用户名: 密码: 验证码:
含Pr超磁致伸缩材料与磁性纳米粒子的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在先进的磁性功能材料中,稀土-铁超磁致伸缩材料(GMM)和磁性纳米材料这两类磁性材料占据着重要的位置。GMM由于其优异的磁致伸缩性能以及大的机电耦合系数,在声纳换能器、防震装置、位移器等精密仪器领域有着关键的应用。而磁性纳米材料则在磁记录、磁流体、医学成像、靶向药物、催化等方面有着广泛的应用。
     对于GMM材料,其昂贵价格是阻碍其广泛应用的主要因素之一。而对磁性纳米材料来说,探索合适的制备工艺,研究其生长机理,实现纳米晶粒的尺寸与形貌的可控合成和性能调控,是当前磁性材料的研究热点与难点。基于上述问题,本学位论文成功地采用价格相对便宜的Pr元素部分取代了(Tb, Dy)Fe2中的Dy元素,制备出(Tb, Dy, Pr)Fe2化合物。采用水热法制备了尺寸小于10纳米的Fe304与CoFe2O4磁性纳米粒子,并研究其性能和晶粒生长的机理。本学位论文的主要研究内容与结果如下:
     1.通过电弧炉法成功制备了Tbo.3(Dy1-xPrx)o.7Fe1.96(x=0,0.1,0.2,…,0.6)化合物合金锭。XRD粉末衍射结果显示了化合物的结构与晶格常数随着Pr含量增加的变化规律。SEM-BSD和热磁曲线的检测结果验证了材料物相的变化。磁性能测试表明,随着Pr含量增加,化合物的居里点和磁化强度都发生了下降。本实验的结果,为TbDyPrFe材料的成分控制与性能提高提供了必要的实验依据。
     2.首次通过籽晶引导的定向凝固区熔法,制备具有一定择优取向的Tbo.3(Dy1-xPrx)o.7Fe1.96定向凝固样品。材料检测表明,随着Pr含量的增加,化合物的取向发生变化。同时,材料的磁致伸缩性能发生下降,微分磁致伸缩系数d33逐渐下降且趋向于变为一个常数,而磁致伸缩滞后也逐渐减少。研究发现,在一定的成分范围内,热处理能够有效提高材料的磁致伸缩值,其λ值最高能比相应的铸态样品提高一倍。最后,论文利用SEM-BSD和能谱对铸态样品的物相结构进行了测量,并分析了材料性能与结构变化的关系。本研究首次发现TbDyPrFe化合物的定向凝固参数需要根据Pr含量作适当调整,并阐明了Pr含量与定向凝固样品的磁致伸缩性能的关系,以及热处理对材料结构与性能之间的影响规律。这些研究结果将有助于使TbDyPrFe化合物成为实用化的新型超磁致伸缩材料。
     3.以Fe(acac)3和Fe粉为前驱体,在正己烷-表面活性剂体系中通过水热法制备了不同晶粒尺寸的磁性纳米晶粒。XRD和拉曼光谱证实所制得的材料为Fe304。 HRTEM分析表明,随不同的反应时间,样品的晶粒尺寸在5.3-6.8nm之间分布。从晶粒形貌的变化对样品的生长机理进行分析,本文认为在表面活性剂的调控下,纳米晶的形貌从无规则形状过渡到三角形和四边形,最后生长为六边形。磁性测量表明,所制得的样品都具有超顺磁性,最大的饱和磁化强度为62.65emu/g。本研究结果可以为Fe304磁性纳米材料的可调控制备与应用提供技术支持与理论参考。
     4.利用水热法,以Fe(acac)3和CoCl2·6H20为前驱体,分别在正己烷-水-表面活性剂(标记为A1)和乙醇-表面活性剂(标记为B1)两个反应体系中成功制备了CoFe2O4纳米粒子。利用Scherrer公式对XRD数据进行估算,结果显示所制备的样品尺寸均小于5纳米。磁性能检测表明,A1和B1样品的Ms分别为60.95emu/g和61.20emu/g,Hc分别为1860.90Oe和423.32Oe。经过热处理后,样品的Ms、Mr,Hc和剩磁比R均有不同程度的变化。最后,论文初步分析了两个体系的反应机理,并讨论了反应体系对晶粒尺寸以及磁性能的影响规律。
Rare earth-iron giant magnetostrictive material (GMM) and nano-magnetic material play an important role in advanced magnetic functional materials. Because of its excellent magnetostrictive properties and large electromechanical coupling factor, GMM has critical applications in some precision instruments, such as sonar transducer, anti-vibration mounting, positioning device, and etc. Meanwhile, the nano-magnetic materials have been widely exploited in many fields, such as magnetic recording, magnetic fluid, magnetic resonance imaging, drug targeting, and catalysts.
     For GMM, its expensive price is one of the main factors hindering its wider application. For nano-magnetic material, it has become the research focus and challenge to explore the preparation technology and to study the crystal growth mechanism, in order to precisely control the grain size, morphology and property. Based on the above-described problems,(Tb, Dy, Pr)Fe2compound is successfully prepared by partial substituting the relatively inexpensive rare earth element, Pr, for the expensive metal element, Dy, in the (Tb, Dy)Fe2alloy in this dissertation. Also, Fe3O4and CoFe2O4magnetic nanopatticles with the grain size less than10nm are synthesized by hydrothermal method. Their properties and the mechanism of grain growth are studied in details. In this dissertation, the main researches and results are as follows:
     1. The Tb0.3(Dy1-xPrx)0.7Fe1.96compound ingots with x=0,0.1,0.2,…,0.6are prepared by arc melting method. The powder XRD results of the powder show the evolution regulation of the compounds microstructure and lattice constant with the increase of Pr content. The measurement results of SEM with BSD mode and thermo-magnetic curves confirm the change of phase composition. The magnetic test indicates that the Curie point and the magnetization of the compound decrease with the increase of Pr element. The results of this experiment will provide the necessary reference data for the controlling of material composition and performance improving for TbDyPrFe materials.
