用户名: 密码: 验证码:
一维氧化锌纳米结构物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO纳米材料因为其丰富的结构形貌,以及其优异的物理化学性能,在实验和理论方面都引起了人们的广泛关注。其中一维ZnO纳米结构因其存在显著的量子限制效应与表面效应,以及在构建新一代电子和光电器件中的巨大潜在应用,迅速成为人们研究的重点。本文采用基于密度泛函的第一性原理方法系统研究了化学掺杂或施加外电场对一维ZnO纳米结构的原子结构、电子结构和磁学性质的调控作用,为实现一维ZnO纳米材料在纳米电子和光电领域的应用提供了重要的理论指导。同时,我们还拓展研究了电场和外力场对MoS_2纳米管的带隙调控。主要的研究内容归纳如下:
     利用密度泛函理论,我们系统研究了单个C原子取代一个O原子的锯齿型ZnO纳米带的结构稳定性、能带结构和d~0磁性。我们发现掺杂C原子的形成能强烈依赖于C原子的位置:对于H钝化的ZnO纳米带,C原子更易于掺杂在靠近O终结边的位置;而对于未钝化ZnO纳米带,C更容易替代靠近Zn终结边位置的O原子。我们根据锯齿型ZnO纳米带沿带宽方向具有的极性特点,提出了简单的电容器模型,对上述现象进行了定性解释。同时研究表明C掺杂的ZnO纳米带可以表现出d~0磁性,磁矩主要集中在C原子上,并且在不同的掺杂位置,C原子表现出不同的磁矩,这主要是因为在不同掺杂位置处C-Zn键的平均键长不同,由此引起C原子成键性质不同而导致的。另外我们也发现C掺杂位置不同的ZnO纳米带也表现出不同的电子结构特性,甚至可以实现半导体-半金属-金属的转变。可调的电子结构和磁学特性使C掺杂的ZnO纳米带在自旋电子器件方面表现出重要的潜在应用价值。
     我们利用密度泛函理论系统研究了在横向电场作用下单壁ZnO纳米管的结构特点和电子特性。在横向电场作用下,ZnO纳米管沿电场方向由圆形形变为椭圆形。我们发现结构形变主要是由于电场的作用使不同位置处键长改变不同,进而使键角发生变化而引起的。管径的纵横比强烈依赖于管径和横向电场强度的大小,而对纳米管的手性并不敏感。ZnO纳米管的带隙随着电场的增加而单调的减小,带隙的变化随管径的增大而增大,而带隙的变化不依赖于纳米管的手性。我们得出了ZnO纳米管的带隙随电场变化的函数关系式。同时我们也发现径向形变和电场的耦合效应减弱了带隙的减小。这些研究对于理解ZnO纳米管的力电耦合效应以及其在光电器件方面的潜在应用都有重要的意义。
     我们利用密度泛函理论系统研究了横向电场对各种ZnO纳米线和面心纳米管的电子结构的影响。研究表明ZnO纳米线和面心纳米管的带隙随着电场的增加单调的减小,并且带隙的变化率随纳米线的直径和纳米管的管径的增加,以及纳米管壁厚的减小而增大,尤其是电场强度足够强时,甚至可以实现半导体到金属的转变。ZnO纳米结构的带隙随电场的变化和电偶极矩随电场的变化是一致的,同时我们也可以从电场作用下不同势能区电子能级发生倾斜的角度来理解带隙的减小。而且我们也发现ZnO纳米线和纳米管的电子和空穴有效质量可以通过电场进行有效的调控。这些研究为设计和发展基于ZnO纳米结构的微电子和光电器件提供了重要的指导作用。
     我们利用密度泛函理论系统研究了横向电场对MoS_2纳米管的形貌和电子性质的影响,以及在外部应力作用下MoS_2纳米管的带隙变化。研究表明在横向电场的作用下,不同手性的纳米管的带隙随电场强度的增加单调的减小,最终发生半导体到金属的转变;在横向电场的作用下,不同手性纳米管的横截面由圆形形变为椭圆形,其纵横比的大小依赖于纳米管的管径和电场强度;同时我们也发现电场诱导的径向形变加强了电场导致的带隙的减小。在径向压缩的情况下,不同手性的纳米管的带隙变化很小。在轴向拉伸情况下,锯齿型和扶手椅型纳米管的带隙均表现为线性的减小;而在轴向压缩的情况下,锯齿型和扶手椅型纳米管的带隙表现不同的变化规律。这些研究为发展基于MoS_2纳米管的光电器件提供了重要的指导作用。
Owing to the numerous nanostructures and the excellent physical and chemical properties, zincoxide (ZnO) nanostructures have attracted extensive attention from both experimental and theoreticalsides. Among them, one-dimensional ZnO nanostructures quickly become the focus of the presentstudies due to strong quantum confinement effects, surface effects and the important application inbuilding the future electronic and optoelectronic nanodevices. In this thesis, using the first-principlescalculations on the basis of density functional theory, we investigate systematically the modulation ofchemical doping and external electric field on the structure, electronic structures and magnetism ofone-dimensional ZnO nanostructures, which provides important theory guidance for realizing thenanoelectronic and optoelectronic nanodevices of one-dimensional ZnO nanostructures. Moreover, wehave also studied the band gap modulation of MoS_2nanotubes by applying the electric field and strain.Our main results are summarized as follows:
     Using density functional theory calculations, we have systematically studied the structuralstability, energy band structrue and d~0magnetism of zigzag ZnO nanoribbons with a single C atomsubstituting one O atom. We find that the formation energy of C dopant depends strongly on theposition: the doped C atom close to O terminated edge is most favorable energetically forH-passivated zigzag ZnO nanoribbons, whereas the doped C atom prefers to substitute the O atomnear Zn terminated edge for unpassivated zigzag ZnO nanoribbons. These features are qualitativelyexplained using a simple capacitor model, which is proposed according to the polar property of thezigzag ZnO nanoribbon along the direction of the width. At the same time, the studies show that the Cdoped ZnO nanoribbons have d~0magnetism, and the magnetization of the ZnO nanoribbons mainlyfocus on the C atom, also the C has the different magnetization in different doping site, which isbecause that average Zn-C bond length is different in different doping site, so the nature of C-Zn bondis different. Moreover, we also find the electronic structure of the C doped ZnO nanoribbon isdifferent with different C doping site, even we can get the semiconductor-half metal-metal transitionin C doped ZnO nanoribbons. The C doped ZnO nanoribbons with tunable electronic structure andmagnetic properties might have important application in promising spintronics device.
     We have investigated extensively the structures and electronic properties of the single walledZnO nanotubes (NTs) under the transverse electric field using the density functional theory. Under thetransverse electric field, the circular cross-sections of ZnO NTs are deformed to elliptic along the direction of the electric field. We found that the radial deformation is mainly due to the change ofbond angles induced by the different change of bond length in different site under the electric field.Tube aspect ratio strongly denpends on the diameter and the transverse electric field strength, but it isinsensitive to the tube chirality. The band gap for the ZnO NTs reduces monotonically with increasingthe electric field strength, the change of the band gap increases with increasing the diameters of thenanotubes, but it is insensitive to the tube chirality. The function between the band gap of ZnOnanotube and the electric field was established. We also found that the coupling effect of the electricfield and the radial deformation weaken the reduction of the band gap. These results might haveimportant implications in understanding the electromechanical coupling effect of the ZnO NTs andutilizing them as building blocks for the future optoelectronic nanodevice.
