用户名: 密码: 验证码:
碳纳米管复合材料界面应力传递及石墨烯弹性性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管和石墨烯由于其优异的物理和力学性能而被认为是复合材料的理想增强相,它们和复合材料基体的界面力学行为是影响复合材料宏观力学性能的重要因素,近年来已经成为复合材料研究的重点。本论文针对碳纳米管增强复合材料的界面应力传递以及石墨烯的弹性性能开展了理论研究。
     建立了一个三维轴对称两圆柱壳模型,并在模型中考虑了碳纳米管与基体的泊松效应、双壁碳纳米管管壁间范德华力以及由于碳纳米管和基体热膨胀系数失配而引起的残余应力的影响,分别研究了双壁碳纳米管和基体在完全粘接和脱粘情况下的界面应力分布和传递机制。根据平衡关系及界面上的位移与应力连续条件,推导出了碳纳米管轴向应力的微分方程,从而得到了碳纳米管轴向应力、基体的轴向平均应力以及碳纳米管与基体界面上切应力的解析表达式,并对这些表达式进行了无量纲化处理。通过数值计算,分析了碳纳米管的细长比、体积分数、基体与碳纳米管的弹性模量比、温度变化、界面摩擦系数以及范德华力对应力分布情况的影响。在此基础上,进一步利用有限单元法对单壁碳纳米管增强聚合物复合材料的界面脱粘、应力传递及拔出载荷进行了数值模拟。建立一个轴对称三圆柱壳模型,引入ABAQUS中的Cohesive单元模拟碳纳米管和聚合物基体之间的界面层,分析了单壁碳纳米管的细长比、界面强度以及热残余应力等因素对单壁碳纳米管与聚合物基体间的界面切应力、碳纳米管的轴向应力以及拔出载荷的影响。
     另外,本文提出了一个基于原子间作用势和连续介质力学的理论模型来预测单层石墨烯纳米带的弹性性能。采用弹性拉伸与扭转弹簧模型分别模拟碳-碳键的伸长与键角的变化。利用能量方法得到石墨烯的应变能密度,进而导出单层石墨烯的本构方程,并得到了五个非零弹性常数的解析表达式。利用从Morse势函数与AMBER力场中得到的力常数,分别数值计算了单层石墨烯的等效杨氏模量、泊松比以及剪切弹性模量,证明石墨烯纳米带的弹性模量是各向异性且手性相关的。
Carbon nanotubes and graphene are regarded as the promising reinforcingphase in the advanced composites, due to their superior physical and mechanicalproperties. The interfacial mechanical behavior between the CNTs/graphene andmatrix has great influence on the mechanical properties of composites, and hasattracted much attention of researchers in recent years. In the thesis, theoreticalresearches on the interfacial stress transfer in the carbon nanotubes reinforcedcomposites and elastic properties of a graphene nanosheet have been made.
     A three-dimensional axisymmetric two-cylinder model is presented toinvestigate interfacial stress transfer in the double-walled carbon nanotube (DWCNT)reinforced composites when the interface between the DWCNT and the matrix isperfect bonding and debonding, respectively. In the model, the Poisson’s effects ofDWCNT and matrix as well as the effects of the van der Waals (vdW) interactionbetween two layers of DWCNT and the residual stress induced by thermal expansioncoefficient (TEC) mismatch of DWCNT and matrix are taken into account. Based onthe equilibrium relation and the interfacial continuous condition of displacement andstress, the differential equations of DWCNT axial stress are derived, and theanalytical expressions of the interfacial shear stress and the axial stresses of DWCNTand matrix are obtained and nondimensionalized, respectively. Then via numericalcalculation, the influence of DWCNT aspect ratio, DWCNT volume fraction, relativemodulus between the DWCNT and the matrix, temperature variation, interfacialfriction coefficient and vdW force are analyzed, respectively. Furthermore, numericalsimulations based on finite element methods are presented to in the thesis toinvestigate the interfacial debonding as well as stress transfer and pullout force in thesingle-walled carbon nanotubes (SWCNTs) reinforced polymer composites. Anaxisymmetric three-cylinder model is presented, and a cohesive element in theABAQUS code is applied to simulate the interfacial layer between the SWCNTs andpolymer matrix. The influence aspect ratio of SWCNTs, interfacial strength andthermal residual stress on the interfacial shear stress as well as axial stress ofSWCNTs and pullout force are analyzed and discussed.
