用户名: 密码: 验证码:
纳米SiO_2及铼配合物掺杂聚酯复合材料的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用无机粒子对高分子聚合物进行改性,制备一般工程材料所不具有的优异性能成为复合材料的研究重点。传统的塑料聚苯乙烯(PS)由于具有良好的透明性、透气性等性能在包装材料及传感领域应用广泛,但也存在不可降解的缺点;在众多生物可降解材料中,聚己内酯(PCL)、聚羟基脂肪酸酯(PHA)和聚丁二酸丁二酯(PBS)共聚物(PBSA)由于其良好的力学性能、生物降解性和生物相容性受到了人们的关注,PBSA具有成本低、良好的可熔融加工性能等特点;但是PCL熔点低、稳定性差、受力容易变形等缺陷限制了它的广泛应用;PHA则由于其生产成本高、可加工的温度范围窄和脆性高等许多缺点,也使其应用范围受到了限制。
     本文概述了纳米SiO_2及铼配合物在制备聚合物复合材料的研究进展及应用情况,并分别利用它们掺杂高分子聚合物,制备了具有良好力学性能、加工性能和光学稳定性的复合材料。首先利用PCL良好的生物相容性和降解性能,与PBSA及PHA的单体共聚酯Poly(3HB-co-4HB)共混制备聚酯复合材料,克服了单一聚酯材料的性能缺点,然后用改性后的纳米SiO_2分别对两种复合材料进行填充改性,制备了性能优越的新型生物降解纳米复合材料,并研究他们的力学性能、结晶性能、流变行为和降解性能等。最后,合成了带发光基团的铼配合物,并用它掺杂PS及PS/PCL基质制备复合纳米纤维,研究了他们的光物理性能。主要内容和结论如下:
     (1)采用熔融共混挤出法制备PCL/PBSA复合降解材料。利用DSC、电子万能拉力机、SEM、旋转流变仪(AR-G2)对其微观结构、结晶、动态力学性能以及流变行为进行了研究。在PCL/PBSA(40/60)时,产生了相反转,复合材料的拉伸强度最大,断裂伸长率较高,力学性能较好。随着PBSA含量的增加,PCL结晶的起始温度逐渐提高,结晶峰温度也提高了2.5°C;结晶最终完成的温度也相应地从28.7°C提高到32.6°C。流变结果表明随着角频率的增加,复合材料的G和G″均单调增加,PBSA含量提高,共混体系的储能模量出现先减小后增大的趋势。
     (2)制备了PCL/PBSA/纳米SiO_2复合材料,纳米SiO_2含量分别为1、2、3、5wt%。利用FTIR、DSC、电子万能拉力机、SEM、旋转流变仪(AR-G2)对其微观结构、结晶、动态力学性能、分散性、降解性能以及流变行为进行了研究。红外光谱分析表明钛酸酯偶联剂改性纳米SiO_2,改性后的纳米SiO_2分散性很好。力学性能及SEM观察说明当纳米SiO_2含量在2%时,纳米SiO_2粒子分散较好,复合材料体系有最好的力学性能;当超过2%时,粒子容易产生团聚,导致应力集中,使得力学性能有所下降;流变行为分析显示强烈的剪切稀化行为。
     (3)制备了PCL/Poly(3HB-co-4HB)复合材料,并对复合材料进行了力学性能、热性能、降解及流变行为研究。结果表明:PCL/Poly(3HB-co-4HB)质量比为60/40时,断裂伸长率达到最大,而随着Poly(3HB-co-4HB)的加入,其拉伸强度、断裂伸长率及屈服强度性能呈明显下降趋势。降解性能分析表明失重率与时间长短和样品厚度有较大影响,均随着降解时间的增长,失重率越大,材料的力学性能越差;样品越厚,降解越缓慢。热分析说明Poly(3HB-co-4HB)的加入对PCL的结晶性能也产生较大影响,造成结晶温度的提高,结晶度的下降。流变行为研究表明聚合物共混物熔体流动性对温度的变化比较敏感,储能模量和损耗模量均随温度的升高而不同程度地降低。
     (4)用熔融共混法制备了纳米SiO_2/PCL/Poly(3HB-co-4HB)复合材料,并研究了偶联剂的加入量对复合材料体系的流动行为的影响。研究结果表明:当改性纳米SiO_2的含量达到4%时,缺口冲击强度达到最大,拉伸强度较大,同时还兼有较高的韧性;改性纳米SiO_2的加入,使得PCL/Poly(3HB-co-4HB)基体更易结晶,结晶速率也上升,过多的改性纳米SiO_2的加入,反而对结晶不利;一定剪切速率下,随着偶联剂含量的提高,体系的剪切粘度下降,且在低剪切速率下,剪切粘度下降的很快,呈现剪切稀化特征,而且材料的蠕变行为加剧,材料的稳定性差;改性纳米SiO_2的加入加快了复合材料的降解速度。
     (5)合成了一个磷光铼配合物,利用其掺杂PS及PS/PCL体系制备了复合纳米纤维,并研究了复合纳米纤维的光学稳定性、透气性、力学性能。研究结果表明,5.5%的掺杂浓度最优,灵敏度为4.14,光稳定性最好,没有发生光漂白现象;在加入PCL后制得的复合纤维不仅力学性能得到提高,同时保持较好的发光性能,且具有了生物可降解性,拓展了应用范围,有望应用于传感、包装和造纸防伪技术领域。
In recent years,research of composite materials has focused on modifying the polymerwith inorganic particles to prepare material with excellent performance that generalengineering material fails to attain. Polystyrene (PS), the traditional plastic, was widely used inpackaging material and sensing fields for its good transparency and permeability, but it is nondegradable. Among the broad biodegradable polymers family, poly (ε-caprolactone)(PCL),Poly(Butylene Succinate Adipate)(PBSA)and polyhydroxyalkanoates (PHA) have received anuniversal attention for their good mechanical properties, biodegradability and biocompatibility.PBSA has the advantages of low cost, good processability. The application of PCL is restrictedby its low melting point, poor stability and deformation. The application range of PHA is alsolimited for its shortages such as high production costs, high fragility and narrow processingtemperature range.