     2. The directionally solidified Tb0.3(Dy1-xPrx)0.7Fei.96rods with some preferred orientation are first prepared by the zone melting method with the guidance of seeds. The results of measurement indicate that, with the increase of Pr element, the orientation of samples is changed, the magnetostrictive properties decrease, the value of differential magnetostrictive coefficient (d33) reduces gradually and tends to become a constant. The magnetostrictive hysteresis of the samples is also reduced gradually. It is found that in a range of Pr content, heat treatment could effectively improve the magnetostrictive property of samples. After heat treatment, the maximum value increases about one times than the as-cast ones. At last, the relationship between the properties and the phase composition of samples is analyzed by the measurement of as-cast samples by SEM-BSD and EDS. In summary, the study of this dissertation first finds that the directional solidification parameters of TbDyPrFe compounds need to be adjusted according to the Pr content. The effects of Pr content, magnetostrictive properties of the directionally solidified samples and heat treatment on the structure and properties of materials are clarified. The results of these studies will be beneficial to make TbDyPrFe compounds to be a series of practical new giant magnetostrictive materials.
     3. Magnetic nanocrystals with different size are prepared by hydrothermal method at different reaction-times in N-hexane-surfactant system. The precursors are Fe(acac)3and iron powder. The results of XRD and Raman spectrum confirm these samples are Fe3O4. HRTEM measurement shows the grain size distributes from5.6to6.8nm with the reaction time. The grain growth mechanism is analyzed based on the crystal morphologies. It is considered that in the regulation of surfactant, the morphology of the Fe3O4magnetic nanocrystals change from the irregular crystal form to triangles and quadrilaterals, and finally to the hexagonal nanoparticles. The Magnetic measurement results show that the prepared samples are of superparamagnetic, and the maximum saturation magnetization is62.65emu/g. The results in these investigations could provide technical support and theoretical reference for the regulation preparation and its application of the Fe3O4magnetic nanocrystals.
     4. By the hydrothermal methods, CoFe2O4nanoparticles are successfully synthesized in the hexane-water-surfactants system (sample Al) and the ethanol-surfactants system (sample B2). The precursor are Fe(acac)3and CoCl2·6H2O. The results of XRD estimated by Scherrer formula indicate that the crystal size of all the samples is less than5nm. Magnetic measurement indicates that the saturation magnetizations (Ms) of sample A1and B1are60.95emu/g and61.20emu/g, the coercivities (Hc) are1860.90Oe and423.32Oe, respectively. After heat treatment, Ms, Mr, Hc, and remanence ratio R of samples are changed in some degree. At last, the reaction mechanism of these two systems is analyzed, and the effects of these reaction systems on the crystal size and magnetic properties are discussed.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].第二版.北京:科学出版社,2002:59-73
    [2]周寿增,董清飞.超强永磁体:稀土铁系永磁材料[M].北京:冶金工业出版社,2002:1-16
    [3]马如璋,蒋民华,徐祖雄.功能材料学概论[M].北京:冶金工业出版社,1999:80-86
    [4]Claeyssen F, Lhermet N, Le Letty, et al. Actuators, transducers and motors based on giant magnetostrictive materials[J]. J. Alloys Compd.,1997,258:61-73
    [5]Dhilsha K R, Markandeyulu G, Subrahmanyeswara R, et al. Design and fabrication of a low frequency giant magnetostrictive transducer[J].J. Alloys Compd.,1997,258:53-55
    [6]Shi Z X, Chen Z M, Wang X H, et al. Directionally solidified TbxDy1-x(MyFe1-y)1.9 giant magnetostrictive materials and their applications in transducer[J].J. Alloys Compd.,1997, 258:30-33
    [7]Quandt E, Ludwig A. Magnetostrictive actuation in microsystems[J].Sens. Actuators,2000, 81:275-280
    [8]Michelenaa M D, Monterob F, Sancheza P, et al. Piezoelectric-magnetostrictive magnetic sensor using stripe Actuators[J].J Magn. Magn. Mater.,2002,242-245:1160-1162
    [9]刘德忠,费仁元,李剑锋,等.磁致伸缩微动驱动器的研究[J].北京工业大学学报,2002,28:405-408
    [10]贾振元,杨兴,王福吉,等.有位移感知功能的超磁致伸缩微位移执行器的研究[J].应用科学学报,2002,20(4):354-359
    [11]Zhu Houqing, Liu J G, Wang X R, et al. Applications of Terfenol-D in China[J].J Alloys Compd.,1997,258:49-52
    [12]Dapino M J. On magnetostrictive materials and their use in smart material transducer[J].Struct. Eng. Mech. J.,2002:1-28
    [13]奥汉德利R.C.现代磁性材料原理和应用[M].周永洽等译.北京:化学工业出版社,2002:425-427
    [14]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003:278-312
    [15]Bean C P, Jacobs IS. Magnetic granulometry and super-paramagnetism[J]. J. Appl. Phys., 1956:27,1448-1451
    [16]Chikazumi S, Taketomi S, Ukita M, et al. Physics of magnetic fluids[J].J Magn. Magn. Mater.,1987,65:245-251
    [17]Lu A H, Schmidt W, Matoussevitch N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angew. Chem. Int. Ed.,2004,43:4303-4306
    [18]Lu A H, Nitz J, Comotti M, et al. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition[J]. J. Am. Chem. Soc.,2010,132:14152-14162
    [19]Yoon H, Ko S, Jang J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling[J]. Chem. Commun.,2007,1468-1470
    [20]Pan Y, Du X W, Zhao F, et al. Magnetic nanoparticles for the manipulation of proteins and cells[J].Chem. Soc. Rev.,2012,41:2912-2942
