Sun L, Crooks R M. Preparation of Cu nanoclusters within dendrimer templates [J]. J. Am. Chem. Soc.1998,120(19):4877-4878.
    [215]Dotzauer D A, Bhattacharjee S, Wen Y. Nanoparticle-Containing Membranes for the Catalytic Reduction of Nitroaromatic Compounds [J]. Langmuir 2009,25(3): 1865-1871.
    [216]Mamedov A A, Belov A, Giersig M, Mamedova N N, Kotov N A. Nanorainbows: Graded semiconductor films from quantum dots [J]. J. Am. Chem. Soc.2001,123(31): 7738-7739.
    [217]Feldheim D L, Grabar K C, Natan M J, Mallouk T E. Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures [J]. J. Am. Chem. Soc.1996,118(32):7640-7641.
    [218]Decher G. Fuzzy nanoassemblies Toward layered polymeric multicomposites [J]. Science.1997,277(5330):1232-1237.
    [219]Wang T C, Rubner M F, Cohen R E. Manipulating nanoparticle size within polyelectrolyte multilayers via electroless nickel deposition [J]. Chem. Mater.2003, 15(1):299-304.
    [220]Ballarin B, Cassani M C, Tonelli D, Boanini E, Albonetti S, Blosi M, Gazzano M. Gold Nanoparticle-Containing Membranes from in Situ Reduction of a Gold(Ⅲ)-Aminoethylimidazolium Aurate Salt [J]. J. Phys. Chem. C.2010,114(21): 9693-9701.
    [221]Deng Y H, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L J, Huang Y, Liu C, Wu X J, Zhao D Y. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene [J]. J. Am. Chem. Soc.2007,129(6):1690-1697.
    [222]Li L, Feng Y J, Li Y S, Zhao W R, Shi J L. Fe3O4 Core/Layered Double Hydroxide Shell Nanocomposite:Versatile Magnetic Matrix for Anionic Functional Materials [J]. Angew. Chem. Int. Ed.2009,48(32):5888-5892.
    [223]Kang H K, Zhu Y H, Yang X L, Shen J H, Chen C, Li C Z. Gold/mesoporous silica-fiber core-shell hybrid nanostructure:a potential electron transfer mediator in a bio-electrochemical system [J]. New J. Chem.2010,34(10):2166-2175.
    [224]Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles [J]. Langmuir.2001,17(5):1800-1802.
    [225]Pradhan N, Pal A, Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds [J]. Colloid Surf. A.2002,196:247-257.
    [226]Ghosh S K, Mandal M, Kundu S, Nath S, Pal T. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution [J]. Appl. Catal. A.2004,268:61-66.
    [227]Dubas S T, Schlenoff J B. Polyelectrolyte multilayers containing a weak polyacid: Construction and deconstruction [J]. Macromolecules.2001,34(11):3736-3740.
    [228]Kharlampieva E, Sukhishvili S A. Ionization and pH stability of multilayers formed by self-assembly of weak polyelectrolytes [J]. Langmuir.2003,19(4):1235-1243.
    [229]Kohli P, Wharton J E, Braide O, Martin C R. Template synthesis of gold nanotubes in an anodic alumina membrane[J]. J. Nanosci. Nanotechnol.2004,4(6):605-610.
    [230]Wee J H, Lee K Y, Kim S H. Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems [J]. Fuel Process. Technol.2006,87(9):811-819.
    [231]Murdoch M, Waterhouse G I N, Nadeem M A, Metson J B, Keane M A, Howe R F, Llorca J, Idriss H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nat. Chem.2011, 3(6):489-492.
    [232]Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nat. Mater.2011,10(12):911-921.
    [233]Primo A, Corma A, Garcia H. Titania supported gold nanoparticles as photocatalyst [J]. Phys. Chem. Chem. Phys.2011,13(3):886-910.
    [234]Lu Y, Lin Y, Wang D, Wang L, Xie T, Jiang T. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties [J]. Nano Res.2011,4(11):1144-1152.
    [235]Brezova V, Blazkova A, Karpinsky L, Groskova J, Havlinova B, Jorik V, Ceppan M. Phenol decomposition using Mn+/Ti02 photocatalysts supported by the sol-gel technique on glass fibres [J]. J. Photochem. Photobiol. A.1997,109(2):177-183.
    [236]Chen X, Liu L, Yu P Y, Mao S S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J]. Science.2011,331(6018): 746-750.