     This paper summarizes the research progress and application situation of nano SiO_2andRe(I) in preparing composite. Doped with polymer respectively, they were used to preparematerials with good mechanical properties, processing properties and optical stability. First,with good biocompatibility and biodegradation, the PCL was blended with PBSA andPoly(3HB-co-4HB) to prepare polyester composites, which overcame weakness of singlepolyester. Second, PCL/PBSA and PCL/Poly(3HB-co-4HB) composites were modified bynano SiO_2so as to prepare a new biodegradable nano composite material with excellentperformance. Their mechanical properties, crystallization properties, rheological behavior anddegradation properties were analyzed. Finally, Re(I) with luminous groups were prepared andblended with PS and PS/PCL matrix to prepare composite nanofiber, and their photophysicalproperties were studied. The main contents and conclusions are as follows:
     Firstly, PCL/PBSA blends were prepared by mechanically melting mixing. Themicrostructure, crystallization, dynamic mechanical properties, and rheological behavior werestudied by DSC, the electronic universal tensile machine, SEM, rotary rheometer. When thequality of PCL/PBSA blend ratio was40/60, the tensile strength reached the maximum withrelatively high elongation and preferable mechanical properties. As the PBSA contentincreased, the initial temperature of the crystallization of PCL went up, the peak temperatureof the crystallization increased by2.5°C and the final crystallization temperature increasedfrom28.7°C to32.6°C. The rheological results showed that with angular frequency growing,storage modulus and loss modulus increased monotonically, PBSA content went up and thestorage modulus of the blend system decreased at first, then increased.
     Secondly, PCL/PBSA/nanoSiO_2blends were prepared with nano SiO_2content1,2,3,5wt%respectively. Microstructure, crystallization, dynamic mechanical properties, dispersion,degradation properties and rheological behavior were analyzed by FTIR, DSC, electronicuniversal tensile machine, SEM, rotary rheometer (AR-G2) The analysis of Infrared spectralshowed that coupling agent of organic titanate modified nano SiO_2and the modified SiO_2 nanoparticles dispersed well. Mechanical properties and SEM observation showed that whenthe content of nano SiO_2took up2wt%, nano SiO_2particles dispersed well with optimummechanical properties of the composite system. When the content was more than2%, thematrix particle agglomeration were prone to forming, leading to stress concentration andmechanical properties decreasing. Rheological behavior analysis indicated strong shearthinning behavior.
     Thirdly, PCL/Poly(3HB-co-4HB) composite was prepared, and the mechanical properties,thermal properties, degradation and rheological behavior of the composites were studied. Theresults showed that when PCL/Poly(3HB-co-4HB) mass ratio was60/40, elongation at breakreached the maximum. As the content of Poly (3HB-co-4HB) increased, the tensile strength,elongation at break and yield strength declined dramatically. Degradation analysis showedthat the weight loss rate was closely related to length of time and thickness of the sample. Asthe degradation time grew, the weight loss rate rise and the mechanical properties of thematerials declined. The thicker the sample was, the slower it degraded. Thermal analysisshowed that increase of Poly(3HB-co-4HB) also had a great effect on the crystallizationbehavior of PCL, leading to higher crystallization temperature and lower crystallinity. Studyon rheological behavior of polymer blends showed melt flow properties fluidity was sensitiveto temperature changes. As temperature increased, the storage modulus and loss modulusdecreased.
     Fourthly, PCL/Poly(3HB-co-4HB)/nanoSiO_2was prepared by melt blending. Theinfluence of coupling agent on the flow behavior of composite was studied. The resultsindicated that when the modified nano SiO_2content reaches4%, the notched impact strengthreached the maximum with tensile strength and toughness growing; The modified nano SiO_2facilitated the crystallization of PCL/Poly(3HB-co-4HB) matrix with the crystallization raterising dramatically; an excessive of modified nano SiO_2will block crystallization instead;Under a certain shear rate, as the content of coupling agent increased, shear viscosity of thesystem decreased. With a low shear rate, the shear viscosity decreased quickly and tended tobe shear-thinning, and at the same time, creep behavior of materials increased and stability ofthe material declined; the nano SiO_2accelerated the degradation of composites.
     Finally, A phosphorescent Re(I) was synthesized and compositiuie nanofiber wasprepared by doped PS and PS/PCL matrix. The optical stability, permeability and mechanicalproperties of the composite nanofiber material were studied. The results showed5.5%dopingconcentration was the optimum with sensitivity4.14, when light stability was best withoutbleaching phenomenon. The complex nanofiber with a small amount of PCL has bettermechanical properties of composite fiber, favorable luminescence property andbiodegradation, which can be applied in optical oxygen sensing field, packaging and anticounterfeit papermaking in the future.
引文
[1]苏广义. PP/PS共混改性的研究[D]:[硕士学位论文].合肥:安徽大学材料工程系,2012.
    [2]周炳炎.废旧塑料的处理处置技术[J].环境保护,2000(3):20-22.
    [3]刘建树,廖丽金,邹黎明.可生物降解高吸水材料的制备以及制备工艺对吸水倍率的影响[J].华东大学学报,2002,28(5):52-58.
