用户名: 密码: 验证码:
煅烧铝矾土合成堇青石及其在太阳能储热材料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能热发电技术是可再生能源发电中最有前途的发电方式之一,而储热系统是太阳能保证热发电站高效稳定运行的关键,研究和开发高性能的储热材料已成国内外研究的热点。堇青石材料由于膨胀系数低、抗热震性能好、耐高温等特点,满足高温储热材料的性能要求,故本文试图利用煅烧铝矾土、滑石等原料来原位合成堇青石,并将其用作太阳能高温储热材料。
     本文在系统分析了煅烧铝矾土原料的组成、结构与性能,研究了其高温烧成性能后,以煅烧铝矾土为铝源,分别设计了偏硅、偏镁、偏铝和正堇青石组成,原位合成制备了堇青石陶瓷。采用XRF、XRD、SEM、EPMA、TEM、拉曼光谱、红外光谱、核磁共振等现代测试技术研究了材料组成、制备工艺、结构与性能的关系,探讨了不同组成对合成堇青石陶瓷结构与性能的影响,研究了煅烧铝矾土合成堇青石的合成机理。在原位合成堇青石基础上,通过添加碳化硅、氧化锆、红柱石、莫来石及采用原位合成莫来石方法进一步提高堇青石材料的抗热震性能和储热性能。探讨了用作以空气为传热介质的太阳能热发电高温储热材料的堇青石陶瓷的抗热震机理;为增大储热材料的比表面积、提高对流换热效率,通过热力学模拟计算确定了高温储热显热材料的外观及其孔洞结构。为进一步提高陶瓷储热材料的储热密度,在陶瓷显热储热材料中封装相变材料(PCM),研制了堇青石-莫来石复相陶瓷显热-潜热复合储热材料,研究了封装剂与显热基体材料的结合机理及陶瓷显热基体材料与PCM的相适应性机理。并采用自主研发的储热系统对其充放热过程中的传热和储热性能进行了研究,揭示了太阳能储热系统运行的基本规律。主要的研究成果如下:
     (1)对煅烧铝矾土组成、结构及性能的研究结果表明,煅烧铝矾土为一种优良的陶瓷原料,适合制备高强度、耐高温的工业陶瓷制品。其耐高温性能好(熔点高于1650℃),抗折强度、体积密度、比热容和导热系数均随着温度升高逐渐提高。铝矾土经过煅烧后使刚玉和莫来石均处于亚稳态型,其中刚玉仍保持着水铝石的片状和粒状外形,这拓宽了物相反应的接触面,提高了刚玉晶粒的反应活性;而莫来石晶粒呈定向排列,条柱状生长,在堇青石合成过程中起到晶核剂作用,可促使堇青石往六方柱状生长。煅烧铝矾土中含有的杂质离子在高温时会进入镁铝尖晶石晶格,增加晶格缺陷,降低晶相生成温度。可以推断,若将煅烧铝矾土用于合成堇青石,这些特性均有利于降低堇青石的合成温度、拓宽合成温度范围及提高合成堇青石耐高温性能。
     (2)利用煅烧铝矾土合成正组成堇青石的合成温度低(1160℃开始生成)、合成量高(95.63%)、热膨胀系数低(2.22×10-6/℃)、耐高温性能好(1500℃开始大量分解)、合成温度范围宽(1160℃~1430℃)。偏镁组成有利于降低堇青石的合成温度、热膨胀系数,对样品的抗折强度和堇青石合成量影响不显著,不能提高堇青石的耐高温性能和抗热震性能;偏硅组成不仅提高了堇青石的合成温度和热膨胀系数,而且降低了合成堇青石的耐高温性,对合成堇青石的抗热震性能、堇青石合成量和抗折强度的提高均无贡献;偏铝组成有利于提高样品的抗折强度、抗热震性能和耐高温性能,但对降低堇青石的热膨胀系数和合成温度以及提高堇青石的合成量不利。经1420℃烧成的正组成F2样品(煅烧铝矾土39.80%,桂广滑石41.64%,广东石英18.56%)的综合性能最佳,其吸水率(Wa)为12.96%,气孔率(Pa)为24.56%,体积密度(D)为1.97g.cm-3,烧成线收缩率为0.21%,抗折强度(σb)为53.92MPa。热膨胀系数为2.22×10-6/℃(室温~850℃),常温导热系数为2.20W/(m.K)、比热容为0.60kJ/(kg·K),储热密度为869kJ/kg (0~800℃)。相组成分析表明样品的晶相为印度石(高温堇青石),堇青石晶粒形貌以六方柱状和粒状为主。
     (3)合成堇青石机理研究表明,TEM、拉曼光谱、红外光谱、核磁共振分析取得了与XRD分析一致的结果,证实了煅烧铝矾土合成堇青石过程中均以高温堇青石为主晶相,以六方结构为主,在合成堇青石过程中没有出现高、低温堇青石相互转变。用Si/Al有序度衡量合成堇青石的热膨胀性是可行的,Si/Al有序化程度降低,样品的热膨胀系数减小。TEM分析表明玻璃相中含有大量5nm左右的堇青石微晶生成,这有助于提高堇青石样品的耐高温性能、抗热震性能和导热性能及降低样品的热膨胀系数。
     (4)提高堇青石材料的抗热震性能和储热性能的研究表明,添加红柱石和莫来石不利于提高堇青石材料的体积密度和导热性能;添加氧化锆可显著提高样品的体积密度,但对导热性能贡献不大;添加碳化硅可提高样品的体积密度和导热性能,效果不如采用原位合成莫来石增韧堇青石方法。经1450℃烧成的原位合成堇青石-莫来石E1样品的综合性能最优,经30次热震后抗折强度提高了28.11%。常温导热系数为3.71W/(m-K)、比热容为0.87kJ/(kg·K),储热密度为1416kJ/kg (0~800℃)(较F2样品提高了62.95%),Wa为1.33%,Pa为3.26%,D为2.52g·cm-3,抗折强度为76.95MPa。提高样品抗热震性的机理是原位合成条柱状莫来石和原位生成柱状堇青石相互交织排列,根据热膨胀失配原理,样品中的莫来石相被堇青石相所包围,由于堇青石的膨胀系数小于莫来石的膨胀系数,这样在莫来石周围就产生了一个残余的压应力区,压应力区的应力值较小,热震过程中应力能够引起裂纹的分叉和偏折,使样品的抗热震性能提高。加之样品中玻璃相量较少,闭气孔较多,这些均可增加裂纹扩展所需要的能量、延长裂纹拓展的路径,致使样品的抗热震性能提高。
     (5)通过热力学模拟计算选取显热储热材料形状及孔洞结构,结果表明,蜂窝陶瓷蓄热器比陶瓷管、陶瓷球蓄热器阻力小,利于引风机的选取、使引风机长期处于低温工作环境;同时在换热强度相同的情况下,正方形孔的蜂窝陶瓷比圆形、正六边形孔的换热系数大,需要的蜂窝陶瓷储热装置体积要小,这有利于储热装置或系统的优化设计和应用。
     (6)封装剂与显热基体材料蜂窝陶瓷的结合机理研究表明,封装剂中高温熔剂的添加量影响封装剂与蜂窝陶瓷基体的结合性能,当高温熔剂含量超过70%时,封装剂的热膨胀系数与基体材料相差太大,导致二者结合性变差,高温熔剂的添加量在65%左右较合适。陶瓷显热基体材料与PCM的相适应性机理研究表明,不同种类的PCM与堇青石复相陶瓷的相适应性不同,应挑选不与堇青石陶瓷材料发生化学反应的PCM封装,才能达到潜-显热复合提高储热能力的目的。封装PCM(熔融盐K2S04)的蜂窝陶瓷即潜-显热复合储热材料经过200次热循环试验后,K2S04与陶瓷基体之间有个45μm的渗透层,渗透层形成后会阻碍熔融盐的进一步渗透,二者相容性较好,K2SO4适合与堇青石复相陶瓷复合,用于制备太阳能储热的潜-显热复合储热材料。
     (7)采用自主研发的储热系统对PCM与堇青石复相陶瓷复合的潜-显热复合复合储热材料充放热过程中的传热和储热性能研究结果表明,空气流量直接影响储热装置热交换时的对流换热系数和阻力,空气流量越大,对流换热系数和阻力均增大。因此,在增大空气流量以增大对流换热系数,进而增大换热效率时,要考虑阻力因素,否则阻力过大,空气流动速度太小,无法保证系统的稳定运行。填入0.5m3封装PCM蜂窝陶瓷储热材料的储热装置可储存924.86MJ的热量,相当于280度电的电量,单位体积的储热密度为1849.72MJ/m3。大量的研究与试验运行表明,封装相变材料的堇青石蜂窝陶瓷储热材料及其储热装置可用于太阳能热发电系统。