    [237]Hoffmann M R, Martin S T, Choi W, Bahnemann D. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev.1995,95(1):69-96.
    [238]Graciani J, Alvarez L J, Rodriguez J A, Sanz J F. N doping of rutile TiO2 (110) surface. A theoretical DFT study [J]. J. Phys. Chem. C.2008,112(7):2624-2631.
    [239]Naya S, Inoue A, Tada H. Self-Assembled Heterosupramolecular Visible Light Photocatalyst Consisting of Gold Nanoparticle-Loaded Titanium(IV) Dioxide and Surfactant[J]. J. Am. Chem. Soc.,2010,132(18):6292-6293.
    [240]Al-Mazroai L S, Bowker M, Davies P, Dickinson A, Greaves J, James D, Millard L. The photocatalytic reforming of methanol [J]. Catal. Today,2007,122:46-50.
    [241]Guo Z, Shao C, Zhang M, Mu J, Zhang Z, Chen B, Liu Y. Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst [J]. J. Mater. Chem.2011,21(32):12083-12088.
    [242]Lou X W, Archer L A, Yang Z., Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.,2008,20(21):3987-4019.
    [243]Liu S, Yu J, Jaroniec M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets [J]. J. Am. Chem. Soc.2010,132(34):11914-11916.
    [244]Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? [J]. J. Phys. Chem. B.2001,105(46):11439-11446.
    [245]Chen J S, Tan Y L, Li C M, Cheah Y L, Luan D, Madhavi S, Boey F Y C, Archer L A, Lou X W. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J]. J. Am. Chem. Soc.,2010,132(17):6124-6130.
    [246]Zhang P, Yin S, Sato T. The influence of synthesis method on the properties of iron contained N doped TiO2 photocatalysts [J]. Appl. Catal. B:Environ.2011,103: 462-469.
    [247]Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann J M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. J. Photochem. Photobiol. A.2003,158(1):27-36.
    [248]Shiraishi Y, Saito N, Hirai T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide [J]. J. Am. Chem. Soc.2005,127(37):12820-12822.
    [249]Geim A K. Graphene:Status and Prospects [J]. Science.2009,324(5934):1530-1534.
    [250]Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K B. Graphene-Encapsulated Nanoparticle-Based Biosensor for the Selective Detection of Cancer Biomarkers [J]. Adv. Mater.2011,23(19):2221-2225.
    [251]Yang S B, Feng X L, Ivanovici S, Mullen K. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage [J]. Angew. Chem. Int. Ed.2010,49(45):8408-8411.
    [252]Han B T H, Lee W J, Lee D H, Kim J E, Choi E Y, Kim S O. Peptide/Graphene Hybrid Assembly into Core/Shell Nanowires [J]. Adv. Mater.2010,22(18):2060-2064.
    [253]Amali A J, Saravanan P, Rana R K. Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components [J]. Angew. Chem. Int. Ed.2011,50(6):1318-1321.
    [254]Funasako Y, Mochida T, Inagaki T, Sakurai T, Ohta H, Furukawa K, Nakamura T. Magnetic memory based on magnetic alignment of a paramagnetic ionic liquid near room temperature [J]. Chem. Commun.2011,47(15):4475-4477.
    [255]Ji X J, Shao R P, Elliott A M, Stafford R J, Esparza-Coss E, Bankson J A, Liang G, Luo Z P, Park K, Markert J T, Li C. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy [J]. J. Phys. Chem. C.2007,111(17):6245-6251.
    [256]Kulkarni D D, Choi I, Singamaneni S S, Tsukruk V V. Graphene Oxide-Polyelectrolyte Nanomembranes[J]. ACS Nano.2010,4(8):4667-4676.
    [257]Shebanova O N, Lazor P. Raman study of magnetite (Fe3O4):laser-induced thermal effects and oxidation [J]. J. Raman Spectrosc.2003,34(11):845-852.
    [258]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [259]Chen S Q, Wang Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J]. J. Mater. Chem. 2010,20(43):9735-9739.
    [260]Pang H, Chen C, Zhang Y C, Ren P G, Yan D X, Li Z M. The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nano tubes and graphene nanosheets [J]. Carbon,2011,49(6): 1980-1988.
    [261]Ballarin B, Cassanil M C, Maccato C, Gasparotto A. RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications [J]. Nanotechnology.2011,22(27):275711.