    [21]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021
    [22]Li Z, Wei L, Gao M Y, et al. One-pot reaction to synthesize biocompatible magnetite nanoparticles[J].Adv. Mater.,2005,17(8),1001-1005
    [23]Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticles design for medical application[J].Prog. Solid State Chem.,2006,34:237-247
    [24]Frey N A, Peng S, Cheng K, et al. Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage[J]. Chem. Soc. Rev.,2009, 38(9):2532-2542
    [25]Wiltshire M C K, Pendry J B, Young I R, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging[J]. Science,2001,291:849-851
    [26]Takafuji M, Ide S, Ihara H, et al. Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chem. Mater.,2004,16: 1977-1983
    [27]Jung J H, Lee J H, Shinkai S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields[J].Chem. Soc. Rev., 2011,40:4464-4474
    [28]Han C L, Cai W P, Tang W, et al. Protein assisted hydrothermal synthesis of ultrafine magnetite nanoparticle built-porous oriented fibers and their structurally enhanced adsorption to toxic chemicals in solution[J]. J. Mater. Chem.,2011,21:11188-11196
    [29]Sharrock M P, Bodnar R E. Magnetic materials for recording:An overview with special emphasis on particles[J]. J. Appl. Phys.,1985,57:3919-3924
    [30]Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].Science,2000,287:1989-1992
    [31]钟定文.铁磁学.中册[M].北京:科学出版社,2000:21-43
    [32]近角聪信.铁磁性物理[M].兰州:兰州大学出版社,2002:283-295
    [33]宛德福,马兴隆.磁性物理学[M].北京:电子工业出版社,1999:157-219
    [34]Clark A E. Magnetostrictive rare earth-Fe2 compounds [M]. Amsterdam, North-Holland, 1980:531-589
    [35]Legvold S, Alstad J, Rhyne J. Giant magnetostriction in dysprosium and holmium single crystals[J]. Phys. Rev. Lett.,1963,10:509-511
    [36]Clark A E, Desavage B F, Bozorth R M. Anomalous thermal expansion and magnetostriction of Dysprosium[J]. Phys. Rev.,1965,138A:216-224
    [37]Clark A E, Belson H S. Giant room-Temperature magnetostrictions in TbFe2 and DyFe2[J]. Phys. Rev. B,1972,5(9):3642-3644
    . [38]Clark A E, Abbundi R, Gillmor W R. Magnetization and magnetic anisotrophy of TbFe2, DyFe2, Tbo.27Dyo.73Fe2 and TmFe2[J]. IEEE Trans. Magn.,1978,14:542-544
    [39]Wun-Fogle M, Restorff J B, Clark A E, et al. Magnetization and magnetostriction of dendritic<112> TbxDyyHozFe1.95 rods under compressive stress[J]. J. Appl. Phys.,1998, 83(11):7279-7281
    [40]Zhang H B, Pang Y R, Wen L J,et al. Magnetostriction and hysteresis of<110> oriented TbDyHoFe1.95 alloy[J]. J. Rare Earths,2010,28:403-405
    [41]Zhang H B, Jiang C B, Wang Z B, et al. Effect of compressive stress on magnetostriction hysteresis of<110> oriented Tbo.29Dyo.48Hoo.23Fe2 crystal [J]. J. Alloys Compd.,2009,475: 35-37
    [42]张绍强,张茂才,高学绪,等.Tb1-xPrxFe1.96化合物的磁性能及其物相组成的研究[J].中国稀土学报,2004,22(5):632-636
    [43]Zhang S Q, Zhang M C, Gao X X, et al. Magnetic properties and phase composition of Tb1-xPrxFe1.96 compounds[J]. J. Rare Earths,2006,24:202-208
    [44]Zhang M C, Zhang S Q, Gao X X, et al. Study on the magnetic properties and phase composition of Tb1-xPrxFe1.96 (x=0-7) compounds[J]. J. Magn. Magn. Mater.,2006,301: 208-212
    [45]Guo H Q, Gong H Y, Yang H Y, et al. Effect of Co substitution for Fe on magnetic and magnetostrictive properties in Smo.88Dyo.12.Fe2-xCox compounds[J]. Phys. Rev. B,1996, 54(6):4107-4112
    [46]Guo Z J, Zhang Z D, Wang B W, et al. Giant magnetostriction and spin reorientation in quaternary (Sm0.9Pro.1)(Fe1-xCox)2 [J].Phys. Rev. B,2000,61(5):3519-3523
    [47]Yang F, Liu W, Li S Q, et al. Structure, magnetic and magnetostrictive properties of Smo.7Pro.3Fex alloys[J]. Mater. Lett.,2010,64:608-610
    [48]Ma T Y, Jiang C B. Mechanical and magnetostrictive properties of Tbo.36Dyo.64(Fe1-xMnx)1.9 alloys[J]. J. Trans. Nonferrous Met. Soc. China,2006,16: s26-s30
    [49]Wu C H, Yang C P, Chuang Y C, et al. Structure and magnetostriction of R(Fe1-xMnx)1.85 mlloys (R=Tbo.25Dyo.65Pro.1)[J].J. Magn. Magn. Mater.,1997,166:249-252
    [50]Ma T Y, Jiang C B, Xiao F, et al. Magnetomechanical damping capacity of Tb0.36Dyo.64(Fe1-xTx)2 (T=Co, Mn) alloys[J].J. Appl. Phys.,2006,100(2):023901-023901-6
    [51]Teter J P, Clark A E, Wun-Fogle M, et al. Magnetostriction and hysteresis for Mn substitutions in (TbxDy1-x)(MnyFe1-y)1.95[J]. IEEE Trans. Magn.,1990,26:1748-1750
    [52]Ma T Y, Jiang C B, Xu X, et al. The Co-doped Tbo.36Dyo.64Fe2 magnetostrictive alloys with a wide operating temperature range[J]. J. Magn. Magn. Mater.,2005,292:317-324
    [53]崔跃,蒋成保,徐惠彬.Tb-Dy-Fe-Co合金本征磁致伸缩性能[J].金属学报,2011,47(2):214-218
    [54]Clark A E, Teter J P, Wun-Fogle M. Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9 (T=Co,Mn) [J]. J. Appl. Phys.,1991,69:5711-5773
    [55]Tang S L, Wu C H, Jin X M, et al. Structure and magnetostriction of R(Fe1-xGax) Fe1.85 and R(Fe1-xCrx)Fe1.85 alloys (R= Tbo.25Dyo.6sPro.1) [J]. J. Alloys Compd.,1997,256: 247-251
    [56]Clark A E, Teter J P, McMasters O D. Magnetostrictive properties of Tbo.3Dyo.7(Fe1-xCox)1.9 and Tbo.3Dyo.7(Fe1-xNix)1.9 [J]. IEEE Trans. Magn.,1987,23: 3526-3528
    [57]Wang J H, Wu G H, Zhao X G, et al. Magnetic properties and magnetostriction of twin free single crystal Tb0.27Dy0.73(Fe1-xAlx)2[J].J. Appl. Phys.,1996,79:4668-4671
    [58]Wang B W, Wu C H, Deng W, et al. Microstructure and magnetostriction for (Tbo.25Dyo.65Pro.1) (Fe1-xAlx)1.8 alloys[J]. J. Appl. Phys.,1996,79:2587-2589.