    [4]倪洪凯,杨彪,许国志等. PBSA/木薯淀粉湿法共混体系研究[J].塑料工业,2012,40(1):64-67.
    [5] Marchessault R H,Kawada J. PHB lamellar single crystals: Origin of the splintered texture[J].Macromolecules,2004,37(19):7418-7420.
    [6] Saeed K,Park S Y,Lee H J,et al. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite [J]. Polymer,2006,47(23):8019-8025.
    [7]陈国强.生物基材料[J].中国基础科学,2009(5):90-95.
    [8]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,2010.312-317.
    [9]唐义祥,梁多平,楼白杨.聚丁二酸丁二醇酯/聚羟基烷酸酯熔融共混物的结晶及流变力学行为[J].高分子材料科学与工程,2012,28(6):28-35.
    [10] Park J H,Allen M G,Prausnitz M R. Biodegradable polymer microneedles: fabrication, mechanicsand transdermal drug delivery [J]. Journal of Controlled Release,2005,104(1):51-66.
    [11] Xiong X Y, Tam K C, Gan L H. Synthesis and thermal responsive properties ofP(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid)(PLA) segments[J]. Polymer,2005,46(6):1841-1850.
    [12]赵永青.生物降解聚乳酸基复合材料的制备与性能研究[D]:[博士学位论文].兰州:兰州大学,2009.
    [13] Sinha Ray S,Okamoto M.Polymer/layered silicate nanocomposites:a review from prepatation toprocessing[J]. Prog Polym Sci,2003(28):1539-641.
    [14] Biswas M,Sinha Ray S. Recent progress in synthesis and evaluation of polymer montmorillonitenanocomposites[J]. Adv Polym Sci,2001(155):167-221.
    [15] Alexander M,Dubois P. Polymer-layered silicate nanocomposites:prepatation,properties and uses of anew class of materials[J]. Mater Sci Eng R,2000(28):1-63.
    [16] Giannelis E P,Krishnamoorti R,Manias E,Polymer-silicate nanocomposties:model systems forconfined polymers and polymer brushes[J]. Adv Polym Sci,1999(138):107-47.
    [17] LeBaron P C,Wang Z,Pinnavaia T J. Polymer-layered silicate nanocomposites:an overview[J]. ApplClay Sci,1999(15):11-29.
    [18] Mohanty A k,Drzal L T,Misra M. Nano reinforcement of bio-based polymers-the hope and reality[J].Poly Mat Sci Eng,2003(88):60-61.
    [19] Hiroi R,Sinha Ray S,Okamoto M(2004),Organically modified layered titanate:a new nanofiller toimprove the performance of biodegradable polylactide[J]. Macromolecular Rapid Commun,2004(25):1359-1366.
    [20] Mitchell C A,Bahr J L,Arepalli S,et al. Dispersion of functionalized carbon nanotubes inpolystyrene.Macromolecules[J].2002(35):8825-8830.
    [21]张长生,赵晓东,罗世凯等.聚合物纳米SiO2复合材料的研究进展[J].塑料科技,2005(8):45-48.
    [22] Andrews R,Wisenberger M C. Carbon nanotube polymer composites[J]. Curr Opinion Solid State MatSci,2004(8):31-37.
    [23] Nakayama A,Kawasaki N,Maeda Y,et al. Study of biodegradability of (polyδ–valerolactone-co-l-lactide)s’[J]. JApplpolym Sci,1997(66):741-748.
    [24] Kesel C D,Wauven C V,David C.Biodegradation of polycaprolactone and its blends withpoly(vinylalcohol)by micro-organisms from a compost of household refuse[J]. Polym Degrad Stab,1997(55):107-113.
    [25] Ishiaku U S,Pang K W,Lee W S,et al. Mechanical properties and enzymic degradation ofthermoplastic and granular sago starch filled poly(ε-caprolactone)[J]. Eui Polym J,2002(38):393-401.
    [26]张龙彬.辐射交联聚己内酯的降解性能研究[D]:[硕士学位论文].西安:西北工业大学,2006.
    [27] Ohtaki A,Sato N,Nakasaki K. Biodegradation of poly-caprolactone undercontrolled compostingconditions.[J]. Polym. Degrad.Stab,1998,61(3):499-505.
    [28] Shi J M,Bao Y Z,Huang Z M,et al. Preparation of poly(methyl methacrylate)/nanometer calciumcarbonate composite by in-situ emulsionpolymerization[J]. J Zhejiang Univ,2004,5(6):709-713.
    [29]陈广美,黄毅萍.羟基磷灰石含量对纳米粒子-聚己内酯复合材料性能的影响[J].安徽大学学报(自然科学版),2011,35(9):73-77.
    [30] Messersmith P B,Giannelis E P. Polymer-layered silicate nanocomposites:in-situ intercalativepolymerization of–caprolactone in layered silicates[J]. Chem Mater,1993(5):1064-1066.
    [31] Pantoustier N, Lepoittevin B, Alexandre M,et al. Biodegradable polyester layered silicatenanocomposites based on poly(ε-caprolactone)[J]. Poly Eng Sci,2002(42):1928-1937.
    [32] Di Y,Iannace S,Maio E D,et al. Nanocomposites by melt intercalation based on polycaprolactoneand organoclay[J]. J Poly Sci Part B:Polym Phys,2003(41):670-678.
    [33] Lepoittevin B,Pantoustier N,Devalckenaere M,et al. Poly(ε-caprolactone)/clay nanocomposites byinsitu intercalative polymerization catalyzed by dibutyltindimethoxide[J]. Macro-molecules,2002(35):8385-8390.