     In addition, an analytical approach is presented in the thesis to predict the elasticproperties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized tosimulate the stretching and angle variation of carbon-carbon bond, respectively. Theconstitutive equation of the graphene nanosheet is derived by using the strain energydensity, and the analytical expressions of five nonzero elastic constants are obtained.The in-plane elastic properties of the monolayer graphene nanosheet are proved to beanisotropic. The effective Young’s moduli, Poisson’s ratios and shear modulus of themonolayer graphene nanosheet are calculated according to the force constants derivedfrom Morse potential and AMBER force field, respectively, and they were proved tobe chirality-dependent.
引文
[1] S. Iijima, Helical microtubules of graphite carbon, Nature,1991,354(6348):56-58.
    [2] M.F. Yu, O. Lourie, M.J. Dyer, et al., Strength and breaking mechanism ofmultiwalled carbon nanotubes under tensile load, Science,2000,287(5453):637-640.
    [3] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’smodulus observed for individual carbon nanotubes, Nature,1996,381(6584):678-680.
    [4] A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube-polymer interfacial strength, Appl. Phys. Lett.,2003,82(23):4140-4142.
    [5] P.M. Ajayan, L.S. Schadler, C. Giannaris, et al., Single-walled carbonnanotube-polymer composites: strength and weakness, Adv. Mater.,2000,12:750-753.
    [6] D. Qian, E.C. Dickey, R. Andrews, et al., Load transfer and deformationmechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett.,2000,76(20):2868-2870.
    [7] F.J. Owens, Raman and mechanical properties measurements of single walledcarbon nanotube composites of polyisobutylene, J. Mater. Chem.,1999,16(5):505-508.
    [8] R.Z. Ma, J. Wu, B.Q. Wei, et al., Processing and properties of carbonnanotubes-nano-SiC ceramic, J. Mater. Sci.,1998,33(21):5243-5246.
    [9] C. Bower, R. Rosen, L. Jin, et al., Deformation of carbon nanotubes innanotube-polymer composites, Appl. Phys. Lett.,1999,74(22):3317-3319.
    [10] A. Zandiatashbar, R.C. Picu, N. Koratkar, Mechanical behavior of epoxy-graphene platelets nanocomposites, J. Eng. Mater. Technol.-Transactions ofthe ASME,2012,134(3):031011.
    [11] L.S. Schadler, C. Giannaris, P.M. Ajayan, Load transfer in carbon nanotubeepoxy composites, Appl. Phys. Lett.,1998,73(26):3842-3844.
    [12] S.R. Wang, R. Liang, B. Wang, et al., Load-transfer in functionalized carbonnanotubes/polymer composites, Chem. Phys. Lett.,2008,457(4-6):371-375.
    [13] V. Hadjiev, G. Warren, L. Sun, et al., Raman microscopy of residual strains incarbon nanotube/epoxy composites, Carbon,2010,48(6):1750–1756.
    [14] Q. Li, Y.L. Kang, W. Qiu, et al., Deformation mechanisms of carbonnanotube fibres under tensile loading by in situ Raman spectroscopy analysis,Nanotech.,2011,22(22):225704.
    [15] T. Tsuda, T. Ogasawara, F. Deng, et al., Direct measurements of interfacialshear strength of multi-walled carbon nanotube/PEEK composite using anano-pullout method, Compost. Sci. Technol.,2011,71(10):1295-1300.
    [16] Y. Guo, H. Cho, D. Shi, et al., Effects of plasma surface modification oninterfacial behaviors and mechanical properties of carbon nanotube-Al2O3nanocomposites, Appl. Phys. Lett.,2007,91(26):261903.
    [17] S. Cho, K. Kikuchi, A. Kawasaki, et al., Effective load transfer by achromium carbide nanostructure in a multi-walled carbon nanotube/coppermatrix composite, Nanotech.,2012,23(31):315705.
    [18] S.Y. Fu, C.Y. Yue, X. Hu, et al., Analyses of the micromechanics of stresstransfer in single-and multi-fiber pull-out tests, Composit. Sci. Technol.,2000,60(4):569-579.
    [19] Y.C. Gao, Y-W. Mai, B. Cotterell, Fracture of fiber-reinforced materials, J.Appl. Mathem. Phys.(ZAMP),1988,39(4):550-572.