    [59]李养贤,曲静萍,王博文,等.TbyDy1-y(Fe1-xTx)2 (T=Al,Mn)的磁致伸缩与内禀磁致伸缩特性[J].物理学报,1999,48(Z):257-262
    [60]Mohan C H V. Detailed magnetostriction and studies on aluminium substituted Tbo.27Dyo.73Fe2 alloy. [J].J. Alloys Compd.,1996,238:86-89
    [61]Wang J H, Xu G H, Zhao Z G, et al. Magnetic properties and magnetostriction of twin-free single-crystal Tbo.27Dyo.73(Fe1-xAlx)2[J].J. Appl. Phys.,1996,79:4668-4670
    [62]郑小平,薛德胜,李发伸,等.Tbo.3Dyo.7(Fe1-xAlx)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究[J].物理学报,2002,51(4):922-927
    [63]Wu L, Zhan W S, Chen X C, et al. The Effect of boron on the magnetostrictive properties of Tb0.27Dyo.37Fe2[J].J. Alloys Compd.,1994,216:85-87
    [64]Kin K S, Seong Y H, Yu S C, et al. The temperature dependence of magnetization of B containing melt-spun Tb-Dy-Fe alloys[J]. Magn. Magn. Mater.,1999,196-197:209-210
    [65]Wu L, Zhan W S, Chen X C. The effects of boron on the magnetostrivtive properties of Tbo.27Dyo.73Fe2 alloy[J]. J. Alloys Compd.,1994,216:85-87
    [66]Zhang H P, Zhu H Q, Du T. Effect of V on microstructure and magnetic properties of polycrystal Tb-Dy-Fe alloy[J].J Alloys Compd.,1997,258:20-23
    [67]Shih J C, Chin T S, Chen C A, et al. The effect of beryllium addition on magnetostriction of the Tb0.3Dy0.7Fe2 alloy[J]. J Magn. Magn. Mater.,1999,191:101-106
    [68]Cullity B D, Graham C D. Introduction to magnetic materials[M]. Second edition. New Jersey:John Wiley & Sons, Inc.,2010:258
    [69]严密,彭晓领.磁学基础与磁性材料[M].浙江:浙江大学出版社,2006:211-220
    [70]Wu G H, Zhao X G, Wang J H, et al.<111> oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. [J]. Appl. Phys. Lett.,1995, 67:2005-2007
    [71]Zhao X G, Wu G H, Wang J H, et al. Stress dependence of magnetostrictions and strains in<111>oriented single crystals of Terfenol-D [J]. J. Appl. Phys.,1996,79:6225-6228
    [72]Zhang M C, Gao X X, Zhou S Z, et al. High performance giant magnetostrictive alloy with<110> crastal orientation[J]. J.Alloys Compd.,2004,381(1-2):226-228
    [73]Clark A E, Vethoeven D, MeMasters O D, et al. Magnetostriction in twifmed<112> crystals of Tbo.27Dyo.73Fe2[J].IEEE Trans. Magn.,1986,22(5):973-975.
    [74]高学绪,张茂才,包小倩,等.<113>轴向取向稀土超磁致伸缩材料的制备与性能[J].中国稀土学报,2004,22(2):234-237
    [75]Verhoeven J D, Gibson E D, McMasters O D, et al. The growth of single crystal Terfeno-D crystals[J]. Metall. Trans.,1987,18A:223-225
    [76]张茂才,蒋成保,赵青,等.Tbo.3Dyo.7(Fe, M)1.95合金的晶体轴向取向与磁致伸缩性能[J].北京科技大学学报,1997,19(1):87-90
    [77]李碚,伍虹,高军,等.(TbDy)Fe2基定向凝固磁致伸缩合金的性能与组织和成分的关系[J].中国稀土学报,1998,16(4):332-338
    [78]Ji C C, Li J Q Ma W Z, et al. Preparation of Terfenol-D with precise<110> orientation and observation of the oriented growth crystal morphology [J]. J. Alloys Compd.,2002, 333:291-295
    [79]Goran E. Handbook of giant magnetostrictive materials[M]. USA, Academic Press,2000: 1-125
    [80]Jones D G, Fairclough J P, Abell J S, et al. Powder metallurgical processing of Tbo.27Dyo.73Fe2-x (0    [81]Zajkov N K, Mushnikov N V. Influence of HDDR treatment on magnetic properties of TbFe2- and DyFe2-based intermetallics[J]. J. Alloys Compd.,1997,260:271-276
    [82]Pinkerton F E, Herbst J F, Olk C H, et al. Tb1-xDyxFe2/Fe composites compositional effects on torque response[J].J. Magn. Magn. Mater.,2002,241:162-172
    [83]Moron C, Garcia A, Carracedo M T. Temperature distribution study in flash-annealed amorphous ribbons[J]. J. Magn. Magn. Mater.,2003,254-255:510-512
    [84]Hernando A, Prados C, Prieto C. Anisotropy, magnetostriction and local chemical order in amorphous TbxFe1-x(0.1    [85]Oderno V, Dufour C, Dumesnil K, et al. Epitaxial growth of (110) DyFe2, TbFe2 and Dyo.7Tbo.3Fe2 thin films by molecular beam epitaxy[J]. J. Cryst. Growth,1996,165: 175-178
    [86]Quandt E, Ludwig A, Mencik J, et al. Giant magnetostrictive TbFe/Fe multilayers[J].J. Alloys Compd.,1997,258:133-137
    [87]Hirohisa U, Yoshihito M, Haruhisa U, et al. Progress in thin films of giant magnetostrictive alloys[J].J. Magn. Magn. Mater.,2002,239:540-545
    [88]Hufnagel T C, Hellman F. Structural and magnetic length scales in amorphous TbFe2[J].J. Magn. Magn. Mater.,2003,256:322-327
    [89]Choi Y S, Lee S R, Han S H, et al. The magnetic properties of Tb-Fe-(B) thin films fabricated by rf magnetron sputtering[J].J. Alloys Compd.,1997,258:155-162
    [90]Dumesnil K, Mougin A, Dufour C, et al. Magnetic anisotropy in (110) DyFe2 films[J].J. Magn. Magn. Mater.,1999,198-199:516-518
    [91]Ciria M, Arnaudas J I, Dufour C, et al. Magnetostriction in a single-crystal TbFe2 film[J].Thin Solid Films,1998,317:303-305
    [92]Pinkerton F E, Herbst J F, Olk C H, et al. Tb1-xDyxFe2/Fe composites compositional effects on torque response[J].J. Magn. Magn. Mater.,2002,241:162-172
    [93]Prados C, Marinero E, Hernando A, et al. Magnetic interactions and anisotropy in amorphous TbFe films[J].J. Magn. Magn. Mater.,1997,165:414-416