    [34] Ernesto Di Maio, Salvatore Iannace. Isothermalery stallizationin PCL/elay nanoeompositesinvestigated with thermal and theometrie methods[J]. PolyTne,2004(45):893-890.
    [35]刘琦.可生物降解聚己内醋的共混及纳米改性[D]:[硕士学位论文].上海:东华大学,2007.
    [36] Nie K M, Pang W M, Non-isothermal crystallization kinetics of poly(ε–carprolactone) inhydrogen-bond-coupled polymeric-inorganic hybrid materials[J]. Polym Int,2005(54):327-335.
    [37] Wu T M,Chen E C,Crystallization Behavior of Poly(ε–carprolactone)/Multiwalled Carbon NanotubeComposities[J]. Journal of Polymer Science:Part B:Polymer Physics,2006(44):598-606.
    [38]聂康明,庞文民,王雨松等. PCL/SiO2杂化纳米相微结构与晶态成核生长特性[J].化学物理学报,2005,18(6):1023-1029.
    [39] Gorrasi G,Tortora M,Vittoria V,et al. Vapor barrier properties of polycaprolactone montmorillonitenanocomposites:effect of clay dispersion[J]. Polymer,2003(44):2271-2279.
    [40] Gorrasi G,Tortora M,Vittoria V,et al. Physical properties of poly(ε-caprolactone) layered silicatenanocomposites prepared by controlled grafting polymerization[J]. J Polym. Sci.:Part B:Polymer Physics,2004(42):1466-1475.
    [41] Gorrasi G,Tortora M,Vittoria V,et al. Transport and mechanical properties of blends ofpoly(ε-caprolactone) and a modified montmorillonite-poly(ε-caprolactone) nanocomposites[J].J Polym.Sci.:Part B:Polymer Physics,2002(40):1118-11124.
    [42] Sudesh K,Abe H,Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biologicalpolyesters[J]. Prog. Polym. Sci,2000(25):1503-1509.
    [43] Abe H,Doi Y,Kumagai Y. Effect of PVAc on thermal behavior and mechanical properties ofPHB/PPC blends[J]. Macromolecules,1994(27):6012-6017.
    [44]张俐娜,陈国强,蔡杰等.基于生物质的环境友好材料[M]:北京:化学工业出版社,2011.6-7.
    [45]王琴,陈银广.活性污泥合成聚羟基烷酸(PHAs)的研究进展[J].环境科学与技术,2007,30(5):111-114.
    [46]陈国强,罗荣聪,徐军等.聚羟基脂肪酸酯生态产业链-生产与应用技术指南[M]:北京:化学工业出版社,2008.267-268.
    [47] Choe S,Cha Y J,Lee H S,et al. Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) andpoly(vinyl chloride) blends[J]. Polymer,1995(36):4977.
    [48] Yoo J S,Lee W S,Jin H J,et al. Physical, mechanical and degradation properties, and Schwann cellaffinity of cross-linked chitosan films[J].Eur Polym J,1999(35):781.
    [49] Bordes P,Pollet E,Bourbigot S,et al. Structure and Properties of PHA/Clay Nano-BiocompositesPrepared by Melt Intercalation [J]. Macromolecular Chemistry and Physics,2008,209(14):1473-1484.
    [50] Ke W H,He Y,Asakawa N,et al. Effect of Lignin Particles as a Nucleating Agent on Crystallizationof Poly(3-hydroxybutyrate)[J]. Journal of Applied Polymer science,2004,96(6):2466-2474.
    [51] Chen Y G,Yang H Z,Chen J Cleaner recover y of PHA synt hesized in Alcaligenes eutrophus[J].Process Biochemistry,2001(36):501-506.
    [52] Chen Y G,Chen Y G,Chen J. Kinetics ofPHB-containing biomass disruption in surfactant-chelateaqueous solution[J]. Process Biochemistry,2003(38):1173-1182.
    [53] Chen Y G,Xu Q,Yang H Z,et al..Effect of cell fermentation time and biomass dry ingstrategies onrecovery of PHA from Alcaligenes eutrophususing a surfactant-chelate aqueous system[J].ProcessBiochemistry,2001(36):773-779.
    [54]高海军,陈坚,堵围城等.不同环境下聚羟基烷酸PHAs薄膜生物降解性研究[J].中国环境科学,1997,17(4):30-34.
    [55] Qu X H,Wu Q,Liang J,et al. Enhanced vascular-relatedcellular affinity on surface modifiedcopolyesters of3-hydroxybutyrate and3-hydroxyhexanoate (PHBHHx)[J]. Biomaterials,2005,(26):6991-7001.
    [56] Qu X H, Wu Q, Liang J, et al. Effect of3-hydroxyhexanoate content inpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth musclecells[J]. Biomaterials,2006(26):2944-2950
    [57] Sinha R S,Bandyopadhyay J,Bousmina M. Effect of Organoclay on the Morphology and Propertiesof Poly(propylene)/Poly[(butylene succinate)-co-adipate] Blends[J]. Macromolecular Materials andEngineering,2007,292(6):729-747.
    [58] Lee S,Lee J W,Characterization and processing of biodegradablepolymer blends of poly (lactic acid)with poly(butylene succinate adipate)[J]. Korea Aust Rheol J,2005,17(2):71-77.
    [59] Ratto J A,Stenhouse P J,Auerbach M,et al.Processing, performance and biodegradability ofathermoplastic aliphatic polyester/starch system [J]. Polymer,1999,40(24):6777-6788.
    [60] Tserki V,Matzinos P,Pavlidoue,et al. Biodegradable aliphatic polyesters. Part I. Properties andbiodegradationof poly (butylene succinate-co-butyleneadipate)[J]. Polym Degrad Stab,2006,91(2):367-376.