Solar thermal power generation is one of the most promising technologies of converting solar energy into electricity. While thermal storage is the key to realize efficient operation of the solar thermal power plant. Researches and developments of high-performance thermal storage materials are increasingly raising people's attention. Among them, Cordierite is considered to be an excellent candidature due to its low thermal expansion, favorite thermal shock resistance and high-temperature resistant. This thesis, therefore, mainly focuses on the in-situ synthesis of cordierite using calcined bauxite and talc, and it is applied in the field of high temperature solar thermal storage material.
     Particularly, the mircostructure, characterization and sintering properties of calcined bauxite were studied in details. In this study, we designed and prepared a series of silicon-rich cordierite, magnesium-rich cordierite, aluminum-rich cordierite and conventional cordierite by using in-situ synthesis. The relationship between composition, preparation techniques, micro structures and performances are respectively investigated by using modern testing technologies including XRF, XRD, SEM, EPMA, TEM, Raman spectrum, Infrared spectrum, Nuclear magnetic resonance (NMR) and etc. The influence of different compositions on the in-situ synthesized cordierite is studied. The structure and synthesis mechanism of cordierite are investigated. Moreover, high-temperature thermal storage materials with improved thermal shock resistance and increased thermal storage capacity are prepared by doping in-situ synthesized cordierite with silicon carbide, zirconium oxide and mullite. The mechanism of performances enhancement is also discussed. In addition, in order to increase the specific surface area of heat storage materials and enhance the efficiency of convective heat transfer, pore structures including its shape and size of the high-temperature thermal storage materials are particularly modeled and studied using the laws of thermodynamic. Finally, selected phase change materials (PCMs) are encapsulated in the ceramic matrix to further increase the thermal storage density of the heat storage materials. The encapsulating mechanism and corrosion behaviors between the encapsulation agent and ceramic matrix materials are investigated. Importantly, for the evaluation of the performance of thermal storage systems using the developed materials, we also developed a thermal storage system to assess its heat transfer performance and thermal storage behavior (e.g. endothermic and exothermic processes). The main conclusions of the above researches are listed as follows:
     (1) Calcined bauxite, as an excellent raw material for producing ceramics, is suitable for preparing industrial ceramic products with a high strength and high-temperature resistance. Calcined bauxite has a favorable high-temperature resistance with a melting point of higher than1650℃). Its bending strength, bulk density, specific heat, and thermal conductivity are improved with an increasing sintering temperature. The main crystal phases of calcined bauxite are corundum and mullite. The corundum is metastable and maintained a diaspore flake and granular appearance, which broadens the contact surface of reaction and increases the reactivity of corundum grains. Because of orientations and column shape of the mullite grains, mullite is used as nucleation agent in the process of synthesis cordierite in order to promote the growth of hexagonal cordierite. The impurities contained in the calcined bauxite will enter the lattice of cordierite at high temperatures in the forms of Fe2+, Fe3+, Ti4+, and K+etc., which increases the lattice defects and reduces the grain formation temperature. All of the above-mentioned phenomenon reduce the synthesis temperature, broaden the synthesis temperature range, and improve the high-temperature resistance of cordierite.