     We have systematically studied the electronic properties of the various ZnO nanowires (NWs)and faceted NTs under a transverse electric field using the density functional theory. The band gaps ofthe ZnO NWs and NTs reduce gradually with increasing the electric field strength, and the variation isfaster with increasing the diameters and decreasing the wall thickness for the NWs and NTs,especially, leading the semiconductor-metal transition when the electric field strength is strongenough, which is related with the variation of the dipole moment under the electric field, at the sametime, we can also explain the reduction of the bandgap under the electric field according to the tilt ofthe energy level in different potential region. Moreover, the effective masses of the electron and holefor the ZnO NWs and NTs can be modulated by the electric field. These studies provide usefulguidance for designing future microelectronic and optoelectronic nanodevices based on the ZnOnanostructures.
     Using density functional theory calculations, we systematically investigated the structures andthe electronic properties of the MoS_2nanotubes under the transverse electric field and the variationsof the band gaps for the MoS_2nanotubes under the strain. Under the transverse electric field, the bandgaps of the naotubes with different chiralities reduce monotonically with increasing the electric fieldstrength, eventually leading the semiconductor-metal transition; the circular cross-sections of theMoS_2nanotubes with different chiralities are deformed to elliptic under the transverse electric field,and the aspect ratios depend on the diameters of nanotubes and the electric field strength. At the sametime, we find that the radial deformation under the electric field strengthen the decreasing of the bandgap induced by the electric field. Under radial compressive strain, the variations of the band gaps forthe nanotubes with different chiralities are small. Under the tensile axial strain, the band gaps of thezigzag and armchair nanotubes decrease linearly; while under the compressive axial strain, the changes of the band gaps for zigzag and armchair nanotubes are different. These studies provideimportant guidance for designing future optoelectronic nanodevices based on the MoS_2nanotubes.
引文
[1]陈敬中,刘剑洪.纳米材料科学导论.北京:高等教育出版社2006:1-20.
    [2]李言荣,恽正中.材料物理学概论.北京:清华大学出版社2001:39-44.
    [3] D. Q. Gao, Z. H. Zhang, J. L. Fu, et al. Room temperature ferromagnetism of pure ZnOnanoparticles. Journal of Applied Physics,2009,105(11):113928.
    [4] P. D. Yang, H. Q. Yan, S. Mao, et al. Controlled growth of ZnO nanowires and their opticalproperties. Advanced Functional Materials,2002,12(5):323-331.
    [5] J.-J. Wu, S.-C. Liu, C.-T. Wu, et al. Heterostructures of ZnO--Zn coaxial nanocables and ZnOnanotubes. Applied Physics Letters,2002,81(7):1312-1314.
    [6] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides. Science,2001,291(5510):1947-1949.
    [7] X. Y. Kong, Z. L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, andnanorings of piezoelectric nanobelts. Nano Letters,2003,3(12):1625-1631.
    [8] C. F. Guo, Y. S. Wang, P. Jiang, et al. Zinc oxide nanostructures: epitaxially growing fromhexagonal zinc nanostructures. Nanotechnology,2008,19(44):445710.
    [9] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices.Journal of Applied Physics,2005,98(4):041301-041103.
    [10] H. Karzel, W. Potzel, M. Kofferlein, et al. Lattice dynamics and hyperfine interactions in ZnOand ZnSe at high external pressures. Physical Review B,1996,53(17):11425-11438.
    [11] S. J. Pearton, D. P. Norton, K. Ip, et al. Recent progress in processing and properties of ZnO.Progress in Materials Science,2005,50(3):293-340.
    [12] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature.Applied Physics Letters,1997,70(17):2230-2232.
    [13] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystallite thin films. Applied Physics Letters,1998,72(25):3270-3272.
    [14] R. F. Service. Will UV Lasers Beat the Blues? Science,1997,276(5314):895.
    [15] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers.Science,2001,292(5523):1897-1899.
    [16] T. Dietl, H. Ohno, F. Matsukura, et al. Ferromagnetism in Zinc-Blende Magnetic Semiconductors.Science,2000,287:1019-1022.
    [17] Y. C. Yang, C. F. Zhong, X. H. Wang, et al. Room temperature multiferroic behavior of Cr-dopedZnO films. Journal of Applied Physics,2008,104(6):064102.
    [18] B. K. Roberts, A. B. Pakhomov, V. S. Shutthanandan, et al. Ferromagnetic Cr-doped ZnO for spinelectronics via magnetron sputtering. Journal of Applied Physics,2005,97(10):10D310.
    [19] W. S. Yan, Z. H. Sun, Q. H. Liu, et al. Zn vacancy induced room-temperature ferromagnetism inMn-doped ZnO. Applied Physics Letters,2007,91(6):062113.
    [20] S. Kumar, Y. J. Kim, B. H. Koo, et al. Structural and magnetic properties of chemicallysynthesized Fe doped ZnO. Journal of Applied Physics,2009,105(7):07C520.
    [21] T. Kataoka, M. Kobayashi, Y. Sakamoto, et al. Electronic structure and magnetism of the dilutedmagnetic semiconductor Fe-doped ZnO nanoparticles. Journal of Applied Physics,2010,107(3):033718.
    [22] H. S. Hsu, J. C. A. Huang, Y. H. Huang, et al. Evidence of oxygen vacancy enhancedroom-temperature ferromagnetism in Co-doped ZnO. Applied Physics Letters,2006,88(24):242507.
    [23] W. Yu, L. H. Yang, X. Y. Teng, et al. Influence of structure characteristics on room temperatureferromagnetism of Ni-doped ZnO thin films. Journal of Applied Physics,2008,103(9):3347-3351.
    [24] M. El-Hilo, A. A. Dakhel, A. Y. Ali-Mohamed. Room temperature ferromagnetism innanocrystalline Ni-doped ZnO synthesized by co-precipitation. Journal of Magnetism andMagnetic Materials,2009,321(14):2279-2283.
    [25] H. Pan, J. B. Yi, L. Shen, et al. Room-Temperature Ferromagnetism in Carbon-Doped ZnO.Physical Review Letters,2007,99(12):127201.
    [26] I. S. Elfimov, A. Rusydi, S. I. Csiszar, et al. Magnetizing Oxides by Substituting Nitrogen forOxygen. Physical Review Letters,2007,98(13):137202.
    [27] Z. L. Wang. Nanopiezotronics. Advanced Materials (Weinheim, Germany),2007,19:889-892.
    [28] J. H. He, C. L. Hsin, J. Liu, et al. Piezoelectric Gated Diode of a Single ZnO Nanowire.Advanced Materials (Weinheim, Germany),2007,19(6):781-784.
    [29] C. S. Lao, Q. Kuang, Z. L. Wang, et al. Polymer functionalized piezoelectric-FET ashumidity/chemical nanosensors. Applied Physics Letters,2007,90(26):262107.
    [30] Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science,2006,312(5771):242-246.