    [61] He Y,Aaakawa N,Masuda T,et al. The miscibility and biodegradabilityof poly(3-hydroxybutyrate) blends with poly (butylene succinate-co-butylene adipate) and poly (butylenesuccinate-co-ε-caprolactone)[J]. Eur Polym J,2000,36(10):2221-2229.
    [62] Chen G X,Kim H S,Yoon J S. Synthesis and characterization of poly(butylene succinate)/epoxygroup functionalized organoclay[J]. Polymer International,2007,56(9):1159-1165.
    [63] Chen G X,Yoon J S. Nonisothermal crystallization kinetics of poly(butylene succinate) compositeswith a twice functionalized organoclay[J]. Journal of Polymer Science (PartB):Polymer Physics,200543(7):817-826.
    [64] Dong T,Y He,Shin K,et al. Formation and characterization ofinclusion complexes of poly(butylene succinate) with alpha-andgamma-cyclodextrins[J]. Macromolecular Bioscience,2004,4(12):1084-1091.
    [65]宋存江,陶剑,胡丹.生物降解聚酯PLA/PBSA共混体系的制备与结构性能[J].高分子材料科学与工程,2009,25(7):137-140.
    [66] Ratto J A,Auerbach M,Mitchell J,et al. Biodegradable polymers in medicine[J]. Polymer,1999(40):6777-6788.
    [67]赵剑豪,王晓青,曾军等.聚丁二酸丁二醇酯及聚丁二酸/己二酸-丁二醇酯在微生物作用下的降解行为[J].高分子材料科学与工程,2006,22(2):137-140.
    [68] Lefevre C,Tidjani A. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactonecomposite on osteoblast activity[J]. J Appl Polym Sci,2002(83):1334~1340.
    [69]孙桂香,罗勇,陆平晔.生物降解PBS聚酯的改性研究进展[J].高分子通报,2011(2):102-108.
    [70] Komarneni S. Nanocompositcs [J]. J Mater Chen,1992,2(12):1219.
    [71]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003.15-17.
    [72] Joubert M,Delaite C,Lami E B. Ring-opening polymerization of ε–carprolactone and L-lactide fromsilica nanoparticles surface[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2004(42):1976-1984.
    [73]孙水升,李春忠,张玲等.纳米二氧化硅颗粒表面设计及其填充聚氯乙烯复合材料的性能[J].高校化学工程学报,2006,20(5):798-806.
    [74]黄震,唐建国,王瑶等.有机稀土络合物表面包覆改性纳米SiO2填充PP的流变行为[J].塑料,2010,39(5):24-29.
    [75]张成波,李青山,王建伟.聚丙烯(PP)/纳米SiO2复合材料的制备及其性能研究[J].材料工程,2007(S1):73-78.
    [76]张超灿,尚丽娟,荆正军.聚醚改性聚硅氧烷硫酸酯钠盐的制备及其在有机硅均聚乳液中的应用[J].胶体与聚合物,2005,23(3):32-38.
    [77] Wang J L,Zhang C,et al. Nanost ructured biocomposite subst rates by elect rospinning and electrospraying for the mineralization of osteoblast s[J]. Biomaterials,2009,30(11):2085-2094.
    [78]张彦奇,华幼卿. LLDPE/纳米SiO2复合材料的力学性能和光学性能研究高分子学报,2003(5):683-691.
    [79]董秀洁,周光辉,张景昌. PVC基纳米SiO2复合材料电改性研究[J].纺织学报,2004,25(4):16-22.
    [80]王华林.有机聚合物/SiO2有机无机杂化材料的研究[D]:[博士学位论文]:合肥:合肥工业大学,2006.
    [81]周文英.高导热绝缘高分子复合材料研究[D]:[硕士学位论文]:西安:西北工业大学,2007年.
    [82]张文栓,罗运军,宋海香等.纳米SiO2改性聚苯硫醚力学性能的研究[J].2003,31(8):45-51.
    [83] Wu L B,Cao D,Huang Y,et al. Poly(L-lactic acid)/SiO2Nanocomposites via In situmeltPolycondensation of L-Lactic Acid in the Presence of Acidic Silica Sol:Preparation and Characterization[J].Polymer,2008(49):742-748.
    [84] Xu X L,Sanford A. Asher. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles inPhotonic Crystals[J]. J. Am. Chem. Soc,2004,126(25):7940.
    [85]李莹,于建,郭朝霞.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响[J].高分子学报,2003(2):236-242.
    [86]柯扬船,孙明卓,宋言新等.纳米内核-成核剂复合助剂及与PP复合材料的制备和性能[J].高分子材料科学与工程,2006,22(1):146-150.
    [87]王东,高俊刚,姚子华.聚丙烯(PP)/纳米SiO2复合材料的流变行为、力学性能和相态学研究[J].塑料,2003,21(5):6-11.
    [88]赵辉,罗运军,李杰等.超支化聚(胺-酯)接枝改性纳米二氧化硅增韧增强PVC的研究[J].高分子材料科学与工程,2005,21(5):258-261.
    [89] Shahzada A,Sharif A,Agnihotry S A. Synthesis and characterization of in situ preparered poly(methylmethacrylate) nanocomposites[J]. Bulletion of Materials Science,2007,30(1):31-35.
    [90]贾正锋,周静芳,张治军等.纳米复合含氟聚合物的制备及其涂层性能研究[J].塑料工业,2004,32(2):36-38.
    [91]张彦奇,华幼卿. LLDPE/纳米SiO2复合材料的力学性能和光学性能研究[J].高分子学报,2003(5):683-687.