    [262]Robinson J T, Tabakman S M, Liang Y Y, Wang H L, Casalongue H S, Vinh D, Dai H J. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy[J]. J. Am. Chem. Soc.2011,133(17):6825-6831.
    [263]Wijaya A, Schaffer S B, Pallares I G, Hamad-Schicfferli K. Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods [J]. Acs Nano.2009,3(1): 80-86.
    [264]Pissuwan D, Valenzuela S M, Miller C M, Cortie M B. A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using anti body-functionalized gold nanorods[J]. Nano Lett.2007,7(12):3808-3812.
    [265]Eck W, Craig G, Sigdel A, Ritter G, Old L J, Tang L, Brennan M F, Allen P J, Mason M D. PEGylated Gold Nanoparticles Conjugated to Monoclonal F19 Antibodies as Targeted Labeling Agents for Human Pancreatic Carcinoma Tissue [J]. Acs Nano.2008, 2(11):2263-2272.
    [266]Ni W, Yang Z, Chen H, Li L, Wang J. Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures [J]. J. Am. Chem. Soc.2008,130(21):6692-6693.
    [267]Li C Z, Male K B, Hrapovic S, Luong J H T. Fluorescence properties of gold nanorods and their application for DNA biosensing [J]. Chem. Commun.2005,31:3924-3926.
    [268]Yan Y M, Tel-Vered R, Yehezkeli O, Cheglakov Z, Willner I. Biocatalytic growth of Au nanoparticles immobilized on glucose oxidase enhances the ferrocene-mediated bioelectrocatalytic oxidation of glucose [J]. Adv. Mater.2008,20(12):2365-2370.
    [269]Zhou K, Zhu Y, Yang X, Li C. Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite [J]. Electroanalysis.2010, 22(3):259-264.
    [270]Shen A, Guo J, Xie W, Sun M, Richards R, Hu J. Surface-enhanced Raman spectroscopy in living plant using triplex Au-Ag-C core-shell nanoparticles [J]. J. Raman Spectrosc.2011,42(4):879-884.
    [271]Donkova B, Vasileva P, Nihtianova D, Velichkova N, Stefanov P, Mehandjiev D. Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation [J]. J. Mater. Sci.2011,46(22):7134-7143.
    [272]Mulvaney P, Liz-Marzan L M, Giersig M, Ung T. Silica encapsulation of quantum dots and metal clusters[J]. J. Mater. Chem.2000,10(6):1259-1270.
    [273]Gao S, Koshizaki N. Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing [J]. Anal. Bioanal. Chem.2011,399(1):91-101.
    [274]Liaw J W, Liu C L, Tu W M, Sun C S. Plasmonic enhancement of coreshell (Au@SiO2) on molecular fluorescence [J]. J. Quant. Spectrosc. Radiat. Transfer.2011,112(5): 893-900.
    [275]Yang H, Zhu Y. Glucose biosensor based on nano-SiO2 and "unprotected" Pt nanoclusters [J]. Biosens. Bioelectron.2007,22(12):2989-2993.
    [276]Sun Y, Yan F, Yang W, Zhao S, Yang W, Sun C. Effect of silica nanoparticles with different sizes on the catalytic activity of glucose oxidase [J]. Anal. Bioanal. Chem. 2007,387(4):1565-1572.
    [277]Wang Y, Qian W, Tan Y, Ding S, Zhang H. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells [J]. Talanta.2007, 72(3):1134-1140.
    [278]Kuo W S, Wu C M, Yang Z S, Chen S Y, Chen C Y, Huang C C, Li W M, Sun C K, Yeh C S. Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells [J]. Chem. Commun.2008,37:4430-4432.
    [279]Gruber S, Gottschlich A, Scheel H, Aresipathi C, Bannat I, Zollfrank C, Wark M. Molecular and supramolecular templating of silica-based nanotubes and introduction of metal nanowires [J]. Phys. Status Solidi B.2010,247(10):2401-2411.
    [280]Kim J H, Lee T R. Thermo-responsive hydrogel-coated gold nanoshells for in-vivo drug delivery [J]. J. Biomed. Pharm. Eng.2008,2(8):29-35.
    [281]Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites [J]. Electrochem. Acta.2010, 55(9):3055-3060.
    [282]Kafi A K M, Wu G, Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays [J]. Biosens. Bioelectron.2008,24(4):566-571.
    [283]Wang J, Wang L, Di J, Tu Y. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor [J]. Talanta. 2009,77(4):1454-1459.