    [20] M.Y. Quek, Stress transfer at a partially bonded fibre/matrix interface, Int. J.Adhesion Adhesi.,2002,22(4):303-310.
    [21] C.H. Hsueh, Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites, Mater. Sci. Eng.,1990, A123:1-11.
    [22] J.W. Hutchinson, H.M. Jensen, Models of fiber debonding and pullout inbrittle composites with friction, Mech. Mater.,1990,9(2):139-163.
    [23]张鸿,宋迎东,陶瓷基复合材料单纤维拔出力学分析,航空动力学报,2007,22(11):1886-1892.
    [24]张鸿,宋迎东,陶瓷基复合材料单纤维拔出过程分析,材料科学与工程学报,2008,26(6):837-842.
    [25]刘鹏飞,俞学中,陶伟明等,纤维增强复合材料桥联增韧模型,浙江大学学报(工学版),2006,40(5):903-909.
    [26]俞学中,刘鹏飞,郭乙木等,纤维拔出时Coulomb摩擦界面应力传递,浙江大学学报(工学版),2006,40(8):1414-1417.
    [27] C. Jonathan N, K. Umar, B. Werner J, Small but strong: A review of themechanical properties of carbon nanotube-polymer composites, Carbon,2006,44:1624-1652.
    [28] K. Lau, Interfacial bonding characteristics of nanotube/polymer composites,Chem. Phys. Lett.,2003,370:399-405.
    [29] K.Q. Xiao, L.C. Zhang, The stress transfer efficiency of a single-walledcarbon nanotube in epoxy matrix, J. Mater. Sci.,2004,39(14):4481-4486.
    [30] X.L. Gao, K. Li, A shear-lag model for carbon nanotube-reinforced polymercomposites, Int. J. Solids Struct.,2005,42(5-6):1649-1667.
    [31] A. Haque, A. Ramasetty, Theoretical study of stress transfer in carbonnanotube reinforced polymer matrix composites, Composit. Struct.,2005,71(1):68-77.
    [32] T. Xiao, K. Liao, A nonlinear pullout model for unidirectional carbonnanotube-reinforced composites, Composit. Part B-Engineering,2004,35(3):211-217.
    [33] Y.C. Zhang, X. Wang, Thermal effects on interfacial stress transfercharacteristics of carbon nanotubes/polymer composites, Int. J. Solids Struct.,2005,42(20):5399-5412.
    [34]张宇驰,王熙,湿热环境对碳纳米管复合材料界面应力传递的影响,工程力学,2006,23(8):172-176.
    [35] K. Li, S. Saigal, Micromechanical modeling of stress transfer in carbonnanotube reinforced polymer composites, Mater. Sci. Engin. A,2007,457(1-2):44-57.
    [36] L. Zalamea, H. Kim, R.B. Pipes, Stress transfer in multi-walled carbonnanotubes, Composit. Sci. Technol.,2007,67(15-16):3425-3433.
    [37] X.D. He, C. Wang, L.Y. Tong, A pullout model for inclined carbon nanotube,Mech. Mater.,2012,52:28-39.
    [38] Y.L. Chen, B. Liu, K.C. Hwang, et al., A theoretical evaluation of loadtransfer in multi-walled carbon nanotubes, Carbon,2011,49:193-197.
    [39] Y.L. Chen, B. Liu, X.Q. He, et al., Failure analysis and the optimal toughnessdesign of carbon nanotube-reinforced composites, Composit. Sci. Technol.,2010,70(9):1360-1367.
    [40] N. Toshiaki, W. Feng, Q.Q. Ni, et al., Interfacial stress transfer of fiber pulloutfor carbon nanotubes with a composite coating, J. Mater. Sci.,2007,42:4191-4196.
    [41] J.M. Wernik, B.J. Cornwell-Mott, S.A. Meguid, Determination of theinterfacial properties of carbon nanotube reinforced polymer compositesusing atomistic-based continuum model, J. Solids&Struct.,2012,49(13):1852-1863.
    [42]王立峰,郭万林,胡海岩,范德华力对多壁纳米碳管力学性质的影响,固体力学学报,2004,25(3):269-273.
    [43] Y.P. Zhao, L.S Wang, T.X. Yu, Mechanics of adhesion in MEMS-a review, J.Adhes. Sci. Technol.,2003,17(4):519-546.