    [92]黄玉强,张彦奇,华幼卿. LLDPE/纳米SiO2复合材料的制备与性能研究[J].中国塑料,2003,17(1):25-29.
    [93]王艳.纳米SiO2/光致聚合物复合材料全息存储特性研究[D]:[硕士学位论文].开封:河南大学,2010.
    [94]安利民,单桂晔,刘益春等.不同粒径的SiO2纳米粒子与PVK分子复合体系的发光性质研究[J].纳米材料与结构,2003(9):29-34.
    [95]汪斌华,黄婉霞,刘雪峰等.纳米SiO2的光学特性研究[J].材料科学与工程学报,2003,21(4):514-517.
    [96]孟翠省.纳米技术在高分子材料改性中的应用[J].化工新型材料,2001,29(2):3-6.
    [97]李苪,王明勇,毛志平.纳米复合溶胶处理棉织物的抗紫外性能[J].印染,2007(2):1-3.
    [98]徐国财,马家举,邢宏龙等.原位分散紫外光固化SiO2纳米复合材料的性质[J].应用化学,2000,17(4):450-452.
    [99]朱永安. TiO2/SiO2复合薄膜的制备及光学性能研究[J].嘉兴学院学报,2003,25(3):69-74.
    [100]朱子康,尚修勇,印杰.可溶性PI/SiO2纳米复合材料的研究[J].塑料,2010,29(2):9-12.
    [101]姜云鹏,王榕树.纳米SiO2/PVA复合超滤膜的制备及性能研究[J].高分子材料科学与工程,2012,18(5):177-180.
    [102]张志华,沈军,吴广明等. SiO2不同掺杂方式对聚氨酯树脂材料性能的影响[J].材料导报,2003,17(9):127-130.
    [103]李海燕,张之圣. Nano-SiO2/E-20/TEOS复合体系[J].天津大学学报,2004,37(5):400-404.
    [104] Maeda S,Armes S P. Polypyrrole-tin(IV) oxide colloidal nanocomposites[J]. Synthet,1995(69):499-500.
    [105] Meada S,Armes S P. Preparation and characterization of polypyr-role-tin(IV) oxide nanocompositecolloides[J]. Chem Mater,1995(7):171-178.
    [106] Zhang W B,lackburn R S,Dehghani-Sanij A A.. Effect of silicaconcentration on electricalconductivity of epoxy resin-carbonblack-silica nanocomposites[J]. Scripta Materialia,2007,56(7):581-584.
    [107] Matsumura T,Ochi M,Nagata K. Thermomechanical properties, phase structure, and conductivity oforganic/inorganic hybridmaterial filled with a conductive filler[J]. Journal of AppliedPolymer Science,2003,90(7):1980-1984.
    [108]郑君刚,张伟.炭黑/环氧树脂复合材料的导电阈值现象[J].沈阳建筑大学学报(自然科学版),2010,26(1):135-139.
    [109]庞翔,张彩虹,童启铭等. SiO2粒径对PTFE/SiO2复合材料性能的影响[J].压电与光声,2012,34(6):908-911.
    [110]龙能兵,王秋景,张瑞丰.大尺寸大孔径C/SiO2复合导电材料的制备[J].复合材料学报,2011,28(5):119-125.
    [111]唐婷,季铁正,杜彦等.二氧化硅对EP/CB复合材料电性能的影响[J].工程塑料应用,2012,40(10):84-90.
    [112]徐曼,杨柳,曹晓珑等.纳米填料改性橡胶电缆料的研究[J].绝缘材料,2004(1):1-3.
    [113] Rong M Z,Zhang M Q,Zheng Y X,et al. Structure-property relationships of irradiation graftednano-inorganic particle filled polygropylene composites[J]. Polymer,2001(42):167-183.
    [114] Hu Y H,Gao H,Yan F Y,et al. Tribological and mechanical properties of nano ZnO-filled epoxyresin composites[J]. Tribology2003,23(3):216-220.
    [115] Cho M H and Bahadur S. Study of the tribological synergistic effects in nano CuO-filled andfiber-reinforced polyphenylene sulfide composites[J]. Wear,2005(258):835-845.
    [116] Wetzel B,Haupert F and Zhang M Q. Epoxy nanocomposites with high mechanical and tribologicalperformance[J]. Compos Sci Technol,2003(63):2055-2067.
    [117] Baiardo M,Frisoni G.,Scandola M.,et al. Thermal and mechanical properties of plasticized poly(L-lactic acid)[J]. J. Appl. Sci,2003(90):1731-1738.
    [118] Zhang M Q,Rong M Z,Yu S L,et al. Improvement of the tribological performance of epoxy by theaddition of irradiation grafted nano-inorganic paticles[J]. Macromol Mater Eng,2002,287(2):111-115.
    [119] Wang Q,Xue Q and Shen W. The friction and wear properties of nanometer SiO2-filledpolyetheretherketone[J]. Tribol Int,1997(30):193-197.
    [120] Shao X,Tian j,Liu W,et al. Tribological properties of SiO2nanoparticle filled-phthalazine eithersulfone/pathalazine ether ketone(50/50mol%)copolymer composites[J].J Appl Polym Sci,2002(85):2136-2144.
    [121]宋娅玲,刘贵民,杜建华.纳米SiO2颗粒增强铜基复合材料性能研究[J].装甲兵工程学院学报,2007,21(5):59-64.
    [122]葛世荣,张德坤,刘金龙等.纳米SiO2填充尼龙PA1010的摩擦磨损性能实验研究[J].中国矿业大学学报,2003,32(3):218-222.
    [123] Xing X S,Li R K Y. Wear behavior of epoxy matrix composites filled with uniform sizedsub-micron spherical silica paticles[J]. Wear,2004(256):21-27.