    [31] X. Y. Kong, Y. Ding, R. Yang, et al. Single-crystal nanorings formed by epitaxial self-coiling ofpolar nanobelts. Science,2004,303(5662):1348-1351.
    [32] P. X. Gao, Y. Ding, W. J. Mai, et al. Conversion of zinc oxide nanobelts intosuperlattice-structured nanohelices. Science,2005,309(5741):1700-1704.
    [33] X. Y. Zhang, J. Y. Dai, H. C. Ong, et al. Hydrothermal synthesis of oriented ZnO nanobelts andtheir temperature dependent photoluminescence. Chemical Physics Letters,2004,393(1-3):17-21.
    [34] C. Lu, L. Qi, J. Yang, et al. Hydrothermal growth of large-scale micropatterned arrays ofultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications(Cambridge, United Kingdom),2006(33):3551-3553.
    [35] Y. Chen, Y. Shao, X. Zhang, et al. Heavily Doped ZnO Nanobelts and Their Violet Emission.Journal of Nanoscience and Nanotechnology,2011,11(2):1205-1209.
    [36] L. L. Wu, Z. G. Gao, E. Zhang, et al. Synthesis and optical properties of N-In codoped ZnOnanobelts. Journal of Luminescence,2009,130(2):334-337.
    [37] C. H. Zang, J. F. Su, B. Wang, et al. Photoluminescence of ZnO:Sb nanobelts fabricated bythermal evaporation method. Journal of Luminescence,2011,131(8):1817-1820.
    [38] C. S. Lao, M.-C. Park, Q. Kuang, et al. Giant Enhancement in UV Response of ZnO Nanobeltsby Polymer Surface-Functionalization. Journal of the American Chemical Society,2007,129(40):12096-12097.
    [39] N. Hongsith, S. Choopun. ZnO Nanobelts as a Photoelectrode for Dye-Sensitized Solar Cell.Chiang Mai Journal of Science,2009,37(1):48-54.
    [40] E. Comini, G. Faglia, G. Sberveglieri, et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts. Applied Physics Letters,2002,81(10):1869-1871.
    [41] Y. Yang, W. Guo, J. Qi, et al. Flexible piezoresistive strain sensor based on single Sb-doped ZnOnanobelts. Applied Physics Letters,2010,97(22):223107.
    [42] Y. Yang, J. Qi, W. Guo, et al. Transverse piezoelectric field-effect transistor based on single ZnOnanobelts. Physical Chemistry Chemical Physics,2010,12(39):12415-12419.
    [43] C. Ronning, P. X. Gao, Y. Ding, et al. Manganese-doped ZnO nanobelts for spintronics. AppliedPhysics Letters,2004,84(5):783-785.
    [44] X. D. Bai, P. X. Gao, Z. L. Wang, et al. Dual-mode mechanical resonance of individual ZnOnanobelts. Applied Physics Letters,2003,82(26):4806-4808.
    [45] W. L. Hughes, Z. L. Wang. Nanobelts as nanocantilevers. Applied Physics Letters,2003,82(17):2886-2888.
    [46] F. Claeyssens, C. L. Freeman, N. L. Allan, et al. Growth of ZnO thin films-experiment and theory.Journal of Materials Chemistry,2005,15(1):139-148.
    [47] M. Topsakal, S. Cahangirov, E. Bekaroglu, et al. First-principles study of zinc oxide honeycombstructures. Physical Review B,2009,80(23):235119.
    [48] C. L. Freeman, F. Claeyssens, N. L. Allan, et al. Graphitic Nanofilms as Precursors to WurtziteFilms: Theory. Physical Review Letters,2006,96(6):066102.
    [49] B. L. Wang, S. Nagase, J. J. Zhao, et al. The stability and electronic structure of single-walledZnO nanotubes by density functional theory. Nanotechnology,2007,18(34):345706.
    [50] C. Tusche, H. L. Meyerheim, J. Kirschner. Observation of Depolarized ZnO(0001) Monolayers:Formation of Unreconstructed Planar Sheets. Physical Review Letters,2007,99(2):026102.
    [51] A. R. Botello-Mendez, M. T. Martinez-Martinez, F. Lopez-Urias, et al. Metallic edges in zincoxide nanoribbons. Chemical Physics Letters,2007,448(4-6):258-263.
    [52] A. R. Botello-Mendez, F. Lopez-Urias, M. Terrones, et al. Magnetic behavior in zinc oxidezigzag nanoribbons. Nano Letters,2008,8(6):1562-1565.
    [53] Q. Chen, L. Y. Zhu, J. L. Wang. Edge-passivation induced half-metallicity of zigzag zinc oxidenanoribbons. Applied Physics Letters,2009,95(13):133116.
    [54] A. R. Botello-Mendez, F. Lopez-Urias, M. Terrones, et al. Enhanced Ferromagnetism in ZnONanoribbons and Clusters Passivated with Sulfur. Nano Research,2008,1(5):420-426.
    [55] H. Si, B. C. Pan. Strain-induced semiconducting-metallic transition for ZnO zigzag nanoribbons.Journal of Applied Physics,2010,107(9):094313.
    [56] L. Z. Kou, C. Li, Z. H. Zhang, et al. Tuning Magnetism in Zigzag ZnO Nanoribbons byTransverse Electric Fields. ACS Nano,2010,4(4):2124-2128.
    [57] L. Z. Kou, C. Li, Z. H. Zhang, et al. Electric-Field-and Hydrogen-Passivation-Induced BandModulations in Armchair ZnO Nanoribbons. Journal of Physical Chemistry C,2010,114(2):1326-1330.
    [58] D. P. Li, G. Z. Wang, X. H. Han, et al. Synthesis and Characterization of In-Doped ZnO PlanarSuperlattice Nanoribbons. Journal of Physical Chemistry C,2009,113(14):5417-5421.
    [59] M. Stoehr, S. Juillaguet, T. Kyaw, et al. Optical properties of Ga2O3doped ZnO nanoribbons.Physica Status Solidi C-Conferences and Critical Reviews,2005,2(4):1314-1318.
    [60] Z. L. Wang. Splendid One-Dimensional Nanostructures of Zinc Oxide: A New NanomaterialFamily for Nanotechnology. ACS Nano,2008,2(10):1987-1992.
    [61] S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [62] R. H. Baughman, A. A. Zakhidov, W. A. de Heer. Carbon Nanotubes--the Route TowardApplications. Science,2002,297(5582):787-792.
    [63] N. G. Chopra, R. J. Luyken, K. Cherrey, et al. Boron nitride nanotubes. Science (New York, NY),1995,269(5226):966-967.
    [64] R. Tenne, M. Homyonfer, Y. Feldman. Nanoparticles of Layered Compounds with Hollow CageStructures (Inorganic Fullerene-Like Structures). Chemistry of Materials,1998,10(11):3225-3238.
    [65] Y. J. Xing, Z. H. Xi, Z. Q. Xue, et al. Optical properties of the ZnO nanotubes synthesized viavapor phase growth. Applied Physics Letters,2003,83(9):1689.
    [66] Y. J. Xing, Z. H. Xi, X. D. Zhang, et al. Nanotubular structures of zinc oxide. Solid StateCommunications,2004,129(10):671-675.