    [44] C.Q. Ru, Column buckling of multiwalled carbon nanotubes with interlayerradial displacement, Phys. Rev. B,2000,62(24):16962-16967.
    [45] K. Liao, S. Li, Interfacial characteristics of a carbon nanotube-polystyrenecomposite system, Appl. Phys. Lett.,2001,79(25):4225-4227.
    [46] J.H. Gou, B. Minaie, B. Wang, Computational and experimental study ofinterfacial bonding of single-walled nanotube reinforced composites, Comput.Mater. Sci.,2004,31(3-4):225-236.
    [47] S.J.V. Frankland, V.M. Harik, Analysis of carbon nanotube pull-out from apolymer matrix, Surf. Sci.,2003,525(1-3): L103-L108.
    [48] S.C. Chowdhury, T. Okabe, Computer simulation of carbon nanotube pull-outfrom polymer by the molecular dynamics method, Composit. Part A,2007,38(3):747-754.
    [49] D.S. Pietro, C. Tang, C.F. Chen, Enhancing interwall load transfer byvacancy defects in carbon nanotubes, Appli. Phys. Lett.,2012,100(3):033118.
    [50] Z.Q. Zhang, G.G. Cheng, Z. Liu, Analysis of interfacial mechanical propertiesof carbon nanotube-polymer composite, Acta. Phys. Sinica.,2012,61(12):126202.
    [51] Y. Li, Y.L. Liu, X.H. Peng, Pull-out simulations on interfacial properties ofcarbon nanotube-reinforced polymer nanocomposites, Comput. Mater. Sci.,2011,50(6):1854-1860.
    [52] B.H. Kim, K.R. Lee, Y.C. Chung, Effects of interfacial bonding in theSi-Carbon nanotube nanocomposite: A molecular dynamics approach, J. Appl.Phys.,2012,112(4):044312.
    [53] L. Yang, L.Y. Tong, X.D. He, MD simulation of carbon nanotube pulloutbehavior and its use in determining mode I delamination toughness, Comput.Mater. Sci.,2012,55:356-364.
    [54] C. Li, Y. Liu, X. Yao, et al., Interfacial shear strengths between carbonnanotubes, Nanotechnol.,2010,21:115704.
    [55] K.L. Goh, R.M. Aspden, D.W.L. Hukins, Review: finite element analysis ofstress transfer in short-fibre composite materials, Composit. Sci. Technol.,2004,64(9):1091-1100.
    [56] H. Ho, L.T. Drzal, Evaluation of interfacial mechanical properties of fiberreinforced composites using the microindentation method, Compos. Part A,1996,27(10):961-971.
    [57]刘贵立,杨忠华,栗青,碳纳米管增强镁基复合材料长径比对力学性能影响的有限元分析,科学技术与工程,2010,10(23):5630-5633.
    [58] H. Wang, F. Meng, X. Wang, Transfer characteristics of interfacial stressesbetween carbon nanotubes and matrix, J. Reinforced Plastics&Composit.,2010,29(15):2262-2278.
    [59] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Investigation ofstress-strain behavior of single walled carbon nanotube/rubber compositesby a multi-scale finite element method, Theoret. Appl. Fract. Mech.,2009,52(3):158-164.
    [60] G.I. Giannopoulos, S.K. Georgantzinos, N.K. Anifantis, A semi-continuumfinite element approach to evaluate the Youngs modulus of single-walledcarbon nanotube reinforced composites, Composit. Part B,2010,41:594-601.
    [61] N.V. Viet, W.S. Kuo, Load transfer in fractured carbon nanotubes undertension, Composit. Part B-Engineer.,2012,43(2):332-339.
    [62] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect inatomicall thin carbon films, Science,2004,306(5696):666-669.
    [63] A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity ofsingle-layer grapheme, Nano. Lett.,2008,8(3):902-907.
    [64] C.G. Lee, X.D. Wei, J.W. Kysar, et al., Measurement of the elastic propertiesand intrinsic strength of monolayer grapheme, Science,2008,321(5887):385-388.
    [65] X. Zhang, Z. Liu, Y. Huang, et al., Synthesis, characterization and nonlinearoptical property of grapheme-(60) hybrid, J. Nanosci.&Nanotechnol.,2009,9(10):5752-5756.