     (2) The calcined bauxite synthesized cordierite with the theoretical chemical composition has a low synthesis temperature (1160℃), a high purity (95.63%), a low thermal expansion coefficient (2.22×10-6/℃), a high-temperature resistance (1500℃), and a wide synthesis temperature range (1160℃~1430℃). In contrast, the cordierites with the magnesium-rich composition has a reduced synthesis temperature and thermal expansion coefficient, which is unfavorable for improving its bending strength, purity, high-temperature resistance, and thermal shock resistance; Silicon-rich composition is favorable for improving the synthesis temperature and thermal expansion coefficient, and reducing the high temperature resistance, thermal shock resistance, purity and bending strength of cordierite; Aluminum-rich composition is favorable for improving bending strength, thermal shock resistance and high temperature resistance, while improving the thermal expansion coefficient and synthesis temperature of cordierite. The comprehensive performance of sample F2is the optimal (Calcined bauxite39.80%, Gguangxi talc41.64%, Guangdong quartz18.56%) sintered at1420℃, the water absorption (Wa), porosity (Pa), bulk density (D), linear shrinkage after sintering, bending strength, thermal expansion coefficient (RT~850℃), thermal conductivity at room temperature, heat capacity at room temperature, and heat storage density at temperatures from0to800℃are12.96%,24.56%,1.97g·cm-3,0.21%,53.92MPa,2.22×10-6/℃,2.20W/(m·K),0.60kJ/(kg·K), and869kJ/kg, respectively. XRD and SEM analysis shows that the phase composition is indialite (high temperature cordierite) in the form of hexagonal columnar and granular.
     (3) The results of the TEM, Raman spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) analyses are consistent with the results from the XRD analysis, confirming that (i) indialite is generated in the process of synthesizing cordierite using calcined bauxite, and (ii) the cordierite has not gone through mutual transformation between the high temperature cordierite and low temperature cordierite in the whole process. It is feasible to measure the thermal expansion coefficient of cordierite using the degree of order of the Si/Al alignment, namely the thermal expansion coefficient is decreased with an reducing degree of order of the Si/Al alignment TEM analysis shows that a lot of microcrystalline (about5nm) exist in the glass phases, which helps to increase the thermal conductivity and thermal shock resistance while reducing the thermal expansion coefficient of the sample.
     (4) The addition of mullite and andalusite in the sample is not effective in improving the bulk density and thermal conductivity of the sample. In contrast, adding zirconium oxide in the sample can significantly improve the bulk density, while adding silicon carbide can improve both the bulk density and thermal conductivity of the sample. In comparison with the above additives, in-situ synthesis of mullite is the best approach of improving the bulk density and thermal conductivity. Overall, the sample E1prepared using the in-situ synthesis of cordierite-mullite and sintered at1450℃have the best performances. For example, its bending strength is improved by28.11%after a thermal shock resistance test of30times. Moreover, the thermal conductivity (room temperature), specific heat capacity (room temperature), heat storage capacity (0~800℃), Wa, Pa, D and bending strength are3.71W/(m·K),0.87kJ/(kg·K),1416kJ/kg (increased by62.95%),1.33%,3.26%,2.52g·cm-3and76.95MPa, respectively. The mechanism of the improved thermal shock resistance can be attributed to the fact that the in-situ synthesized columnar mullite and in-situ generated columnar cordierite are intertwined with each other in the micro scale. Moreover, the low expansion coefficient of cordierite helps to ease the contraction/expansion due to volumetric changes of the sample. This is added on top of the fact that few glass phase and more closed porosity are presented in the sample. All of the above-mentioned effects attributes to an elevation of the energy barrier of crack propagation and a prolonged path for the developmental crack extension, which all lead to a high bending strength of the sample. It should be also mentioned that when the mullite phase is encompassed by cordierite phase which has a smaller thermal expansion coefficient, according to the principle of Thermal Expansion Mismatch, the residual compressive stress area is produced around the mullite resulting in a small stress value. Moreover, the stress can cause crack bifurcation and deflection in the process of thermal shock resistance test. The above mechanism leads to an improved thermal shock resistance of the sample. Therefore, it is concluded that the sample El with a good thermal shock resistance, high-temperature resistant, high strength can meet the requirement of heat storage material for solar thermal power generation.
     (5) Thermodynamic simulations on the geometry of heat storage materials were performed. The results show that the resistance of heat accumulator using honeycomb ceramic is less than that of the ceramic tube and ceramic ball. Moreover, the honeycomb ceramic is shown as the favorable material for the design and selection of the induced draft fan, leading to a low temperature environment for the long-term operation of the draft fan. The results further shows that the heat transfer coefficient of the honeycomb ceramic with square holes is larger than that of the honeycomb ceramics with round and hexagonal holes for a same heat transfer duty. Meanwhile, using the honeycomb ceramic the size of the heat storage device can be largely reduced, which is beneficial in terms of the optimization of the design and application of a thermal store device or system.
     (6) The combination of encapsulating agent and ceramic matrix are affected by the addition of the high-temperature flux in the encapsulating agent. When the high-temperature flux content is more than70%, the difference of thermal expansion coefficient between the encapsulation agent and ceramic matrix becomes significant leading to a poor combination. Moreover, the poor strength of the encapsulating agent also results in a bad combination. It is concluded that the optimum content of high-temperature flux is about65%. The PCM with composite substrate material was examined after200times'thermal cycle tests, which shows that the generated permeable zone (45microns in width) is formed between K2SO4and the ceramic substrate impeding the further infiltration of molten salt. Therefore, the combination of the PCM and composite substrate material shows favorable compatibility between the two materials and is suitable for the preparation of the encapsulated PCM materials. It should be also noted that the adaptability of different kinds of PCM and cordierite ceramic is different, and appropriate PCMs should be carefully selected to prevent any possible reactions with the cordierite ceramic. In this way, the heat storage system with an improved heat capacity can be achieved.
     (7) Air flow rate directly affects the overall heat transfer coefficient and heat transfer resistance. With an increased air flow, both the convective heat transfer coefficient and the heat transfer resistance of the heat storage system increase. Therefore, careful consideration should be given to the increased heat transfer resistance as a result of the increased air flow, since an increased heat transfer resistance affects greatly the stable operation of the system. Moreover, the honeycomb ceramic thermal storage materials, when filled with0.5m3encapsulated PCM, can store up to924.86MJ, which is equivalent to about280kWh. The volumetric heat storage density of this heat storage system is about1849.72MJ/m3. Our tests and analyses all show that the thermal storage device (i.e. the cordierite honeycomb ceramic encapsulated with phase change materials)is a good candidate to be used for thermal storage in a solar thermal power plant.