    [94]Verhoeven J D, Ostenson J E, Gibson E E, et al. The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy1-xFey twinned single crystals[J].J. Appl. Phys.,1989,66:772-774
    [95]Wu, W, Tang H J, Zhang M C, et al. Effect of heat treatment on the mechanical properties of<110> oriented TbDyFe giant magnetostrictive material[J]. J. Alloys Compd.,2006,413:96-100
    [96]Stevens K W H. Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions[J].Proc. Phys. Soc. A,1952,65:209-215
    [97]Wang B W, Tang S L, Jin X M. Microstructure and magnetostriction of (Dyo.7Tbo.3)1-xPrxFe1.85 and (Dyo.7Tbo.3)o.7Pro.3Fey alloys[J]. Appl. Phys. Lett.,1996, 69(22):3429-3431
    [98]Lv X K, Or S W, Liu W, et al. Magnetomechanical properties of epoxy-bonded (Tbo.3Dy0.7)1-xPrxFe1.55 (0≤x≤0.4) pseudo-1-3 magnetostrictive composites[J].J. Phys. D:Appl. Phys.,2009,42:1-5
    [99]Ren W J, Zhang Z D, Zhao X G, et al. Magnetostriction and anisotropy compensation in TbxDyo.7-xPro.3(Feo.9Bo.1)1.93 alloys[J]. Appl. Phys. Lett.,2004,84:562-564
    [100]Li S T, Liu H Y, Meng F B, et al.Magnetostriction of Pro.1Tbo.3Dyo.6Fe2-xMnx alloys (0.0 ≤x≤0.2) [J] J. Alloys Compd.,2006,408-412:130-134
    [101]Wang B W, Wu C H, Jin X M. Structure and magnetostriction of (Dyo.62Tb0.25Pro.1)(Fe1-xAlx)3 alloys[J]. J. Alloys Compd.,1995,218:28-33
    [102]Li Y X, Tang C C, Du J, et al. Magnetostrictive and magnetic properties of the pseudobinary compounds PrxTb1-xFe2 and Pro.15TbxDyo.85-xFe2[J]. J. Appl. Phys.,1998, 83:7753-7756
    [103]Tang S L, Wu C H, Jin X M, et al. Structure and magnetostriction of (Dyo.6Tbo.3Pro.i)(Feo.95-xMno.o5Gax)1.85 alloys[J]. J. Alloys Compd.,1996,242:114-117
    [104]Liu H Y, Dong B, Li S T, et al. Synthesis of iron-based Laves phase containing Praseodymium magnetostrictive materials[J].J. Rare Earths,2007,25:449-453
    [105]Shi Y G, Tang S L, Lv L Y, et al. Magnetic and magnetostrictive properties in high-pressure synthesized Dy1-xPrxFe1.9 (0≤x%1)cubic Laves alloys[J]. J. Alloys Compd., 2010,506:533-537
    [106]Zhao X G, Li J Y, Liu S C. Magnetic properties and thermal stability of PrFe2 compound[J].J. Alloys Compd.,1997,258:39-41
    [107]Shi Y G, Tang S L, Huang Y J, et al. Structure, thermal stability and magnetostrictive properties of PrFex (1.5≤x≤3.0) alloys[J]. J.Alloys Compd.,2007,443:11-14
    [108]Zhang S Q, Zhang M C, Qiao Y, et al. Magnetostriction, Curie temperature and microstructure of Tbo.29(Dy1-xPrx)o.71Fe1.97 oriented alloys[J]. J. Magn. Magn. Mater., 2010,322:2304-2307
    [109]Jia Z Y, Liu H F, Wang F J, et al. Research on a novel force sensor based on giant magnetostrictive material and its model[J]. J.Alloys Compd.,2011,509:1760-1767
    [110]Vranish J M, Naik D P, Restorff J B, et al. Magnetostrictive direct drive rotary motor development[J]. IEEE Trans. Magn.,1991,27(6):5355-5357
    [111]Du T, Zhang H P, Zhu H Q. Magnetostriction and acoustics properties of Tb1-xDyx (Fe1-yMny)1.95 alloys and their application to sonar transducers[J] J. Rare Earths.2000,18: 54-56
    [112]Sahsshi M,,Kobayashi T, Domon T, et al. A new contact amorphous torque sensor with wide dynamic range and quick response [J] IEEE Trans. Magn.,1987,23(5):2194-2196
    [113]郑加驹,王洪礼,曹淑瑛.基于逆磁致伸缩效应的超磁致伸缩磁力控制器件建模[J].机械工程学报,2008,44(5):51-56
    [114]Yoshio Y, Hiroshi E, Teruo M, et al,Three-dimensional magnetostrictive vibration sensor:development, analysis, and applications[J]. J. Alloys Comp.,1997,258:107-113
    [115]Lu A H, Salabas E L, Schmidt F. Magnetic nanoparticles:synthesis, protection, functionalization, and application[J]. Angew. Chem. Int. Ed.,2007,46:1222-1244
    [116]Diandra L, Leslie P, Reuben R D. Magnetic properties of nanostructureed materials[J]. Chem. Mater.,1996,8:1770-1783
    [117]Jeong U, Teng X, Wang Y, et al, Superparamagnetic colloids:controlled synthesis and niche applications[J]. Adv.Mater.,2007,19:33-60
    [118]Horak D, Babic M, Mackova H, et al. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations[J]. J. Sep. Sci.,2007, 30:1751-1772
    [119]Liu Z L, Wang H B, Lu Q H, et al. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles[J].J. Magn. Magn. Mater.,2004,283:258-262
    [120]El-Okr M M, Salem M A, Salim M S, et al. Synthesis of cobalt ferrite nano-particles and their magnetic characterization[J].J. Magn. Magn. Mater.,2011,323:920-926
    [121]Lamer V, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. J.Am. Chem. Soc.,1950,72:4847-4854
    [122]Rockenberger J, Scher E C, Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J]. J. Am. Chem. Soc.,1999,121:11595-11596
    [123]Farrell D, Majetich S A, Wilcoxon J P. Preparation and characterization of monodisperse Fe nanoparticles[J]. J. Phys. Chem. B,2003,107:11022-11030
    [124]Jana N R, Chen Y, Peng X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach[J]. Chem. Mater.,2004,16: 3931-3935
    [125]Samia A C S, Hyzer K, Schlueter J A, et al. Ligand effect on the growth and the digestion of Co nanocrystals[J].J. Am. Chem. Soc.,2005,127:4126-4127