    [66] R.M. Westervelt, Graphene nanoelectronics, Science,2008,320(5874):324-325.
    [67] S. Stankovich, D.A. Dikin, G.H. Dommett, et al., Graphene-based compositematerials, Nature,2006,442(7100):282-286.
    [68] L. Gong, L. A. Kinloch, R.J. Young, Interfacial stress transfer in a graphenemonolayer nanocomposite, Adv. Mater.,2010,22(24):26942697.
    [69] I. Srivastava, R.J. Mehta, Z.Z. Yu, Raman study of interfacial load transfer ingraphene nanocomposites, Appl. Phys. Lett.,2011,98(6):063102.
    [70] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nat. Mater.,2007,6(3):183-191.
    [71] B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes,Carbon Nanotubes Book Series: Topics in Applied Physics,2001,80:287-327.
    [72] J.P. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes:a fiber digest for beginners, Carbon,2002,40(10):1729-1734.
    [73]韩同伟,贺鹏飞,骆英等,石墨烯力学性能研究进展,力学进展,2011,41(3):279-293.
    [74] L. Ortolani, F. Houdellier, M. Monthioux, et al., Chirality dependent surfaceadhesion of single-walled carbon nanotubes on graphene surfaces, Carbon,2010,48(11):3050-3056.
    [75] P. Liu, Y.W. Zhang, A theoretical analysis of frictional and defectcharacteristics of graphene probed by a capped single-walled carbonnanotube, Carbon,2011,49(11):3687-3697.
    [76] Y. Jin, F.G. Yuan, Nanoscopic modeling of fracture of2D graphene systems, J.Nanosci.&Nanotechnol.,2005,5(4):601-608.
    [77] O.L. Blakslee, D.G. Proctor, E.J. Seldin, et al., Elastic constants ofcompression-annealed pyrolytic graphite, J. Appl. Phys.,1970,41(8):3373-3382.
    [78] I.W. Frank, D.M. Tanenbaum, A.M. Van der Zande, et al., Mechanicalproperties of suspended graphene sheets, J. Vac. Sci.&Technol. B,2007,25(6):2558-2561.
    [79] R. Rasuli, A.I. Zad, M.M. Ahadian, Mechanical properties of graphenecantilever from astomic force microscopy and density functional theory,Nanotechnol.,2010,21(18):185503.
    [80] H. Bu, Y. Chen, M. Zou, et al., Atomistic simulation of mechanical propertiesof graphene nanoribbons, Phys. Lett. A,2009,373(37):3359-3362.
    [81] Z. Ni, H. Bu, M. Zou, et al., Anisotropic mechanical properties of graphenesheets from molecular dynamics, Phys. B: Condens. Matter.,2010,405(5):1301-1306.
    [82] K. Min, N.R. Aluru, Mechanical properties of graphene under sheardeformation, Appli. Phys. Lett.,2011,98(1):013113.
    [83] Y.W. Gao, P. Hao, Mechanical properties of monolayer graphene undertensile and compressive loading, Phys. E: Low-dimensional Syst. Nanostruct.,2009,41(8):1561-1566.
    [84] J.L. Tsai, J.F. Tu, Characterizing mechanical properties of graphite usingmoleclar dynamics simulation, Mater.&Design,2010,31(1):194-199.
    [85]韩同伟,贺鹏飞,王健等,单层石墨烯薄膜拉伸变形的分子动力学研究,新型碳材料,2010,25(4):261-266.
    [86]韩同伟,贺鹏飞,王健等,空位缺陷对单层石墨烯薄膜拉伸力学性能的影响,同济大学学报(自然科学版),2010,38(8):1210-1214.
    [87] R. Faccio, P.A. Denis, H. Pardo, et al., Mechanical properties of graphenenanoribbons, J. Phys. Condens. Matter.,2009,21(28):285304.
    [88] E. Konstantinova, S.O. Dantas, P.M.V.B. Barone, Electronic and elasticproperties of two-dimensional carbon planes, Phys. Rev. B,2006,74(3):035417.
    [89] K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshellelasticity from ab initio computations, Phys. Rev. B,2001,64(23):235406.
    [90] G. Van Lier, C. Van Alsenoy, V. Van Doren, et al., Ab initio study of theelastic properties of single-walled carbon nanotubes and graphene, Chem.Phys. Lett.,2000,326(1-2):181-185.