引文
[1]Christian C, Roberto M. Solar thermal systems:Advantages in domestic integration [J]. Renewable Energy,2008,33:1364-1373.
    [2]Kanimozhi B, Bapu B R R. Experimental Study of Thermal Energy Storage in Solar System Using PCM [J]. Materials Science and Information Technology,2012,433-440:1027-1032.
    [3]Amin N A M, Belusko M, Bruno F, et al. Optimising Pcm Thermal Storage Systems for Maximum Energy Storage Effectiveness [J]. Solar Energy,2012, (86):2263-2272.
    [4]袁建丽,林汝谋,金红光,等.太阳能热发电系统与分类[J].太阳能,2007,(4):30-33.
    [5]张耀明,王军,张文进,等.塔式与槽式太阳能热发电[J].太阳能,2006,(2):29.
    [6]Alkan C. Gunther E, et al. Polyethylene Glycol-Sugar Composites as Shape Stabilized Phase Change Materials for Thermal Energy Storage [J]. Polymer Composites,2012,33(10): 1728-1736.
    [7]胡其颖.太阳能热发电技术的进展及现状[J].能源技术,2005,26(5):200-207.
    [8]Ilaria P, Ugo B, Stefano C, et al. Ionic liquids ad diathermic fluids for solar trough collectors' technology:A corrosion study [J]. Solar Energy Materials & Solar Cells,2008,92:510-517.
    [9]Chaxiu Guo, Wujun Zhan. Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system [J]. Energy Conversion and Management, 2008,49:919-927.
    [10]刘玲,叶红卫.国内外储热材料发展概况[J].兰化科技,1998,16(3):168-171.
    [11]Navarro M E, Martinez M, Gil A, et al. Selection and Characterization of Recycled Materials for Sensible Thermal Energy Storage [J]. Solar Energy Materials&Solar Cells,2012, 107:301-305.
    [12]Rene I O. The Thermal Stability of Molten Nitrite/Nitrates Salt for Solar Thermal Energy Storage In Different Atmospheres [J]. Solar Energy,2012,86:2576-2583.
    [13]Brian D I, Scott T B, Alan M K, et al. Thermal and Mechanical of Nitrate Thermal Storage Salts In The Solid-Phase [J]. Solar Energy,2012,86:2897-2911.
    [14]Naga S M. Low thermal expansion honeycomb cordierite containing rice huskash [J]. Industrial ceramic,1994,14(3):117-118.
    [15]Goren R, Gocmez H, Ozgur C. Synthesis of cordierite powder from talc diatomite and alumina [J]. Ceram Int,2006,32:407-409.
    [16]Gokce, Hasan, Agaogullari, et al. Characterization of Microstructural and Thermal Properties of Steatite/Cordierite Ceramics Prepared by Using Natural Raw Materials [J]. Journal of the European Ceramic Society,2010,31(14):2741-2747.
    [17]任强,武秀兰.煤矸石-滑石-菱镁矿低温合成堇青石研究[J].非金属矿,2006,29(2):29-31.
    [18]田雨霖.低温合成革青石[J].耐火材料,1995,29(4):199-201,206.
    [19]薛群虎,刘民生,徐维忠.叶蜡石合成革青石工艺研究[J].耐火材料,1999,33(5):265-267.
    [20]罗旭东,曲殿利,张国栋,等.菱镁矿风化石与叶腊石合成堇青石的结构表征[J].无机化学学报,2011,27(3):434-438.
    [21]孙晓霞,张建,曾国辉.合成革青石研究[J].陶瓷,2005,7:22-24.
    [22]王辅亚,张惠芬,吴大清,等.革青石的结构状态与合成温度、热膨胀的关系[J].中国陶瓷,1993,129(2):1-6
    [23]江伟辉,余琴仙,苗立锋,等.不同原料及合成温度对合成堇青石膨胀系数的影响[J].陶瓷学报,2009,30(3):318-321.
    [24]Johar B, Hasmaliza M, Zainal A A. Crystal Structure of Single Phase and Low Sintering Temperature of a-Cordierite Synthesized From Talc and Kaolin [J]. Journal of Alloys and Compounds,2009,482(1-2):429-436.
    [25]El-Buaishi, Nozhat Moftah, Jankovic-Castvan.Ivona, et al. Crystallization Behavior and Sintering of Cordierite Synthesized by an Aqueous Sol-Gel Route [J]. Ceramics International, 2012,8(3):1835-1841.
    [26]Begum S, Misran H, Aminuddin A. Developing of Honeycomb Shaped Cordierite Ceramic from Indigenous Raw Materials and its Characterization [J]. Advances in Materials and Processing Technologies Ⅱ, pts 1W and 2,2011,264-265:597-601.
    [27]Fotoohi B, Blackburn S. Effects of mechanochemical processing and doping of functional oxides on phase development in synthesis of cordierite [J]. Journal of the European Ceramic Society,2012,32:2267-2272.
    [28]Djordjevic N G, Obradovic N, Filipovic S. Electrical properties of mechano chemically activated cordierite ceramics [J]. Powder Metallurgy and Metal Ceramic,2012,51(1-2):83-86.
    [29]Kim S J, Park S J, Bang H G, et al. Fabrication of cordierite honeycomb from fly ash [J]. Progress in Powder Metallurgy,2007,534-536:621-624.
    [30]Ogiwara T, Noda Y, Kimura O. Fabrication of high density cordierite ceramics using a coal fly ash [J]. Journal of the Ceramic Society of Japan,2010,118 (1375):231-235.
    [31]Obradovic N, Dordevic N, Filipovic S, et al. Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive [J]. Powder Technology,2012,218:157-161.
    [32]Esfahani H B, Yekta B E, Marghussian V K. Sintering of cordierite ceramics inthe presence of Bi2O3 as a functional additive [J]. Powder Technology,2012,218:157-161.