    [67] Y. Sun, G. M. Fuge, N. A. Fox, et al. Synthesis of aligned arrays of ultrathin ZnO nanotubes on aSi wafer coated with a thin ZnO film. Advanced Materials (Weinheim, Germany),2005,17(20):2477.
    [68] A. Wei, X. W. Sun, C. X. Xu, et al. Stable field emission from hydrothermally grown ZnOnanotubes. Applied Physics Letters,2006,88(21):213102.
    [69] S. L. Mensah, V. K. Kayastha, I. N. Ivanov, et al. Formation of single crystalline ZnO nanotubeswithout catalysts and templates. Applied Physics Letters,2007,90(11):113108.
    [70] C. Wang, B. Mao, E. Wang, et al. Solution synthesis of ZnO nanotubes via a template-freehydrothermal route. Solid State Communications,2007,141(11):620-623.
    [71] Y. Tong, Y. Liu, C. Shao, et al. Growth and Optical Properties of Faceted Hexagonal ZnONanotubes. The Journal of Physical Chemistry B,2006,110(30):14714-14718.
    [72] F. Ochanda, K. Cho, D. Andala, et al. Synthesis and Optical Properties of Co-Doped ZnOSubmicrometer Tubes from Electrospun Fiber Templates. Langmuir,2009,25(13):7547-7552.
    [73] R. Ranjusha, R. Sreeja, P. A. Mini, et al. Electrical and optical characteristics of surface treatedZnO nanotubes. Materials Research Bulletin,2012,47(8):1887-1891.
    [74] C. S. Rout, S. H. Krishna, S. R. C. Vivekchand, et al. Hydrogen and ethanol sensors based onZnO nanorods, nanowires and nanotubes. Chemical Physics Letters,2006,418(4-6):586-590.
    [75] H. Ting-Jen, C. Shoou-Jin, H. Cheng-Liang, et al. ZnO nanotube ethanol gas sensors. Journal ofthe Electrochemical Society,2008,155(9):K152-K155.
    [76] T. Rakshit, S. Mandal, P. Mishra, et al. Optical and Bio-Sensing Characteristics of ZnONanotubes Grown by Hydrothermal Method. Journal of Nanoscience and Nanotechnology,2012,12(1):308-315.
    [77] M. Riaz, A. Fulati, G. Amin, et al. Buckling and elastic stability of vertical ZnO nanotubes andnanorods. Journal of Applied Physics,2009,106(3):034309.
    [78] Y. Xi, J. Song, S. Xu, et al. Growth of ZnO nanotube arrays and nanotube based piezoelectricnanogenerators. Journal of Materials Chemistry,2009,19(48):9260-9264.
    [79] Z. Zhou, Y. F. Li, L. Liu, et al. Size-and surface-dependent stability, electronic properties, andpotential as chemical sensors: Computational studies on one-dimensional ZnO nanostructures.Journal of Physical Chemistry C,2008,112(36):13926-13931.
    [80] H. Xu, F. Zhan, A. L. Rosa, et al. First-principles study of the size-dependent structural andelectronic properties of thick-walled ZnO nanotubes. Solid State Communications,2008,148(11-12):534-537.
    [81] F. C. Zhang, Z. Y. Zhang, W. H. Zhang, et al. First-Principles Study on Magnetic Properties ofV-Doped ZnO Nanotubes. Chinese Physics Letters,2009,26(1):016105.
    [82] D. Q. Fang, A. L. Rosa, R. Q. Zhang, et al. Theoretical Exploration of the Structural, Electronic,and Magnetic Properties of ZnO Nanotubes with Vacancies, Antisites, and NitrogenSubstitutional Defects. Journal of Physical Chemistry C,2010,114(13):5760-5766.
    [83] A. L. He, X. Q. Wang, Y. Q. Fan, et al. Electronic structure and magnetic properties of Mn-dopedZnO nanotubes: An ab initio study. Journal of Applied Physics,2010,108(8):084308.
    [84] G. L. Chai, C. S. Lin, J. Y. Wang, et al. Density Functional Theory Simulations of Structures andProperties for Ag-Doped ZnO Nanotubes. Journal of Physical Chemistry C,2011,115(7):2907-2913.
    [85] L. Z. Kou, Y. Zhang, C. Li, et al. Local-Strain-Induced Charge Carrier Separation and ElectronicStructure Modulation in Zigzag ZnO Nanotubes: Role of Built-In Polarization Electric Field.Journal of Physical Chemistry C,2011,115(5):2381-2385.
    [86] Y. Zhang, Y.-H. Wen, J.-C. Zheng, et al. Strain-induced structural and direct-to-indirect band gaptransition in ZnO nanotubes. Physics Letters A,2010,374:2846-2849.
    [87] Q. Wan, C. L. Lin, X. B. Yu, et al. Room-temperature hydrogen storage characteristics of ZnOnanowires. Applied Physics Letters,2004,84(1):124-126.
    [88] X. Wang, J. Song, P. Li, et al. Growth of Uniformly Aligned ZnO Nanowire HeterojunctionArrays on GaN, AlN, and Al0.5Ga0.5N Substrates. Journal of the American Chemical Society,2005,127:7920-7923.
    [89] Y. F. Zhang, R. E. Russo, S. S. Mao. Femtosecond laser assisted growth of ZnO nanowires.Applied Physics Letters,2005,87(13):133115.
    [90] J. Zuniga-Perez, A. Rahm, C. Czekalla, et al. Ordered growth of tilted ZnO nanowires:morphological, structural and optical characterization. Nanotechnology,2007,18(19):195303-195312.
    [91] L. C. Tien, S. J. Pearton, D. P. Norton, et al. Synthesis and microstructure of vertically alignedZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. Journal of MaterialsScience,2008,43(21):6925-6932.
    [92] W. Lee, M. C. Jeong, J. M. Myoung. Catalyst-free growth of ZnO nanowires by metal-organicchemical vapour deposition (MOCVD) and thermal evaporation. Acta Materialia,2004,52(13):3949-3957.
    [93] M. C. Jeong, B. Y. Oh, W. Lee, et al. Comparative study on the growth characteristics of ZnOnanowires and thin films by metalorganic chemical vapor deposition (MOCVD). Journal ofCrystal Growth,2004,268(1-2):149-154.
    [94] J. M. Wang, L. Gao. Hydrothermal synthesis and photoluminescence properties of ZnOnanowires. Solid State Communications,2004,132(3-4):269-271.
    [95] J. Cui, U. J. Gibson. Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnONanowires. The Journal of Physical Chemistry B,2005,109(46):22074-22077.
    [96] M. Sima, I. Enculescu, E. Vasile. Growth of ZnO micro and nanowires using the templatemethod. Journal of Optoelectronics and Advanced Materials,2006,8(2):825-828.
    [97] D. Ramirez, T. Pauporte, H. Gomez, et al. Electrochemical growth of ZnO nanowires insidenanoporous alumina templates. A comparison with metallic Zn nanowires growth. PhysicaStatus Solidi a-Applications and Materials Science,2008,205(10):2371-2375.
    [98] J. B. Yi, H. Pan, J. Y. Lin, et al. Ferromagnetism in ZnO nanowires derived fromelectro-deposition on AAO template and subsequent oxidation. Advanced Materials (Weinheim,Germany),2008,20(6):1170-1174.