    [126]Li Y, Afzaal M, O'Brien P. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility[J].J. Mater. Chem.,2006,16:2175-2180
    [127]Park J, An K J, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat. Mater.,2004,3:891-895
    [128]Park J, Lee E, Hwang N. M. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles[J]. Angew. Chem. Int. Ed.,2005,44: 2872-2877
    [129]Sun S H, Zeng H. Size-contuolled synthesis of magnetic nanoparticles[J]. J. Am. Chem. Soc.,2002,124:8204-8205
    [130]Zeng H, Sun S H, Sandstrom R L, et al. Chemical ordering of FePt nanoparticle self-assembles by rapid thermal annealing[J]. J. Mang. Magn. Mater.,2003,226: 227-232
    [131]Kim D K, Park J N, An K J, et al. Synthesis of hollow iron nanoframes[J]. J. Am. Chem. Soc.,2007,129:5812-5813
    [132]Yin J S, Wang Z L. Preparation of self-assembled cobalt nanocrystal arrays[J]. Nano-struct. Mater.,1999,7(11):845-852
    [133]Puntes V F, Zanchet D, Erdonmez C K, et al. Synthesis of hcp-Co Nanodisks[J]. J. Am. Chem. Soc.,2002,124(43):12874-12880
    [134]Puntes V F, Krishan K M, Alivisatos A P. Colloidal nanocrystal shape and size control: the case of cobalt[J]. Science,2001,291:2115-2117
    [135]马千里,董相廷,王进贤,等.纳米四氧化三铁的化学制备方法研究进展[J].化工进 展,2012,31(3):562-573
    [136]Fan C Y, Jiang L. Preparation of hydrophobic nanometer gold particles and their optical adsorbption in chloroform[J]. Langmuir,1997,13:3059-3062
    [137]Pileni M P P, Motte L, Pett C, Synthesis of cadmium sulfide in sity in reverse micelles: influence of the preparation modes on size polydispersity and photochemical reaction[J].Chem. Mater.,1992,4(2):338-345
    [138]Perez J A L, Quintela M A L, Mira J, et al. Advances in the preparetion of magnetic nanopraticles by the micromulsion method[J]. J. Phys. Chem. B.,1997,10:8045-8047
    [139]Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions[J]. J. Mater. Chem.,2001,11:1704-1709
    [140]Carpenter E E, Sims J A, Awienmann J, et al. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques[J]. J. Appl. Phys.,2000,87: 5615-5617
    [141]Liu C, Zou B, Rondinone A J, et al. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites[J]. J. Phys. Chem. B,2000, 104:1141-1150
    [142]Liu C, Rondinone A J, Zhang Z J. Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties [J]. Pure Appl. Chem.,2000,72(1-2):37-45
    [143]Alberto G B, Maximiliano B S, Victor S. Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles[J]. Nanoscale Res. Lett.,2012; 7(1):83-87
    [144]Zhang D E, Tong Z W, Li S Z, et al. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion[J]. Mater. Lett.,2008,62(24):4053-4055
    [145]Byrappa K, Yoshimura M. Handbook of hydrothermal technology[M]. USA. William Andrew Publishing, LLC.2001:p1-7
    [146]Hou Y L, Kondoh H, and Ohta T. Self-assembly of Co nanoplatelets into spheres: synthesis and characterization[J]. Chem. Mater.,2005,17,3994-3996
    [147]Wu M Z, Xiong Y, Jia Y, et al. Co-doped magnetite nanowire arrays prepared hydrothermally[J]. Appl. Phys. A.,2005,81:1355-1358
    [148]Wan J X, Chen X Y, Wang Z H, et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods[J]. J. Cryst. Growth,2005,276:571-576
    [149]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437:121-124
    [150]王定胜,彭卿,李亚栋.单分散纳米晶的合成、组装及其介孔材料的制备[J].中国科学G, 2008,38(11):1434-1454
    [151]Liang X, Wang X, Zhuang J, et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals[J]. Adv. Funct. Mater.,2006,16(14):1805-1813
    [152]Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. Int. Ed.,2005,44:2782-2785
    [153]Duraes L, Costa B F O, Vasques J, et al. Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis[J]. Mater. Lett.,2005,59:859-863
    [154]Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetic nanoparticles by sol-gel method[J]. J. Magn. Magn. Mater.,2007,309:307-311
    [155]Mukh Q R A, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles[J].J.Colloid Interf. Sci.,2005,284:489-494
    [156]Yan J, Lei M, Zhu L, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J].J.Hazard. Mater.,2011,186: 1398-1404
    [157]Shevchenko E V, Talapin D V, Schnablegger H. Study of nucueation and growth in the organometallic synthesis of magnetic alloys nanoparticles:the role of nucleation rare in size control of CoPt3 nanoparticles[J]. J.Am. Chem. Soc.,2002,125:9090-9101
    [158]Gunther L. Magnetic nanoparticles for high density recording[J]. Phys. World,1990,3: 28-38
    [159]Zeng H, Li J, Liu J P, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J]. Nature,2002,420:395-398
    [160]Zeng H, Sun S H, Vedantam T S, et al. Exchange-coupled FePt nanoparticle assembly [J]. Appl. Phys. Lett.,2002,80:2583-2585
    [161]Hong R Y, Li J H, Li H Z. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids[J]. J. Magn. Magn. Mater.,2008,320:1605-1614