    [33]Valaskova M, Simha Martynkova G, Smetana B. Studentova. Influence of vermiculite on the formation of porous cordierites [J]. Applied Clay Science,2009,46:196-201.
    [34]Ogiwara T, Noda Y, Shoji K, et al. Low temperature sintering of alpha-cordierite ceramics with low thermal expansion using Li2O-Bi2O3 as a sintering additive [J]. Journal of the Ceramic Society of Japan,2011,119(1393):706-709.
    [35]Santacruz I, Moreno R, Rodrigues J B. Preparation of Cordierite Materials with Tailored Porosity by Gelcasting with Polysaccharides [J]. International Journal of Applied Ceramic Technology,2008,5(1):74-83.
    [36]Ibrahim N, Ahmad Z A, Mohamad H. Phase Analysis in the Crystallization of Cordierite [J]. Solid State Science and Technology Xxvi,2012,501:91-95.
    [37]Park C, Bang K S, Park D S, et al. Pressureless-Sintering of Reaction Bonded Silicon Nitride Containing Cordierite [J]. Journal of Ceramic Processing Research,2012,13(3):226-230.
    [38]Valaskova M, Martynkova G S. Microporous Cordierite Ceramics Prepared from Clay Mineral Mixtures Containing Vermiculite [J]. Journal of Scientific Conference Proceedings,2010, 2(1):49-52.
    [39]段满珍.低膨胀堇青石材料的研究[D].石家庄:河北理工学院,2002.
    [40]Noda H, Miyagawa K, Kobayashi M, et al. Preparation of Cordierite from Fibrous Sepiolite [J]. Journal of the Ceramic Society of Japan,2009,117(1371):1236-1239.
    [41]Ogiwara T, Noda Y, Shoji K. Solid State Synthesis and its Characterization of High Density Cordierite Ceramics Using Fine Oxide Powders [J]. Journal of the Ceramic Society of Japan, 2010,118(1375):246-249.
    [42]Goren R, Gocmez H, Ozgur C. Synthesis of Cordierite Powder from Talc Diatomite and Alumina [J]. Ceram Int,2006,32:407-409.
    [43]李家驹,李景苏,林绍贤.海城绿泥石合成堇青石的研究[J].中国陶瓷,1990,(5):1-6.
    [44]张效峰,薄均,彭西高.高纯堇青石合成技术研究[J].耐火材料,1998,32(6):341-344.
    [45]薛群虎,刘民生,徐维忠.叶蜡石合成堇青石工艺研究[J].耐火材料,1999,33(5):265-267.
    [46]黄万钦.新型高热稳定性堇青石质耐火材料[J].耐火材料,1991,(4):236-239.
    [47]徐晓虹,彭超,吴建锋,等.累托石和滑石制备堇青石质蜂窝陶瓷[J].佛山陶瓷,2003,(10):10-12.
    [48]王旭,焦宝祥,吴汉青.溶胶-凝胶法制备革青石粉体的研究[J].材料导报,2011,25:215-216.
    [49]黄世峰,候文萍,王英姿,等.溶胶-凝胶法制备堇青石纳米晶粉体的研究[J].硅酸盐通报,2003,(6):35-38.
    [50]刘振英,徐子芳,王金香.溶胶-凝胶法制备堇青石陶瓷粉体的研究[J].非金属矿,2011,34(5):45-47.
    [51]曹颖,印万忠,王国胜,等.溶胶-凝胶法制备革青石纳米粉体及表征[J].中国粉体技术,2012,18(4):24-26.
    [52]谢志勇,梁辉,徐明霞,等.溶胶-凝胶法制备革青石粉体的固相反应过程和烧结性的研究[J].无机材料学报,2004,19(4):779-783.
    [53]Gokce, Hasan, Agaogullari, et al. Characterization of Microstructural and Thermal Properties of Steatite/Cordierite Ceramics Prepared by Using Natural Raw Materials [J]. Journal of the European Ceramic Society,2010,31(14):2741-2747.
    [54]任强,曹佳媚,杨元东.铝矾土-伊利石-高岭土体系陶瓷材料制备工艺的研究[J].中国陶瓷,2012,48(5):60-63.
    [55]Hing P, Sinha V and Peh Bee Ling. The effect of some processing parameters on the sinterability, microstructures and properties of sintered cordierite glass ceramics [J]. Journal of Materials Processing Technology,1997, (63):604-609.
    [56]田雨霖.低温合成革青石[J].耐火材料,1995,29(4):199-201,206.
    [57]Emel Ozel, Semra Kurama.Effect of The Processing On The Production of Cordierite-Mullite Composite [J]. Ceramics International,2010,36:1033-1039.
    [58]Khattab R M, EL-Rafei A M, Zawrah M F. In situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume [J]. Materials Research Bulletin.2012, 47:2662-2667.
    [59]Melinescu. Alina, Preda. Maria. Cordierite-Mullite Porcelain Stoneware [J]. Revista Romana De Materiale-Romanian Journal of Materials,2012,42(3):276-282.
    [60]温海琴,席红安,李勤,等.原位反应烧成莫来石-革青石复合材料及其特性[J].硅酸盐学报,2010,38(2):347-351.
    [61]雷中兴.原位莫来石-革青石复合物的物理机械性能、耐火性能和显微结构[J].耐火与石灰,2007,32(3):34-37.
    [62]刘国琴.高热震稳定性莫来石质陶瓷的研制[J].佛山陶瓷,2003,13(1):10-13.
    [63]张彦平,王林俊,倪文,等.我国铝矾土资源利用现状及发展建议[J].矿物学报,2010:210-211.
    [64]孙庚辰,王守业,李建涛,等.我国高铝矾土综合利用的探讨[J].1994-2012 China Academic Journal Eletctronic Publishing House:12-23.
    [65]陈俊红,王跃,李勇,等.致密均化铝矾土的性能及应用研究[J].稀有金属材料与工程,2011,40(1):170-173.
    [66]曹南萍.陈子瑛.欧阳强.等.高铝质铝矾土基耐磨陶瓷的开发应用[J].山东陶瓷,2010.33(1):29-31.