    [99] C. H. Bae, S. M. Park, S.-E. Ahn, et al. Sol-gel synthesis of sub-50nm ZnO nanowires on pulselaser deposited ZnO thin films. Applied Surface Science,2006,253(4):1758-1761.
    [100] Y. C. Kong, D. P. Yu, B. Zhang, et al. Ultraviolet-emitting ZnO nanowires synthesized by aphysical vapor deposition approach. Applied Physics Letters,2001,78(4):407-409.
    [101] H. Gao, F. Yan, J. Li, et al. Synthesis and characterization of ZnO nanorods and nanoflowersgrown on GaN-based LED epiwafer using a solution deposition method. Journal of Physics D:Applied Physics,2007,40(12):3654.
    [102] W. I. Park, G. C. Yi. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN.Advanced Materials (Weinheim, Germany),2004,16(1):87-90.
    [103] J. B. Cui, U. J. Gibson. A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar SolarCells. Journal of Physical Chemistry C,2010,114(14):6408-6412.
    [104] M. Law, L. E. Greene, J. C. Johnson, et al. Nanowire dye-sensitized solar cells. NatureMaterials,2005,4(6):455-459.
    [105] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid nanorod-polymer solar cells. Science,2002,295(5564):2425-2427.
    [106] Q. Wan, Q. H. Li, Y. J. Chen, et al. Fabrication and ethanol sensing characteristics of ZnOnanowire gas sensors. Applied Physics Letters,2004,84(18):3654.
    [107] S. M. Al-Hilli, M. Willander, A. Ost, et al. ZnO nanorods as an intracellular sensor for pHmeasurements. Journal of Applied Physics,2007,102(8):084304.
    [108] M. Willander, L. L. Yang, A. Wadeasa, et al. Zinc oxide nanowires: controlled low temperaturegrowth and some electrochemical and optical nano-devices. Journal of Materials Chemistry,2009,19(7):1006-1018.
    [109] Z. L. Wang. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics.Advanced Functional Materials,2008,18(22):3553-3567.
    [110] G. Zhu, R. Yang, S. Wang, et al. Flexible High-Output Nanogenerator Based on Lateral ZnONanowire Array. Nano Letters,2010,10(8):3151-3155.
    [111] S. N. Cha, J. E. Jang, Y. Choi, et al. High performance ZnO nanowire field effect transistorusing self-aligned nanogap gate electrodes. Applied Physics Letters,2006,89(26):263102-263103.
    [112] X. D. Wang, J. Zhou, J. H. Song, et al. Piezoelectric Field Effect Transistor and NanoforceSensor Based on a Single ZnO Nanowire. Nano Letters,2006,6(12):2768.
    [113] J. Y. Zhang, T. S. Deng, X. Shen, et al. Electrical and optical properties of single As-doped ZnOnanowire field effect transistors. Acta Physica Sinica,2009,58(6):4156-4161.
    [114] J.-H. He, C. L. Hsin, J. Liu, et al. Piezoelectric gated diode of a single ZnO nanowire. AdvancedMaterials (Weinheim, Germany),2007,19(6):781-784.
    [115] J. Zhou, P. Fei, Y. Gu, et al. Piezoelectric-Potential-Controlled Polarity-Reversible SchottkyDiodes and Switches of ZnO Wires. Nano Letters,2008,8(11):3973-3977.
    [116] Z. Li, R. Yang, M. Yu, et al. Cellular Level Biocompatibility and Biosafety of ZnO Nanowires.The Journal of Physical Chemistry C,2008,112(51):20114-20117.
    [117] J. Cui, Q. Zeng, U. J. Gibson. Synthesis and magnetic properties of Co-doped ZnOnanowires.Journal of Applied Physics,2006,99(8):08M113.
    [118] J. B. Cui, U. J. Gibson. Electrodeposition and room temperature ferromagnetic anisotropy of Coand Ni-doped ZnO nanowire arrays. Applied Physics Letters,2005,87(13):133108-133103.
    [119] B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, et al. Transition-metal doped zinc oxide nanowires.Angewandte Chemie-International Edition,2006,45(3):420-423.
    [120] G. Clavel, N. Pinna, D. Zitoun. Magnetic properties of cobalt and manganese doped ZnOnanowires. Physica Status Solidi a-Applications and Materials Science,2007,204(1):118-124.
    [121] J. J. Liu, M. H. Yu, W. L. Zhou. Well-aligned Mn-doped ZnO nanowires synthesized by achemical vapor deposition method. Applied Physics Letters,2005,87(17):172505-172503.
    [122] U. Philipose, S. V. Nair, S. Trudel, et al. High-temperature ferromagnetism in Mn-doped ZnOnanowires. Applied Physics Letters,2006,88(26):263101-263103.
    [123] G. Z. Xing, J. B. Yi, J. G. Tao, et al. Comparative study of room-temperature ferromagnetism inCu-doped ZnO nanowires enhanced by structural inhomogeneity. Advanced Materials(Weinheim, Germany),2008,20(18):3521-3527.
    [124] T. Kataoka, Y. Yamazaki, V. R. Singh, et al. Ferromagnetic interaction between Cu ions in thebulk region of Cu-doped ZnO nanowires. Physical Review B,2011,84(15):153203.
    [125] M. Shuai, L. Liao, H. B. Lu, et al. Room-temperature ferromagnetism in Cu+implanted ZnOnanowires. Journal of Physics D-Applied Physics,2008,41(13):135010.
    [126] L. Q. Liu, B. Xiang, X. Z. Zhang, et al. Synthesis and room temperature ferromagnetism ofFeCo-codoped ZnO nanowires. Applied Physics Letters,2006,88(6):063104-063103.
    [127] Z. Dai, A. Nurbawono, A. Zhang, et al. C-doped ZnO nanowires: Electronic structures,magnetic properties, and a possible spintronic device. The Journal of Chemical Physics,2011,134(10):104706-104705.
    [128] J. Y. Gao, X. Z. Zhang, Y. H. Sun, et al. Compensation mechanism in N-doped ZnO nanowires.Nanotechnology,2010,21(24):245703-245710.
    [129] K. W. Liu, M. Sakurai, M. Aono. Indium-doped ZnO nanowires: Optical properties androom-temperature ferromagnetism. Journal of Applied Physics,2010,108(4):043516.
    [130]唐斌,邓宏,税正伟,等.掺Al ZnO纳米线阵列的光致发光特性研究.物理学报,2007,56(9):5176-5179.
    [131] J. Fan, F. G. ell, C. Fa′brega, et al. Enhancement of the photoelectrochemical properties ofCl-doped ZnO nanowire by tuning their coaxial doping profile. Applied Physics Letters,2011,99:262102.
    [132] S. Z. Deng, H. M. Fan, M. Wang, et al. Thiol-Capped ZnO Nanowire/Nanotube Arrays withTunable Magnetic Properties at Room Temperature. ACS Nano,2010,4(1):495-505.
    [133] S. P. Huang, H. Xu, I. Bello, et al. Tuning Electronic Structures of ZnO Nanowires by SurfaceFunctionalization: A First-Principles Study. Journal of Physical Chemistry C,2010,114(19):8861-8866.