    [91] X.K. Sun, W.M. Zhao, Prediction of stiffness and strength of single-walledcarbon nanotubes by molecular-mechanics based finite element approach,Mater. Sci.&Eng. A,2005,390(1-2):366-371.
    [92] M. Meo, M. Rossi, Prediction of Young's modulus of single wall carbonnanotubes by molecular-mechanics based finite element modeling, Composit.Sci.&Technol.,2006,66(11-12):1597-1605.
    [93] A. Sakhaee-Pour, Elastic properties of single-layered graphene sheet, SolidState Communicat.,2009,149(1-2):91-95.
    [94] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbonnanotubes, Int. J. Solids Struct.,2003,40(10):2487-2499.
    [95] S.K. Georgantzinos, G.I. Giannopoulos, D.E. Katsareas, et al.,Size-dependent non-linear mechanical properties of graphene nanoribbons,Comput. Mater. Sci.,2011,50(7):2057-2062.
    [96] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numericalinvestigation of elastic mechanical properties of graphene structures, Mater.&Design,2010,31(10):4646-4654.
    [97] M.M. Shokrieh, R. Rafiee, Prediction of Young’s modulus of graphenesheets and carbon nanotubes using nanoscale continuum mechanics approach,Mater.&Design,2010,31(2):790-795.
    [98] F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties ofsingle layer graphene sheets, Nanotechnol.,2009,20(6):065709.
    [99] C.D. Reddy, S. Rajendran, K.M. Liew, Equivalent continuum modeling ofgraphene sheets, Int. J. Nanosci.,2005,4(4):631-636.
    [100] C.D. Reddy, S. Rajendran, K.M. Liew, Equilibrium configuration andcontinuum elastic properties of finite sized graphene, Nanotechnol.,2006,17(3):864-870.
    [101] L.A. Girifalco, R.A. Lad, Energy of cohesion, compressibility, and thepotential energy functions of the graphite system, J. Chem. Phys.,1956,25(4):693-697.
    [102] Y.P. Zhao, Morphological stability of epitaxial thin elastic films by van derWaals force, Archive. Appl. Mech.,2002,72(1):77-84.
    [103] L.N. McCartney, New theoretical model of stress transfer between fiber andmatrix in a uniaxially fiber-reinforced composite, Proc. R. Soc. Lond. A,1989,425:215-244.
    [104] L.J. Zhou, Y.L. Kang, J.G. Guo, Phenomenological model of interfacialstress transfer in carbon nanotube reinforced composites with van der Waalseffects, Polymer Composit.,2011,32(7):1069-1076.
    [105] L.J. Zhou, Y.L. Kang, J.G. Guo, Theoretical model of double-walled carbonnanotube pullout from a composite matrix, Sci. China-Phys. Mech. Astron.,2012,55(6):1004-1009.
    [106] ABAQUS Inc. ABAQUS Scripting User’s Manual6.10.
    [107] T.C. Chang, H.J. Gao, Size-dependent elastic properties of a single-walledcarbon nanotube via a molecular mechanics model, J. Mech. Phys. Solid.,2003,51(6):1059-1074.
    [108] J.G. Guo, Y.P. Zhao, The size-dependent elastic properties of nanofilms withsurface effects, J. Appl. Phys.,2005,98(7):074306.
    [109] J.G. Guo, Y.P. Zhao, The size-dependent bending elastic properties ofnanobeams with surface effects, Nanotechnol.,2007,18(29):295701.
    [110] Q.Z. Yuan, Y.P. Zhao, Precursor film in dynamic wetting, electrowetting, andelectro-elasto-capillarity, Phys. Rev. Lett.,2010,104(24):246101.
    [111] H. Vandeparre, M. Pineirua, F. Brau, et al., Wrinkling hierarchy inconstrained thin sheets from suspended graphene to curtains, Phys. Rev. Lett.,2011,106(22):224301.
    [112] R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites,Current Opinion in Solid State&Mater. Sci.,2004,8(1):31-37.
    [113] J.G. Guo, L.J. Zhou, Y.L. Kang, Chirality-dependent anisotropic elasticproperties of a monolayer graphene nanosheet, J. Nanosci.&Nanotech.,2012,12(4):3159-3164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700