    [67]Manivasakan P, Rajendran V, Rauta P R, et al. Direct synthesis of nano alumina from natural bauxite [J]. Nanomaterials and Devices:Processing and Applications,2009,67:143-148.
    [68]王金相,钟香崇.我国DK型烧结高铝矾土的结晶相和玻璃相的研究[J].硅酸盐学报,1982,(3):21-25.
    [69]谭莹.均质铝矾士煅烧技术的研究[J].耐火与石灰,2011,(6):39-43.
    [70]高雄,张巧燕,方斌祥,等.工艺参数对两种贵州高铝矾土烧结性能的影响[J].耐火材料,2011,(1):11-15.
    [71]杨中正,杨道媛,赵顺波,等.高铝矾土制备莫来石加热过程的相变研究[J].材料导报,2010,(1):14-18.
    [72]Mondal A, Maitra S, Chandra S, et al. Alumina-Mullite Composites through Interaction of Bauxite and Fly Ash [J]. Transactions of the Indian Ceramic Society,2008,67(2):81-85.
    [73]Raut N S, Biswas P, Bhattacharya T K, et al. Effect of Bauxite Addition on Densification and Mullitization Behaviour of West Bengal Clay [J]. Bulletin of Materials Science,2008,31(7): 995-999.
    [74]Pontikes Y, Rathossi C, Nikolopoulos P, et al. Effect of Firing Temperature and Atmosphere on Sintering of Ceramics Made from Bayer Process Bauxite Residue [J].Ceramics International, 2009,35(1):401-407.
    [75]Kormshchikova Z I, Goldin B A, Ryabkov Y I, et al. Formation of Microstructure in Bauxite Ceramics [J]. Refractories and Industrial Ceramics,2000,41(3-4):75-79.
    [76]Thole B, Mtalo F, Masamba W. Groundwater Defluoridation with Raw Bauxite, Gypsum, Magnesite, and Their Composites [J]. Clean-Soil Air Water,2012,40(11):1222-1228.
    [77]Huizhi Yang, Changping Chenb, Lijun Panb, et al. Preparation of Double-Layer Glass-Ceramic/Ceramic Tile from Bauxite Tailings and Red Mud [J]. Journal of the European Ceramic Society,2009,29(10):1887-1894.
    [78]张锡联.高铝矾土在硅溶胶制壳工艺中的应用[J].铸造,2011,60:975-978.
    [79]胡贤祥.铝矾土熟料对型壳高温强度的影响[D].重庆:重庆骥珑机械有限公司,2009.
    [80]周治军.原料组成对铝镁碳砖抗渣性的影响[J].耐火材料,2010,44(5):372-374.
    [81]杨中正,赵顺波,邢振贤,等.高铝矾土和煤矸石合成矾土基莫来石料的研究[J].1994-2010 China Academic Journals Electronic Publishing House:51-55.
    [82]Jadhav G. N, Sharma N, Priyanka Sen. Characterization of Bauxite Deposits from Kachchh Area, Gujarat [J]. Journal Geological Society of India,2012,80:351-362.
    [83]Tripathi H S, Ghosh A, Halder M K, et al. Microstructure and Properties of Sintered Mullite Developed From Indian Bauxite [J]. Indian Academy of Sciences,2012,35(4):639-643.
    [84]Morsy M A, Salah A A, Nagy M K, et al. Phase Composition of Bauxite-Based Refractory Castables [J]. Ceramics International,2011,37:411-418.
    [85]黎奉武,黄少文,贾江涛.利用钙铝渣和低品位铝矾土制备贝利特硫铝酸盐水泥的研究[J].水泥,2012,6:10-12.
    [86]王晓燕,候桂芹,吕朝霞.铝矾十制备活性氧化铝掺合料的研究[J].无机盐工业,2011,43(2):30-32.
    [87]张亮,王迎新,彭立明.镁合金金属型高铝矾土涂料阻燃性的研究[J].特种铸造及有色合金,2010,30(2):134-136.
    [88]李生,王庆伟.矾土基Fe3Al/Al203复相陶瓷的制备工艺的研究[J].山东陶瓷,2011,34(2):7-12.
    [89]Manivasakan P, Rajendran V, Rauta P R, et al. Direct synthesis of nano alumina from natural bauxite [J]. Nanomaterials and Devices:Processing and Applications,2009,67:143-148.
    [90]刘桂萍,王明杰,刘长风,等.壳聚糖/铝矾土复合絮凝剂处理染色废水的研究[J].纺织学报,2010,31(9):79-83.
    [91]Thole B, Mtalo F, Masamba W. Groundwater Defluoridation with Raw Bauxite, Gypsum, Magnesite and Their Composites [J]. Clean-Soil Air Water,2012,40(11):1222-1228.
    [92]孙建勋,林润雄.溶胶-水热法制备亚微米4A分子筛[J].无机盐工业,2009,41(6):23-25.
    [93]吴进,刘铭,张燕瑰,等.石膏型渗流法制备低密度开孔泡沫铝工艺研究[J].精密成形工程,2010,2(5):35-37.
    [94]柯东杰.采用铝矾土矿粉反应制浆生产泡沫陶瓷材料的生产方法[P].
    [95]刘一军,王秀峰,曹丽云,等.高强度莫来石陶瓷微晶薄板的研究[J].人工晶体学报,2010,(39):156-159.
    [96]李颖华,黄剑锋,曹丽云.利用粉煤灰与铝矾土合成莫来石的研究[J].无机盐工业,2010,4(3):48-50.
    [97]张巍,戴文勇,千代田修明.堇青石对莫来石-铝矾土浇注料性能的影响[J].硅酸盐通报,2009,28(6):1286-1290.
    [98]袁红涛,陆平,梅东海.烧成温度对氧化铝-堇青石导热陶瓷性能的影响[J].建材世界,2010,32(1):1-3.
    [99]柏雪,王玺堂.添加锰矿粉和碳酸钙对铝硅质陶粒支撑剂材料性能的影响[J].耐火材料,2012,46(2):99-101,106.
    [100]刘欣,顾幸勇,李家科.添加剂对钛酸铝-莫来石多孔隔热材料性能的影响[J].山东陶瓷,2008,31(6):12-15.