    [134] H. Xu, A. L. Rosa, T. Frauenheim, et al. Density-functional theory calculations of bare andpassivated triangular-shaped ZnO nanowires. Applied Physics Letters,2007,91(3):031914.
    [135] H. Xu, W. Fan, A. L. Rosa, et al. Hydrogen and oxygen adsorption on ZnO nanowires: Afirst-principles study. Physical Review B,2009,79(7):073402.
    [136] X. B. Han, L. Z. Kou, X. L. Lang, et al. Electronic and Mechanical Coupling in Bent ZnONanowires. Advanced Materials (Weinheim, Germany),2009,21(48):4937-4941.
    [137] L. Zhang, X. Zhang, J. Lai, et al. Emission Red Shift and Temperature Increase in ElectricallyPowered ZnO Nanowires. The Journal of Physical Chemistry C,2011,115(16):8283-8287.
    [138] Q. Zhang, J. J. Qi, Y. H. Huang, et al. Tuning electronic transport of ZnO micro/nanowires by atransverse electric field. Applied Physics Letters,2011,99(6):063105.
    [139] B. L. Wang, J. J. Zhao, J. M. Jia, et al. Structural, mechanical, and electronic properties ofultrathin ZnO nanowires. Applied Physics Letters,2008,93(2):021918.
    [140] Y. Zhang, Y.-H. Wen, J.-C. Zheng, et al. Direct to indirect band gap transition in ultrathin ZnOnanowires under uniaxial compression. Applied Physics Letters,2009,94(11):113114-113113.
    [141] S. Li, Q. Jiang, G. W. Yang. Uniaxial strain modulated band gap of ZnO nanostructures. AppliedPhysics Letters,2010,96(21):213101-213103.
    [142] X. H. Zhou, Y. Huang, X. S. Chen, et al. Effects of uniaxial strain on magnetic interactions inCo-doped ZnO nanowires: First-principles calculations. Solid State Communications,2012,152(1):19-23.
    [143] Z. L. Wang. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science&Engineering R-Reports,2009,64(3-4):33-71.
    [144] B. L. Wang, S. Nagase, J. J. Zhao, et al. Structural growth sequences and electronic propertiesof zinc oxide clusters (ZnO)(n)(n=2-18). Journal of Physical Chemistry C,2007,111(13):4956-4963.
    [145] B. L. Wang, X. Q. Wang, G. B. Chen, et al. Cage and tube structures of medium-sized zincoxide clusters (ZnO)(n)(n=24,28,36, and48). Journal of Chemical Physics,2008,128(14):144710.
    [146] A. Dmytruk, I. Dmitruk, I. Blonskyy, et al. ZnO clusters: Laser ablation production andtime-of-flight mass spectroscopic study. Microelectronics Journal,2009,40(2):218-220.
    [147] X. Q. Wang, B. L. Wang, L. L. Tang, et al. What is atomic structures of (ZnO)(34) magic cluster?Physics Letters A,2010,374(6):850-853.
    [148] B. L. Wang, X. Q. Wang, J. J. Zhao. Atomic Structure of the Magic (ZnO)(60) Cluster:First-Principles Prediction of a Sodalite Motif for ZnO Nanoclusters. Journal of PhysicalChemistry C,2010,114(13):5741-5744.
    [149] J. S. Qi, D. N. Shi, B. L. Wang. Different mechanical properties of the pristine and hydrogenpassivated ZnO nanowires. Computational Materials Science,2009,46(2):303-306.
    [150] J. M. Jia, D. N. Shi, J. J. Zhao, et al. Metallization of ZnO nanowires from partial hydrogenadsorption. Nanotechnology,2007,18(45):455708.
    [151]谢希德,陆栋.固体能带理论.上海:复旦大学出版社2007:1-26.
    [152] M. Born, K. Huang. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press1954.
    [153]李正中.固体理论.北京:高等教育出版社2002:329-341.
    [154]张敬来.密度泛函理论在电子共轭体系中的应用.开封:河南大学出版社2004:1-14.
    [155] L. H. Thomas. The Calculation of Atomic Fields. Proceedings of the Cambridge PhilosophicalSociety,1927,23:542-548.
    [156]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社1998:1-11.
    [157]冯端,金国钧.凝聚态物理学.北京:高等教育出版社2003:347-365.
    [158]贾建明.原子尺度纳米线结构和性质的理论研究,[博士学位论文].南京:南京航空航天大学,2009.
    [159]陈国红.二氧化铬体系电子结构及硅纳米线力学行为的第一性原理研究,[博士学位论文].上海:复旦大学,2010.
    [160] B. Delley. An all-electron numerical method for solving the local denstiy functional forpolyatomic molecules. Journal of Chemical Physics,1990,92(1):508-517.
    [161] B. Delley. From molecules to solids with the DMol3approach. Journal of Chemical Physics,2000,113(18):7756-7764.
    [162] K. Wakabayashi, M. Fujita, H. Ajiki, et al. Electronic and magnetic properties of nanographiteribbons. Physical Review B,1999,59(12):8271.
    [163] S. S. Datta, D. R. Strachan, S. M. Khamis, et al. Crystallographic Etching of Few-LayerGraphene. Nano Letters,2008,8(7):1912-1915.
    [164] Y.-W. Son, M. L. Cohen, S. G. Louie. Energy Gaps in Graphene Nanoribbons. Physical ReviewLetters,2006,97(21):216803.
    [165] Y. W. Son, M. L. Cohen, S. G. Louie. Half-metallic graphene nanoribbons. Nature,2006,444(7117):347-349.
    [166] L. Sun, Q. Li, H. Ren, et al. Strain effect on electronic structures of graphene nanoribbons: Afirst-principles study. The Journal of Chemical Physics,2008,129(7):074704-074706.
    [167] O. Hod, V. Barone, J. E. Peralta, et al. Enhanced Half-Metallicity in Edge-Oxidized ZigzagGraphene Nanoribbons. Nano Letters,2007,7(8):2295-2299.
    [168] Y. F. Li, Z. Zhou, P. W. Shen, et al. Spin Gapless Semiconductor-Metal-Half-Metal Properties inNitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano,2009,3(7):1952-1958.
    [169] E. Kan, H. J. Xiang, F. Wu, et al. Ferrimagnetism in zigzag graphene nanoribbons induced bymain-group adatoms. Applied Physics Letters,2010,96(10):102503.
    [170] S. Dutta, A. K. Manna, S. K. Pati. Intrinsic Half-Metallicity in Modified Graphene Nanoribbons.Physical Review Letters,2009,102(9):096601.
    [171] Z. Wang, H. Hu, H. Zeng. The electronic properties of graphene nanoribbons withboron/nitrogen codoping. Applied Physics Letters,2010,96(24):243110.
    [172] F. W. Zheng, G. Zhou, Z. R. Liu, et al. Half metallicity along the edge of zigzag boron nitridenanoribbons. Physical Review B,2008,78(20):205415.
    [173] W. Chen, Y. F. Li, G. T. Yu, et al. Hydrogenation: A Simple Approach To RealizeSemiconductor-Half-Metal-Metal Transition in Boron Nitride Nanoribbons. Journal of theAmerican Chemical Society,2010,132(5):1699-1705.