    [162]Larachi F, Desvigne D. Ferrofluid induced-field effects in inhomogeneous porous media under linear-gradient dc magnetic fields[J]. Chem. Eng. Process.,2007,46:729-735
    [163]Huang W, Wu J M, Guo W, et al. Study on the magnetic stability of iron-nitride magnetic fluid[J]. J. Alloys Compd.,2007,443:195-198
    [164]Wang D S, He J B, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation[J]. Nano Lett.,2004, 4:409-413
    [165]Bao J, Chen W, Liu T T, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation[J]. ACS Nano,2007,1:293-298
    [166]Tang S Q, Moon S J, Park K H. Feasibility of TEOS coated CoFe204 nanoparticles to a GMR biosensor agent for single molecular detection.[J]. J. Nanosci. Nanotechnol.,2011, 11:82-89
    [167]Lee J H, Huh Y M, Jun Y, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging[J]. Nat. Med.,2007,13 (1):95-99
    [168]Selvan S T, Patra P K, Ang C Y, et al. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells[J]. Angew. Chem. Int. Ed.,2007,46:2448-2452
    [169]Wang S H, Shi X Y, Van Antwerp M, et al. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells[J]. Adv. Funct. Mater., 2007,17:3043-3050
    [170]Papisov M I, Bogdanov J A, Schaffer B, et al. Colloida magnetic resonance contrast agents:effect of particle surface on biodistribution[J].J. Magn. Magn. Mater.,1993,122: 383-386
    [171]Shao H, Min C, Issadore D,et al. Magnetic nanoparticles and micro NMR for diagnostic applications[J]. Theranostics.2012,2 (1):55-65
    [172]Ruuge E K, Rusetski A N. Magnetic fluid as drug carriers:targeted transport of drugs by a magnetic field[J].J. Magn. Magn. Mater.,1993,122:335-359
    [173]Gao J H, Liang G L, Zhang B, et al. FePt@CoS2 Yolk-shell nanocrystals as a potent agent to lill Hela cells[J].J.Am. Chem. Soc.,2007,129:1428-1433
    [174]Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery[J]. J. Phys. Chem. C,2008,112:1851-1856
    [175]Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications[J]. Accounts Chem. Res.,2009,42:1097-1107
    [176]Gawande M B, Brancoa P S, Varma R S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies[J]. Chem. Soc. Rev.,2013,42(8):3371-3393
    [177]Feyen M, Weidenthaler C, Sch€uth F, et al. Synthesis of structurally stable colloidal composites as magnetically recyclable acid catalysts[J]. Chem. Mater.,2010,22: 2955-2961
    [178]Sankaranarayanapillai S, Volker S, Werner R. T. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis[J]. Angew. Chem. Int. Ed., 2010,49:3428-3459
    [179]Yi D K, Lee S S, Ying J Y. Synthesis and applications of magnetic nanocomposite catalysts[J]. Chem. Mater.,2006,18(10):2459-2461
    [180]Senapati K K, Borgohain C, Phukan P, et al. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium[J]. J. Mol. Catal. A-Chem.,2011,339(1-2):24-31
    [181]Ge J P, Huynh T, Hu Y X, et al. Hierarchical Magnetite/Silica nanoassemblies as magnetically recoverable catalyst-supports [J]. Nano Lett.,2008,8:931-934
    [182]Zhu Y H, Stubbs L P, Ho F, et al. Magnetic nanocomposites:a new perspective in catalysis[J]. Chem. Cat. Chem.,2010,2:365-374
    [183]Mei W, Okane T, Umeda T, et al. Directional solidication of Tb-Dy-Fe magnetostrictive alloys[J]. J. Alloys Compd.,1997,248:151-158
    [184]Jiang C B, Zhou S Z, Xu H B, et al. Investigation on the formation of the preperred orientations in a TbDyFe alloy with directional solidification [J]. J. Mater. Sci. Eng. B, 1999,58:191-194
    [185]高学绪.Tb-Dy-Fe超磁致伸缩材料的评估技术及低场性能研究[D].北京科技大学,2001
    [186]郑秀媛,谢大吉.应力应变电测技术[M].北京:国防工业出版社,1985:72-96
    [187]Greenough R D, Underhill C. Strain gauges for the measurement of magnetostriction in the range 4K to 300K[J]. J. Phys. E:Sci. Instrum.,1976,9:451-454
    [188]Si S F, Li C H, Wang X, et al. Magnetic monodisperse Fe3O4 nanoparticles [J]. Cryst. Growth Des,2005,5(2):391-393
    [189]De Faria D L A, Silva S V, De Oliveira M T. Microspectroscopy of some Raman iron oxides and oxyhydroxides[J].J. Raman Spectroscopy,1997,28:873-878
    [190]Liu J J, Ren W J, Lin J, et al. High Pr-content (Tb0.2Pr0.8)(Feo.4Coo.6)1.93-xBx magnetostrictive alloys[J]. Appl. Phys. Lett.,2005,87:082056-1-3
    [191]Gu Z F, Jiang M H, Huang Z F, et al. High magnetostriction at low fields of (Tb1-xDyx)o.2Pro.8(Feo.4Coo.6)1.88Co.o5 intermetalliccompounds[J]. J. Magn. Magn. Mater., 2010,322:1880-1883
    [192]张茂才,蒋成保,赵青,等.Tb0.3Dy0.7(Fe,M)1.95合金的晶体轴向取向与磁致伸缩性能[J].北京科技大学学报,1997,19(1):87-91
    [193]Clark A E, Teter J P, McMasters O D. Magnetostriction "jump" in twinned Tbo.3Dyo.7Fe1.9 [J]. J. Appl. Phys.,1988,63(8):3910-3912
    [194]Liu J J, Ren W J, Li D, et al. Magnetic transitions and magnetostrictive properties of TbxDy1-x(Feo.8Coo.2)2 compounds[J]. Phys. Rev. B,2007,75:064429-1-5
    [195]施建成,王桂华,王欣,等.新鲜铁表面锈蚀过程的拉曼光谱研究[J].上海师范大学学报(自然科学版),2001,30(4):62-66
    [196]Gouadec G, Colomban P. Raman spectroscopy of nanomaterials:how spectra relate to disorder, particle size and mechanical properties[J].Prog. Cryst. Growth Ch.,2007,53: 1-56