    [101]洪琛,李健,曹春娥,等.中温高性能莫来石质匣钵的研制[J].中国陶瓷,2010,46(2):50-56.
    [102]刘艳改,冷先锋,黄赛芳,等.用菱镁矿和铝矾土碳热还原氮化制备Spinel-Sialon复相耐高温材料及其性能[J].稀有金属材料与工程,2009,38(2):1248-1251.
    [103]Morsy M A, Salah A A, Nagy M K, et al. Phase Composition of Bauxite-Based Refractory Castables [J]. Ceramics International,2011,37:411-418.
    [104]Kato S, Hamano H, Uemiya S, et al. Quantitative Evaluation of Water Absorption Ability of Calcinated Bauxite [J]. Kagaku Kogaku Ronbunshu,2001,27(1):50-56.
    [105]Tchamba A B, Melo U C, Kamseui E, et al. Thermal and sintering behavior of bauxites from Haleo-Danielle, Minim-Martap (Cameroon) [J]. Industrial Ceramics,2010,30(1):21-26.
    [106]Yugeswaran S, Selvarajan V, Dhanasekaran R.Transferred Arc Plasma Processing of Mullite-Zirconia Composite from Natural Bauxite and Zircon Sand [J]. Vacuum,2008,83(2): 353-359.
    [107]Pontikes Y, Nikolopoulos P, Angelopoulos G N. Thermal Behaviour of Clay Mixtures with Bauxite Residue for the Production of Heavy-Clay Ceramics [J]. Journal of The European Ceramic Society,2007,27(2-3):1645-1649.
    [108]Karamian E, Monshi A, Bataille A, et al. formation of Nano Sic Whiskers In Bauxite-Carbon Composite Materials and Their Consequences On Strength and Density [J]. Journal of the European Ceramic Society,2011,31:2677-2685.
    [109]Tripathi H S, Ghosh A, Halder M K, et al. Microstructure and Properties of Sintered Mullite Developed from Indian Bauxite [J]. Indian Academy of Sciences,2012,35(4):639-643.
    [110]Yugeswaran S, Selvarajan V, Dhanasekaran R. Transferred Arc Plasma Processing of Mullite-Zirconia Composite from Natural Bauxite and Zircon Sand [J]. Vacuum,2008,83(2): 353-359.
    [111]Mondal A, Maitra S, Chandra S, et al. Alumina-Mullite Composites through Interaction of Bauxite and Fly Ash [J]. Transactions of the Indian Ceramic Society,2008,67(2):81-85.
    [112]Laskou M, Margomenou-Leonidopoulou G, Balek V. Thermal Characterization of Bauxite Samples [J]. Journal of Thermal Analysis and Calorimetry,2006,84(1):141-145.
    [113]Orescanin V, Nad K, Mikelic L, et al. Utilization of Bauxite Slag for the Purification of Industrial Wastewaters [J]. Process Safety and Environmental Protection,2006,84(B4):265-269.
    [114]Ewais E M M, Ahmed Y M Z, Ameen A M M. Preparation of Porous Cordierite Ceramic Using a Silica Secondary Resource (Silica Fumes) for Dust Filtration Purposes [J]. Journal of Ceramic Processing Research,2009,10(6):721-728.
    [115]江东亮,李龙土,欧阳世翕,等.中国材料工程大典[M].北京:化学工业出版社,2006.
    [116]张彪,郭景坤,诸培南,等.抗热震陶瓷材料的设计[J].硅酸盐通报,1995,3:35-40.
    [117]于润泽,刘延伶.改善耐火材料抗热冲击性的途径[J].耐火材料,1987,21(1):9-10.
    [118]Lzaki KHakkei K, Ultrastructure Processing for Advanced Ceramics, New York, John Willey&Sons,1988,10:891-896.
    [119]郭景坤,诸培南.复相陶瓷的设计原则[J].硅酸盐学报,1996,24(1):7-17.
    [120]马南钢,朗静.结构陶瓷的抗热震性能研究[J].武汉交通科技大学学报,1996,20(5):527-530.
    [121]Zende H H, Leistner H, Searle H R氧化锆材料在陶瓷工业中的应用[J].火花塞与特种陶瓷,1995,1:41-46.
    [122]徐国强.锆英石—铝矾土制备Zr02增韧莫来石陶瓷浅议[J].陶瓷研究,1995,10(1):15-18.
    [123]王志发,张恩堂,张玲.钛酸铝坩埚的制备及抗热震机理[J].耐火材料,1996,30(2):96.
    [124]黄政仁,沈志坚,凌律巍,等.碳化硅晶须补强莫来石复合材料的SPS烧结致密化研究[J].陶瓷学报,2001,22(3):115-120.
    [125]Wang Changan. The Effect of Whisker Orientation in SiC Whisker-reinforced Si3N4 Ceramic Matrix Composites [J]. Journal of the European Ceamic Society,1999,1:1903-1909.
    [126]Ray D A, Kaur S, Cutler R A, et al. Effects of Additives on the Pressure-assisted Densification and Properties of Silicon Carbide [J]. Journal of the American Ceramic Society,2008,97(7): 2163-2169.
    [127]于之东,刘人成.氮化硅陶瓷的烧结[J].中国陶瓷,1995,35(3):21-24.
    [128]上野和夫.微观结构对氮化硅陶瓷断裂韧性及硬度的影响[J]..工业陶瓷,1989,41(3):37-39.
    [129]Niihara K, Nikahira A, Izaki K. Interfaces in Si3N4-SiC Nano-Composite [J]. Journal of Materials Science Letters,1990,9(5):598-599.
    [130]Izaki KHakkei K, Ultrastructure Processing for Advanced Ceramics, New York, John Willey&Sons,1988,10:891-896.
    [131]李理,杨丰科,侯耀永.纳米颗粒复合陶瓷材料[J].材料导报,1996,4:67-73.
    [132]Martin Sternitzke. Review:Structural Ceramic Nanocomposites [J]. Journal of the European Ceramic Society,1997,17:1061-1082.
    [133]焦绥隆,Borsa C E氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增):89-93.