    [174] S. Tang, Z. Cao. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronicand magnetic properties: insight from density functional calculations. Physical ChemistryChemical Physics,2010,12(10):2313-2320.
    [175] L. Sun, Y. F. Li, Z. Y. Li, et al. Electronic structures of SiC nanoribbons. Journal of ChemicalPhysics,2008,129(17):174114.
    [176] Z. C. Tu, X. Hu. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possiblesingle-walled nanotubes. Physical Review B,2006,74(3):035434.
    [177] T. Dietl, H. Ohno, F. Matsukura, et al. Ambipolar Pentacene Field-Effect Transistors andInverters. Sience,2000,287:1019-1022.
    [178] K. Sato, H. Katayama-Yoshida. Ferromagnetism in a transition metal atom doped ZnO. PhysicaE: Low-dimensional Systems and Nanostructures,2001,10(1-3):251-255.
    [179] Q. Wang, Q. Sun, P. Jena, et al. Magnetic coupling between Cr atoms doped at bulk and surfacesites of ZnO. Applied Physics Letters,2005,87(16):162509.
    [180] P. Gopal, N. A. Spaldin. Magnetic interactions in transition-metal-doped ZnO: An ab initiostudy. Physical Review B,2006,74(9):094418.
    [181] Q. Wang, J. Wang, X. Zhong, et al. The magnetic phase transition in Cu-doped ZnO: From bulkto nanocluster. Solid State Communications,2012,152:50-52.
    [182] H. Kwak, J. R. Chelikowsky. Size-dependent induced magnetism in carbon-doped ZnOnanostructures. Applied Physics Letters,2009,95(26):263108.
    [183] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple.Physical Review Letters,1996,77(18):3865-3868.
    [184] D. R. Hamann, M. Schluter, C. Chiang. Norm-Conserving Pseudopotentials. Physical ReviewLetters,1979,43(20):1494-1497.
    [185] Q. Wang, Q. Sun, P. Jena. N-doped ZnO thin films and nanowires: energetics, impuritydistribution and magnetism. New Journal of Physics,2009,11(6):063035.
    [186] S. S. Yu, W. T. Zheng, Q. B. Wen, et al. First principle calculations of the electronic propertiesof nitrogen-doped carbon nanoribbons with zigzag edges. Carbon,2008,46(3):537-543.
    [187] M. Yin, Y. Gu, I. L. Kuskovsky, et al. Zinc Oxide Quantum Rods. Journal of the AmericanChemical Society,2004,126(20):6206-6207.
    [188] B. P. Zhang, N. T. Binh, K. Wakatsuki, et al. Formation of highly aligned ZnO tubes on sapphire(0001) substrates. Applied Physics Letters,2004,84(20):4098-4100.
    [189] Y. V. Shtogun, L. M. Woods. Electronic Structure Modulations of Radially Deformed SingleWall Carbon Nanotubes under Transverse External Electric Fields. Journal of PhysicalChemistry C,2009,113(12):4792-4796.
    [190] T. H. Cho, W. S. Su, T. C. Leung, et al. Electronic and optical properties of single-walled carbonnanotubes under a uniform transverse electric field: A first-principles study. Physical Review B,2009,79(23):235123.
    [191] W. Ren, T. H. Cho, T. C. Leung, et al. Gated armchair nanotube and metallic field effect.Applied Physics Letters,2008,93(14):142102.
    [192] L.-G. Tien, C.-H. Tsai, F.-Y. Li, et al. Band-gap modification of defective carbon nanotubesunder a transverse electric field. Physical Review B,2005,72(24):245417.
    [193] Y. Li, S. V. Rotkin, U. Ravaioli. Electronic Response and Bandstructure Modulation of CarbonNanotubes in a Transverse Electrical Field. Nano Letters,2003,3(2):183-187.
    [194] W. L. Guo, Y. F. Guo. Giant Axial Electrostrictive Deformation in Carbon Nanotubes. PhysicalReview Letters,2003,91(11):115501.
    [195] G. Kim, J. Bernholc, Y.-K. Kwon. Band gap control of small bundles of carbon nanotubes usingapplied electric fields: A density functional theory study. Applied Physics Letters,2010,97(6):063113.
    [196] G. Alfieri, T. Kimoto. Engineering the band gap of SiC nanotubes with a transverse electric field.Applied Physics Letters,2010,97(4):043108.
    [197] S. L. Hu, Z. Y. Li, X. C. Zeng, et al. Electronic Structures of Defective Boron Nitride Nanotubesunder Transverse Electric Fields. Journal of Physical Chemistry C,2008,112(22):8424-8428.
    [198] C. W. Chen, M. H. Lee, Y. T. Lin. Electro-optical modulation for a boron nitride nanotubeprobed by first-principles calculations. Applied Physics Letters,2006,89(22):223105.
    [199] K. H. Khoo, M. S. C. Mazzoni, S. G. Louie. Tuning the electronic properties of boron nitridenanotubes with transverse electric fields: A giant dc Stark effect. Physical Review B,2004,69(20):201401.
    [200] C.-W. Chen, M.-H. Lee, S. J. Clark. Band gap modification of single-walled carbon nanotubeand boron nitride nanotube under a transverse electric field. Nanotechnology2004,15(12):1837-1843.
    [201] R. Q. Zhang, N. Gao, J. S. Lian, et al. Tunable optical and electronic properties of Si nanowiresby electric bias. Journal of Applied Physics,2011,109(8):083106.
    [202] A. J. Du, Z. H. Zhu, Y. Chen, et al. First principle studies of zigzag AlN nanoribbon. ChemicalPhysics Letters,2009,469(1-3):183-185.
    [203] Q. Chen, H. Hu, X. J. Chen, et al. Tailoring band gap in GaN sheet by chemical modificationand electric field: Ab initio calculations. Applied Physics Letters,2011,98:053102.
    [204] J. Zhou, M. M. Wu, X. Zhou, et al. Tuning electronic and magnetic properties of graphene bysurface modification. Applied Physics Letters,2009,95(10):103108.
    [205] K. C. Tang, R. Qin, J. Zhou, et al. Electric-Field-Induced Energy Gap in Few-Layer Graphene.Journal of Physical Chemistry C,2011,115(19):9458-9464.
    [206] C. Tang, W. L. Guo, Y. F. Guo. Electrostrictive effect on electronic structures of carbonnanotubes. Applied Physics Letters,2006,88(24):243112.
    [207] B. Kan, J. N. Ding, N. Y. Yuan, et al. Transverse electric field-induced deformation of armchairsingle-walled carbon nanotube. Nanoscale Research Letters,2010,5(7):1144-1149.
    [208] J. Zhou, Q. Wang, Q. Sun, et al. Electric field enhanced hydrogen storage on polarizablematerials substrates. Proceedings of the National Academy of Sciences of the United States ofAmerica,2009,107(7):2801-2806.
    [209] C. He, L. Qi, W. X. Zhang, et al. Effect of electric and stress field on structures and quantumconduction of Cu nanowires. Applied Physics Letters,2011,99(7):073105.
    [210] H. Yilmaz, B. R. Weiner, G. Morell. Semiconductor-homojunction induction in single-crystalGaN nanostructures under a transverse electric field: Ab initio calculations. Physical Review B,2010,81(4):041312.