    [284]Zhao Y D, Zhang W D, Chen H, Luo Q M, Li S F Y. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J]. Sensor Actuat B-Chem.2002,87(1):168-172.
    [285]Kamin R A, Wilson G S. Rotating-ring-disk Enzyme Electrode for Biocatalysis Kinetic-studies and Characterization of the Immobilized Enzyme Layer [J]. Anal. Chem. 1980,52(8):1198-1205.
    [286]Shegai T, Chen S, Miljkovic V D, Zengin G, Johansson P, Kall M. A bimetallic nanoantenna for directional colour routing [J]. Nat. Commun.2011,2:481.
    [287]Li K R, Stockman M I, Bergman D J. Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens [J]. Phys. Rev. Lett.2003,91:227402.
    [288]Moskovits M. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys.1985,57(3): 783-826.
    [289]Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science.2002,279(5586):1536-1540.
    [290]Li J F, Huang Y F, Ding Y, Yang Z L, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature.2010,464(7287):392-395.
    [291]Uzayisenga V, Lin X D, Li L M, Anema J R, Yang Z L, Huang Y F, Lin H X, Li S B, Li J F, Tian Z Q. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Langmuir.2012,28(24):9140-9146.
    [292]Jun B H, Noh M S, Kim G, Kang H, Chung W J, Kim Y K, Cho M H, Jeong D H, Lee Y S. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy [J]. Anal. Biochem.2009,391(1):24-30.
    [293]Cui Y, Wang Y, Hui W, Zhang Z, Xin X, Chen C. The Synthesis of GoldMag Nano-Particles and their Application for Antibody Immobilization [J]. Biomed. Microdevices.2005,7(2):153-156.
    [294]Bao F, Yao J L, Gu R A. Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy [J]. Langmuir.2009,25(18):10782-10787.
    [295]Feng J J, Gernert U, Sezer M, Kuhlmann U, Murgida D H, David C, Richter M, Knorr A, Hildebrandt P, Weidinger I M. Novel Au-Ag Hybrid Device for Electrochemical SE(R)R Spectroscopy in a Wide Potential and Spectral Range [J]. Nano Lett.2009,9(1): 298-303.
    [296]Feng J J, Gernert U, Hildebrandt P, Weidinger I M. Induced SER-Activity in nanostructured Ag-silica-Au supports via long-range plasmon coupling [J]. Adv. Funct. Mater.2010,20(12):1954-1961.
    [297]Todorovic S, Jung C, Hildebrandt P, Murgida D H. Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization [J]. J. Biol. Inorg. Chem.2006,11(1):119-127.
    [298]Murgida D H, Hildebrandt P. Proton-Coupled Electron Transfer of Cytochrome c [J]. J. Am. Chem. Soc.2001,123(17):4062-4068.
    [299]Hrabakova J, Ataka K, Heberle J, Hildebrandt P, Murgida D H. Long distance electron transfer in cytochrome c oxidase immobilised on electrodes. A surface enhanced resonance Raman spectroscopic study [J]. Phys. Chem. Chem. Phys.2006,8(6): 759-766.
    [300]Kruss S, Srot V, van-Aken P A, Spatz J P. Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports [J]. Langmuir.2012,28(2): 1562-1568.
    [301]Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H. Differential SERS Activity of Gold and Silver Nanostructures Enabled by Adsorbed Poly(vinylpyrrolidone) [J]. Langmuir.2012,28(5):2529-2535.
    [302]Xia W, Sha J, Fang Y, Lu R, Luo Y, Wang Y. Gold Nanoparticles Assembling on Smooth Silver Spheres for Surface-Enhanced Raman Spectroscopy [J]. Langmuir.2012, 28(12):5444-5449.
    [303]Chen D H, Chen C J. Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions[J]. J. Mater. Chem.2002,12(5):1557-1562.
    [304]Li D, Li D W, Li Y, Fossey J S, Long Y T. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering [J]. J. Mater. Chem.2010,20(18):3688-3693.
    [305]Yu H Z, Zhang J, Zhang H L, Liu Z F. Surface-Enhanced Raman Scattering (SERS) from Azobenzene Self-Assembled "Sandwiches" [J]. Langmuir.1999,15(1):16-19.
    [306]Ngo Y H, Li D, Simon G P, Gamier G. Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate [J]. Langmuir.2012, 28(23):8782-8790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700