    [197]于文广,张同来,乔小晶.不同形貌Fe304纳米粒子的氧化沉淀法制备与表征[J].无机化学学报,2006,22(7):1263-1268
    [198]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J].Chem.Rev,,2005,105:1025-1029
    [199]Cornell R M, Schwertmann U. The iron oxides:structure, properties, reactions, occurrence and uses[M].seconded. Wiley-VCH, Weinheim,2003:7-35
    [200]Teja A, Koh P Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles[J]. Prog. Cryst. Growth Ch.,2009,55:22-45
    [201]Tan Y W, Zhuang Z B, Peng Q, et al. Room-temperature soft magnetic iron oxide nanocrystals:synthesis, characterization, and size-dependent magnetic properties[J]. Chem. Mater.,2008,20:5029-5034
    [202]Sugimoto M. The past, present and future of ferrites[J]. J. Am. Ceram. Soc.,1999,82: 269-280
    [203]Versluijs J J, Bari M A, Coey J M. Magnetoresistance of half-metallic oxide nanocontacts [J].Phys. Rev. Lett.,2001,87:026601-026604
    [204]Zhang F, Kantake S, Kitamoto Y, et al. Spin-spray ferrite-plated Co ferrite films with high coercivity for perpendicular magnetic recording media[J]. IEEE Trans. Magn.,1999, 35:2751-2753
    [205]Amiri S Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science[J]. Mater. Sci. Eng. C,2013,33:1-8
    [206]Wu H X, Liu G, Wang X, et al. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery[J]. Acta Biomater.,2011,7:3496-3504
    [207]Joshi H M, Lin Y P, Aslam M, et al.Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation[J]. J. Phys. Chem. C,2009, 113:17761-17767
    [208]Na H B, Song I C, Hyeon T. Inorganic nanoparticles for MRI contrast agents[J]. Adv. Mater.,2009,21:2133-2148
    [209]Tirosh E, Shemer G, Markovich G. Optimizing Cobalt Ferrite Nanocrystal Synthesis Using a Magneto-Optical Probe[J]. Chem. Mater.,2006,18:465-470.
    [210]Giri A K, Kirkpatrick E M, Moongkhamklang P. Photomagnetism and structure in cobalt ferrite nanoparticles [J]. Appl. Phys. Lett.,2002,80:2341-2343
    [211]El-Shobaky G A, Turky A M, Mostafa N Y, et al. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation[J]. J. Alloys Compd.,2010,493:415-422
    [212]Fannin P C, Marin C N, Malaescu I, et al. Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different thermal treatments[J]. Mater. Design,2011,32(3):1600-1604
    [213]Ai L, Jiang J. Influence of annealing temperature on the formation, micro-structure and magnetic properties of spinel nanocrystalline cobalt ferrites[J]. Curr. Appl. Phys.,2010, 10:284-288
    [214]Sidorov S N, Bronstein L M, Davankov V A, et al. Cobalt nanoparticle formation in the pores of hyper-crosslinked polystyrene:control of nanoparticle growth and morphology [J]. Chem. Mater.,1999,11:3210-3215
    [215]Ferreira T A S, Waerenborgh J C, Mendonca M H R M, et al. Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method[J].Solid State Sciences,2003,5(2):383-392
    [216]Kim YI, Kim D, Lee CS. Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method[J]. Physica B, 2003,337:42-51
    [217]Pillai V, Shah D O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions[J]. J. Magn. Magn. Mater.,1996,163:243-248
    [218]Gopalan E V, Joy P A, Al-Omari I A, et al. On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite[J]. J. Alloys Compd.,2009, 485(1-2):711-717
    [219]Lavela P, Tirado J L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries[J]. J. Power Sources,2007,172(1):379-387
    [220]Ji G B, Tang S L, Ren S K, et al. Simplified synthesis of single-crystalline magnetic nanorods by a surfactant-assisted hydrothermal process[J]. J. Cryst. Growth, 2004,270(1-2):156-161
    [221]Li X H, Xu C L, Han X H, et al. Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydro thermal condition[J]. Nanoscale Res. Lett.,2010,5(6):1039-1044
    [222]Liu Q, Sun J H, Long H R, et al. Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles[J]. Mater. Chem. Phys.,2008,108(2-3):269-273
    [223]Harris V G, Fatemi D J, Cross J O, et al. One-step processing of spinel ferrites via the high-energy ball milling of binary oxides [J]. J Appl. Phys.,2003,94:496-501
    [224]Herrera A P, Polo-Corrales L, Chavez E, et al.Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method[J]. J. Magn. Magn. Mater.,2013,328:41-51
    [225]Cojocariu A M, Soroceanu M, Hrib L, et al. Microstructure and magnetic properties of substituted (Cr, Mn)-cobalt ferrite nanoparticles[J]. Mater. Chem. Phys.,2012,135: 728-732
    [226]Mohamed R M, Rashad M M, Haraz F A, et al. Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method [J]. J. Magn. Magn. Mater.,2010,322:2058-2064
    [227]Zi Z F, SunY P, Zhu X B, et al. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles[J] J. Magn. Magn. Mater.,2009,321:1251-1255
    [228]Jun Y W, Seo J W, Cheon J W. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences[J]. Accounts Chem. Res.,2008,41(2):179-189
    [229]Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications[J]. J. Magn. Magn. Mater.,2012,324:903-915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700