    [211] Y. Z. Wang, B. L. Wang, Q. F. Zhang, et al. Tunable deformation and electronic properties ofsingle-walled ZnO nanotubes under a transverse electric field. Journal of Applied Physics,2012,111(7):073704.
    [212] B. Xiang, P. W. Wang, X. Z. Zhang, et al. Rational Synthesis of p-Type Zinc Oxide NanowireArrays Using Simple Chemical Vapor Deposition. Nano Letters,2006,7(2):323-328.
    [213] Y. Sun, D. J. Riley, M. N. R. Ashfold. Mechanism of ZnO Nanotube Growth by HydrothermalMethods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B,2006,110(31):15186-15192.
    [214] W. Z. Xu. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters,2005,87(9):093110.
    [215] L. Z. Kou, C. Li, Z. Y. Zhang, et al. Charge carrier separation induced by intrinsic surface strainin pristine ZnO nanowires. Applied Physics Letters,2010,97(5):053104.
    [216] K. K. Kam, B. A. Parkinson. Detailed photocurrent spectroscopy of the semiconducting groupVIB transition metal dichalcogenides. The Journal of Physical Chemistry,1982,86(4):463-467.
    [217] A. Splendiani, L. Sun, Y. B. Zhang, et al. Emerging Photoluminescence in Monolayer MoS2.Nano Letters,2010,10(4):1271-1275.
    [218] Y. Kim, J.-L. Huang, C. M. Lieber. Characterization of nanometer scale wear and oxidation oftransition metal dichalcogenide lubricants by atomic force microscopy. Applied Physics Letters,1991,59(26):3404-3406.
    [219] K. H. Hu, X. G. Hu, X. J. Sun. Morphological effect of MoS2nanoparticles on catalyticoxidation and vacuum lubrication. Applied Surface Science,2010,256(8):2517-2523.
    [220] Y. Y. Sun, H. M. Wang, R. Prins. Hydrodesulfurization with classic Co-MoS2andNi-MoS2/gamma-Al2O3and new Pt-Pd on mesoporous zeolite catalysts. Catalysis Today,2010,150(3-4):213-217.
    [221] J. Kibsgaard, A. Tuxen, K. G. Knudsen, et al. Comparative atomic-scale analysis of promotionaleffects by late3d-transition metals in MoS2hydrotreating catalysts. Journal of Catalysis,2010,272(2):195-203.
    [222] X. Fang, C. Hua, X. Guo, et al. Lithium storage in commercial MoS2in different potentialranges. Electrochimica Acta,2012,81(0):155-160.
    [223] K. F. Mak, C. Lee, J. Hone, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor.Physical Review Letters,2010,105(13):136805.
    [224] S. Lebegue, O. Eriksson. Electronic structure of two-dimensional crystals from ab initio theory.Physical Review B,2009,79(11):115409.
    [225] H. Matte, A. Gomathi, A. K. Manna, et al. MoS2and WS2Analogues of Graphene. AngewandteChemie-International Edition,2010,49(24):4059-4062.
    [226] Y. Ding, Y. Wang, J. Ni, et al. First principles study of structural, vibrationa land electronicproperties of graphene-like MX2(M=Mo, Nb,W,Ta;X=S, Se,Te)monolayers Physica B,2011,406:2254-2260
    [227] B. Radisavljevic, A. Radenovic, V. Giacometti, et al. Single-layer MoS2transistors. NatureNanotechnology,2011,6:147.
    [228] B. Radisavljevic, A. Radenovic, J. Brivio, et al. Single-layer MoS2transistors. NatureNanotechnology,2011,6(3):147-150.
    [229] Z. Wang, H. Li, Z. Liu, et al. Mixed low-dimensional nanomaterial:2D ultranarrow MoS2inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. Journal of the AmericanChemical Society,2010,132(39):13840-13847.
    [230] Y. F. Li, Z. Zhou, S. B. Zhang, et al. MoS2Nanoribbons: High Stability and Unusual Electronicand Magnetic Properties. Journal of the American Chemical Society,2008,130(49):16739-16744.
    [231] Y. Mastai, M. Homyonfer, A. Gedanken, et al. Room Temperature SonoelectrochemicalSynthesis of Molybdenum Sulfide Fullerene-Like Nanoparticles. Advanced Materials(Weinheim, Germany),1999,11(12):1010-1013.
    [232] M. Nath, A. Govindaraj, C. N. R. Rao. Simple Synthesis of MoS2and WS2Nanotubes.Advanced Materials (Weinheim, Germany),2001,13(4):283-286.
    [233] X.-L. Li, J.-P. Ge, Y.-D. Li. Atmospheric Pressure Chemical Vapor Deposition: An AlternativeRoute to Large-Scale MoS2and WS2Inorganic Fullerene-like Nanostructures and Nanoflowers.Chemistry–A European Journal,2004,10(23):6163-6171.
    [234] A. Hassanien, M. Tokumoto, A. Mrzel, et al. Structural and mechanical properties of MoS2-Ixnanotubes and Mo6SxIynanowires. Physica E: Low-dimensional Systems and Nanostructures,2005,29(3-4):684-688.
    [235] J. Chen, N. Kuriyama, H. Yuan, et al. Electrochemical Hydrogen Storage in MoS2Nanotubes.Journal of the American Chemical Society,2001,123:11813-11814.
    [236] F. Y. Cheng, J. Chen, X. L. Gou. MoS2–Ni Nanocomposites as Catalysts forHydrodesulfurization of Thiophene and Thiophene Derivatives. Advanced Materials(Weinheim, Germany),2006,18(19):2561-2564.
    [237] V. Nemanic, M. Zumer, B. Zajec, et al. Field-emission properties of molybdenum disulfidenanotubes. Applied Physics Letters,2003,82(25):4573-4575.
    [238] G. Seifert, H. Terrones, M. Terrones, et al. Structure and Electronic Properties of MoS2Nanotubes. Physical Review Letters,2000,85(1):146.
    [239] R. Q. Zhang, C. Hou, N. Gao, et al. Multi-Field Effect on the Electronic Properties of SiliconNanowires. ChemPhysChem,2011,12(7):1302-1309.
    [240] A. Ramasubramaniam, D. Naveh, E. Towe. Tunable band gaps in bilayer transition-metaldichalcogenides. Physical Review B,2011,84(20):205325.
    [241] Q. Liu, L. Li, Y. Li, et al. Tuning Electronic Structure of Bilayer MoS2by Vertical Electric Field:A First-Principles Investigation. The Journal of Physical Chemistry C,2012,116(40):21556-21562.
    [242] Q. Yue, S. Chang, J. Kang, et al. Bandgap tuning in armchair MoS2nanoribbon. Journal ofPhysics: Condensed Matter,2012,24(33):335501.
    [243] W. Li, J. F. Chen, Q. Y. He, et al. Electronic and elastic properties of MoS2. PhysicaB-Condensed Matter,2010,405(10):2498-2502.
    [244] E. Scalise, M. Houssa, G. Pourtois, et al. Strain-induced semiconductor to metal transition in thetwo-dimensional honeycomb structure of MoS2. Nano Research,2012,5(1):43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700