    [124]邵鑫,田军,刘维民等.纳米SiO2对聚醚砜酮复合材料摩擦学性能的影响[J].材料工程,2002,(2):38-42.
    [125]葛世荣,张德坤,刘金龙等.纳米SiO2填充尼龙PA1010的摩擦磨损性能实验研究[J].2003,32(3):218-222.
    [126]王术立.过渡金属钌配合物纳米球及铱配合物的复合纳米纤维的发光及传感性能研究[D]:[硕士学位论文].长春:东北师范大学,2009.
    [127]孙迎辉.邻菲啰啉衍生物铼、钌和铂及异腈铂发光配合物的合成及性能研究[D]:[博士学位论文].长春:吉林大学,2005.
    [128] Deitzel J M,Kleinmeyer J,Hirvonen J K,et al. Controlled deposition of electrospun poly(ethyleneoxide) fibers[J]. Polymer,2001(42):8163-8170.
    [129] Huang Z M,Zhang Y Z,Kotaki M,et al. A review on polymer nanofibers by electrospinning andtheir applications in nanocomposites[J]. Compos Sci Technol,2003,63(15):2223-2253.
    [130]傅春艳.过渡金属(铼、钌)配合物光电功能材料与器件[D]:[博士学位论文].长春:东北师范大学材料与化工学院,2006.
    [131] Wrighton M,Morse D. L. Re(I) tricarbonyl diimine complexes are also known to be highlyphosphorescent [J]. J. Am. Chem. Soc,1974(96):998-1005.
    [132] Wang K. Z,Huang L,Gao L. H,et al. Studies of Langmuir-Blodgett films of an ion pair metalcomplex containing Eu (III)-Ru (II) dual chromophores[J]. Inorg. Chem,2002(41):3353-3360.
    [133]刘青春.静电纺丝法制备过渡金属(钌、铼)有机配合物的纳米发光纤维[D]:[硕士学位论文].长春:东北师范大学化工学院,2008.
    [134]苏健裕,陈玲,杨连生等.聚己内酯/淀粉共混材料的非等温结晶动力学[J].华南理工大学学报(自然科学版),2008,36(11):79-82.
    [135]张义盛,吴德峰,张明等.聚己内酯/聚乳酸共混体系的相形态及其流变行为[J].化工学报,2008,59(10):2645-2649.
    [136]唐义祥,楼白杨,梁多平等.聚丁二酸丁二酯/纳米高岭土共混体系结晶及力学性能研究[J].高分子学报,2011,31(7):81-88.
    [137]唐义祥,孙万理,何宏等.聚丁二酸丁二醇酯/聚(3羟基丁酸酯-co-4羟基丁酸酯)/纳米高岭土熔融共混力学性能、流变及降解行为研究[J].功能材料,2013,44(1):124-128.
    [138]王淑云,蒙延峰,霍红等.聚己内酯在聚己内酯/苯乙烯丙烯腈共聚物共混体系中的受限结晶[J].高分子学报,2005(2):203-206.
    [139]吴德峰,曹健,吴兰峰等.增容剂对聚对苯二甲酸乙二酯/聚丙烯共混体系结构流变学的影响[J].高分子学报,2007(51):539-598.
    [140] Battegazzore D,Bocchini S,Frache A.. Crystallization kinetics of poly(lactic acid)-talc composites[J]. Express Polym Lett,2011,5(10):849-858.
    [141] Lim J S,Noda I,Im S S. Effect of hydrogen bonding on the crystallization behavior ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silica hybrid composites[J]. Polymer,2007,48(9):2745-2754.
    [142] Lifang Liu,Jianyong Yu,Longdi Cheng, et al. Biodegradability of poly(butylene succinate)(PBS)composite reinforced with jute fibre[J]. Polymer Degradation and Stability,2009,94(6):90-94.
    [143] Wu D F,Zhang Y S,Zhang M,et al..Morphology,non-isotermal crystallization behavior and kineticsof poly(phenylene sulfide)/polycarbonate blend[J]. Jorunal of Applied Ploymer Science,2007,10(5):739-748.
    [144]王淑云,蒙延峰,霍红等.聚己内酯在聚己内酯/苯乙烯丙烯腈共聚物共混体系中的受限结晶[J].高分子学报,2005(2):203-206.
    [145] Calgaili T,Niinomi M,Ishii D. Mechanical and biodegradable properties of porous titanium filledwith poly-L-lactic acid by modified in situ polymerization technique [J]. Journal of the MechanicalBehavior of Biomedical Materials,2011,4(7):1206-1218.
    [146]麦东东,王炼石,史博. PBA/SiO2杂化弹性体材料的性能及表征[J].广东化工,2011,38(6):24-31.
    [147]官习鹏,全大萍,廖凯荣等.聚(ε-己内酯)/纳米CaCO3复合材料结晶及力学性能研究[J].中山大学学报(自然科学版),2006,45(2):46-54.
    [148] Gubbels F,Wahlberg J,Persson P V,et al. St ructural Characterization of a lipase catalyzedcopolymerization ofε-capro-lactone and D, L2lactide [J]. Biomacromolecules,2003,4(4):106821071.
    [149] Liu W H,Chen B Q,Wang F,et al. Lipase-catalyzed synthesis of aliphatic polyesters and propertiescharacterization [J]. Process Biochem,2011,46(10):1993-2000.
    [150] Chen B Q,Sun K. Poly (ε-caprolactone)/hydroxyapatite composites: Effect s of particle size,molecular weight dist ribution and irradiation on interfacial interaction and properties [J]. Polymer Testing,2005,24(1):64270.