    [134]王宏志,高濂,归林华,等.晶内型Al2O3-SiC纳米复合陶瓷的制备[J].无机材料学报,1997,(5):671-674.
    [135]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.12.
    [136]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004.8.
    [137]Randy J P, Estela T. High Temperautre Composite Thermal Storage System for Industrial Application [J]. Proceedings of 20th Energy Technology Conference, Washington, DC,1985, 6:134-137.
    [138]Terry Claar D, et al. Composite Salt Ceramic Media for Thermal Energy Storage Application [J]. Proceedings 17th IECEC Meeting,1982:2043-2048.
    [139]Gluck A, Tamme R, Kalaf H, et al. Development and Testing of Advanced TES materials for Solar Thermal Central Receier Plants [J]. Proceedings, Solar World Congress,1991,2(2): 1943-1948.
    [140]Hahne E, Taut U and Grob Y. Salt Ceramic Themral Energy Storage for Solar Thermal Central Receier Plants [J]. Proceedings, Solar World Congress,1991,2(2):1937-1942.
    [141]Tamme R, Laing D, Steinmann W D. Advance Thermal Energy Storage Technology for Parabolic Trough [J]. Journal of Solar Energy Engingeering- Transactions of the Asme,2004, 126(2):794-800.
    [142]Michael E, Van Valkenburg, Robert L V, et al. Thermochemistry of Ionic Liquid Heat-Transfer Fluids [J].Thermochimica Acta.2005,425:181-188.
    [143]Hae S K, Mi K K, Sun B K, et al. Bending Strength and Crack-Healing Behavior of Al2O3/SiC Composites Ceramics [J]. Mater. Sci. Eng.2006.09.169-171.
    [144]Mustapha Najjari, Sassi Ben Nasrassah. Effects of Latent Heat Storage on Heat Transfer in a Forced Flow in a Porus Layer [J]. International Journal of Thermal Sciences,2008,47:825-833.
    [145]Steiner D, Wierse M, Groll M. Development and Investigation of Thermal Energy Storage Systems for the Media Temperature Range [J]. Proceedings 30th IECEC, Edited by D. Yogi Goswami, Landis Kannberg, (New York, American Society of Mechanical Engineers united Engineering Center) 1995:193-198.
    [146]Schwerin M, Listle W. Development of a Latent Heat Storage System with Ceramic Matrix for Utilization of Industrial Waste Heat [J]. Final Report,1997, (1):193-198.
    [147]Soteris A. Kalogirou Parabolic trough collectors for industrial process heat in Cyprus [J]. Energy,2002,27:813-830.
    [148]Horst Michels, Robert Pitz-Paal. Cascaded Latent Heat Storage For Parabolic Trough Solar Power Plants [J]. Solar Energy,2007,81:829-837.
    [149]Qi Qi, Shiming Deng, Yiqiang Jiang. A Simulation Study on a Solar Heat Pump Heating System With Seasonal Latent Heat Storage [J].Solar Energy,2008,82:669-675.
    [150]Jin Huang, KE Xiufang. Molten Salts/Porous-Ceramic Matrix Composites by Spontaneous Melt Infiltration Method as Phase-Change Energy Storage Materials [J]. Journal of Materials Science&Engineering,2007,25(3):336-340.
    [151]Ali Karaipekli, Ahmet Sarl. Capric-Myristic Acid/Vermiculite Composite as Form-Stable Phase [J]. Solar Energy,2009 (83):323-332.
    [152]Vincent Morisson, Mohamed Rady, Elena Palomo, et al. Thermal Energy Storage Systems For Electricity Production Using Solar Energy Direct Steam Generation Technology [J]. Chemical Engineering and processing,2008,47:499-507.
    [153]Shin S J, Guzman J, Yuan C W, et al. Embedded Binary Eutectic Alloy Nanostructures:A New Class of Phase Change Materials [J].2007,7:120-125.
    [154]张仁元,朱泽培,朱焕良,等.相变(复合)储能技术应用与开发可行性研究报告(广州,中国科学院广州能源研究所报国家纪委节能局,1988).
    [155]黄金.融盐自发浸渗用微米级多孔陶瓷预制体的烧制.材料导报,2006,5:126-135.
    [156]王华.燃料工业炉用陶瓷与熔融盐复合蓄热材料的制备.《工业加热》2002,4:20-22.
    [157]张兴雪,王华,王胜林.MgO陶瓷基复合相变蓄热材料的制备和性能研究[J].工业加热,2006,35(1):7-9.
    [158]李爱菊,王毅,张仁元,等.储热室新型储热体的研究进展[J].工业加热,2007,36(1):1-5.
    [159]李辉,方贵银.具有多孔基体复合相变储能材料研究[J].材料科学与工程学报,2003,21(6):842-844.
    [160]王维龙,杨晓西,方玉堂,等.潜热储热系统强化传热研究进展[J].可再生能源,2005,5:15-19.
    [161]吴建锋,李剑,徐晓虹,等.用于太阳能储热的粘士结合SiC复相陶瓷研究[J].功能材料,2009,40:637-641.
    [162]焦国豪.太阳能热发电用PCM/Al2O3基陶瓷复合相变储能材料的研制[D].武汉理工大学,2011.
    [163]刘强.包裹相变材料的蓄热氧化铝基复相蜂窝陶瓷的研究[D].武汉理工大学,2010.
    [164]冷光辉,吴建锋,徐晓虹.封装PCM陶瓷储热材料的性能[J].储能科学与技术,2012,1(2):123-130.
    [165]王华,Ito Y, Nohira T,等.新型陶瓷与熔融盐复合储热材料优化组合的数值模拟[J].中国有色金属学报,2002,12(3):550-555.
    [166]张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能[J].材料研究学报,2000,14(6):652-656.
    [167]Tamme R, Taut U, Streuber C, et al. Energy storage development for solar thermal process [J]. Solar Energy Materials,1991,24(1-4):386-396.
    [168]李爱菊,王毅.Na2SO4/SiO2复合储能材料制备工艺和性能的研究[J].华南师范大学学报:自然科学版,2008,(1):82-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700