    [151] Hu S F. Nanometer CaCo3toughened and reinforced PVC[J]. China Plastics,1999,13(6):25-28.
    [152] Battegazzore D,Bocchini S,Frache A.. Crystallization kinetics of poly(lactic acid)-talc composites[J].Express Polym Lett,2011,5(10):849-858.
    [153] Sharkawi T,Darcos V,Vert M. Poly(DL-lactic acid) film surface modification with heparin forimproving hemocompatibility of blood-contacting bioresorbable devices[J]. Journal of BiomedicalMaterials Research Part A,2011,98(1):80-87.
    [154]梁基照.聚合物材料加工流变学[M],北京:国防工业出版社,2007.154.
    [155] Alvesda Silva M L,Crawford A,Mundy J M,et al. Chitosan/polyester-based scaffolds forcartilage tissue engineering: assess-ment of extracelluar matrix formation[J]. Acta Biomaterialia,2010,6:1149-1157.
    [156] Nie K M,Pang W M,Wang Y S,et al. Nano-phase Microstructure of Poly(ε-caprolactone)/SilicaHybirds and Its Crystalline Nucleation and Growth[J]. Chnese Journal of Chemical Physics,2005,18(6):1023-1028.
    [157] Sung Y,Wang H,Yoo E S,et al. Effects of TS-1zeolite structures on physical properties andenzymatic degradation of poly (butylenes succine)(PBS)/TS-1zeolite hybrid composites[J]. Polymer,2011,9(52):965-975.
    [158]余海峰,张玲,包华等.钛酸酯偶联剂改性纳米CaCO3/PVC的结构和性能[J].华东理工大学学报(自然科学版),2005,31(1):119-125.
    [159] Lu M C,Roum G D,Chen J N,et al. Ads orpt ion charact er istics of dichlorvos ont o hydrou s t itanium dioxide su rface [J]. Wat Res,1996,30(7):1670-1676.
    [160] Mills A,Morris S Phot om ineraliz at ion of4-chloroph enol s ens it ized by t it an ium dioxide: Astudy of thein termediat es [J]. J Phot ochem Phot obiol,1993,70(2):183-191.
    [161]沈新元.高分子材料加工原理[M]:第2版.北京:中国纺织出版社,2009:63.
    [162]何曼君,张东红,陈维孝等.高分子物理[M]:第3版.上海:复旦大学出版社,2007:111.
    [163]柯扬船,Styoeve P.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003:547-550.
    [164]黄锐,王旭,李忠明.聚合物/纳米无机物复合材料研制、应用与进展[M].北京:中国轻工业出版社,2002:341-342.
    [165] El-Hadi A M. Effect of Processing Conditions on the Development of Morphological Features ofBanded or Nonbanded Spherulites of Poly(3-hydroxybutyrate)(PHB) and Polylactic Acid (PLLA) Blends[J]. Polymer Engineering and Science,2011,51(11):2191-2202.
    [166] Kumar M,Mohanty S,Nayak S K,et al. Effect of glycidyl methacrylate (GMA) on the thermal,mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites [J].Bioresource Technology,2010,22(101):8406-8415.
    [167] ambot L M,Cantuel Y,Leydet G,et al. Improving the photophysical properties of copper(I)bis(phenanthroline) complexes[J]. Chem. Rev,2008(252):2572-2584.
    [168] Scaltrito D.V, Thompson D.W, O’Callaghan J.A,et al. MLCT excited states of cuprousbis-phenanthroline coordination compounds[J]. Chem. Rev,2000(208):243-266.
    [169] Zhang G,Chen J,Payne S J, et al. Study on a Rhenium(I) complex with oxadiazole-derived diamineligand: Synthesis, characterization, photophysical property and luminescence response towards molecularoxygen[J]. Chem. Soc,2007(129):15728-15728.
    [170] Wolfbeis O S,Anal. Fiber-optic chemical sensors and biosensors[J]. Chem,2008(80):4269-4283.
    [171] Dual Fluorescence Sensor for Trace Oxygen and Temperature with Unmatched Range andSensitivity[J]. Chem,2008(80):6449-6457.
    [172] Shi L,Li B,Yue S,et al. Synthesis, photophysical and oxygen-sensing properties of a novelbluish-green emission Cu (I) complex[J]. B Chem,2009(137):386-392.
    [173] Yu H Q,Song H W,Pan G H,et al. Photoluminescence properties of Re (I) complex dopedcomposite submicron fibers prepared by electrospinning[J]. Lumin,2007(124):39-44.
    [174] Zhang L,Li B,Su Z. Phosphorescence Enhancement Triggered by Π Stacking in Solid-State [Cu (NN)(P P)] BF4Complexes[J]. Langmuir,2009(25):2068-2074.
    [175] Si Z.,Li X,Li X,et al. Re(I) complex with oxdiazole moiety: Synthesis, characterization, photo-andelectro-luminescence properties[J]. Organomet. Chem,2009(694):3742-3748
    [176] Yang L,Feng J K,Ren A. M,et al. Structures, electronic states and electroluminescent properties ofa series of CuI complexes[J]. Chem,2005(10):1867-1879.
    [177] Wang Y,Li B,Liu Y,et al. Highly sensitive oxygen sensors based on Cu (I) complex–polystyrenecomposite nanofibrous membranes prepared by electrospinning[J]. Chem. Commun,2009(39):5868-5870.
    [178] Lin S Z,Dong X T,Wang J X,et al. Nanofibers doped with a novel red-emitting Europium complex:Synthesis, characterization, photophysical property and sensing activity toward molecular oxygen[J].Spectrochim Acta A,2010(77):885-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700