用户名: 密码: 验证码:
水下生产系统脐带缆的结构设计与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下生产系统是深水石油开发中的一种经济有效的开发模式,随着我国南海石油开发的快速发展,有广泛的应用前景。连接海上浮体和海底设备的动态脐带缆是水下生产系统的关键装备之一,为海底设备提供电力、液压和化学药剂注入以及数据传输。目前只有少数国外公司具备设计及制造能力,国内所用的脐带缆均从国外公司购买,价格昂贵且采购周期长,严重制约我国水下生产系统的应用和发展。
     深水动态脐带缆设计对结构性能的要求比较高。由于自重原因,要求脐带缆能够承受较大的拉伸荷载;由于卷管安装、海洋环境以及浮体运动作用,要求脐带缆有较小的弯曲半径;同时还要求在恶劣的环境荷载下,脐带缆满足长期的使用寿命。因此脐带缆结构性能设计应具有较好的抗拉性、柔顺性、高疲劳寿命以及优化的单元布局。由于脐带缆为复杂的多单元、非粘结、多层螺旋缠绕结构,结构性能设计的预测模型比较复杂,理论与数值模型预测存在较多的不准确性,脐带缆设计需要通过室内原型实验验证。
     本文依托“十一五”国家高技术研究发展863计划,海洋技术领域“水下生产系统脐带缆关键技术研究”专题(2009AA092301),开展面向提高脐带缆结构性能设计的分析方法与实验方法研究。分别建立了脐带缆的拉伸性能、弯曲性能以及疲劳性能的预测模型,并提出原型实验方法进行验证;提出了单元布局优化设计的量化方法。本文所开展的主要工作及研究成果归纳如下:
     (1)脐带缆拉伸性能的设计与验证
     深水动态应用的脐带缆在安装及在位过程中受到较大拉伸荷载作用,如果结构的拉伸刚度过低则将导致结构变形过大,进而引起结构的变形失效。脐带缆的拉伸刚度是衡量结构拉伸性能设计的一个重要指标。针对脐带缆缆芯结构的径向可收缩特点,结合解析分析与数值分析方法,建立拉伸刚度的半解析分析模型。通过二维有限元模型,分析缆芯的等效径向刚度并作为解析分析模型的输入参数,进而快速计算脐带缆结构的拉伸刚度。在实验室搭建原型拉伸实验测试系统,验证了上述半解析分析模型的适用性。研究了脐带缆结构参数包括缆芯的径向刚度、铠装钢丝的缠绕角度及钢丝直径对拉伸刚度设计的影响。
     (2)脐带缆弯曲性能的设计与验证
     深水动态应用的脐带缆在位过程中,其顶部与底部受到较大弯曲荷载作用,因此减小顶部或者底部的曲率可以避免弯曲失效。脐带缆的弯曲刚度是动态荷载分析的重要输入参数,对曲率响应有较大影响,因此弯曲刚度是衡量结构弯曲性能设计的一个重要指标。考虑截面各单元间之间的摩擦作用,建立脐带缆全三维有限元分析模型,对非线性弯曲行为进行了数值模拟。该有限元模型能够准确预测脐带缆从无滑动、部分滑动到全滑动的过程。在实验室搭建了原型弯曲实验测试系统,验证了有限元分析模型的正确性。研究了脐带缆结构参数包括单元间的摩擦系数、单元的缠绕角度以及护套材料对弯曲刚度设计的影响。
     (3)脐带缆疲劳性能的设计与验证
     周期性波浪荷载以及平台运动使得深水动态脐带缆顶部受到较大的拉伸荷载与循环弯曲荷载的组合作用,导致内部单元受到交变应力而产生累积损伤进一步引起疲劳破坏。截面单元间相互摩擦作用对疲劳寿命有显著的影响,在疲劳寿命分析过程中,整体荷载分析模型中采用非线性弯曲刚度作为输入,同时局部应力分析中考虑单元间接触引起的摩擦应力影响。基于上述整体荷载及局部应力分析模型可得到更准确的脐带缆疲劳寿命预测。提出四点纯弯曲疲劳实验方法并建立相应室内原型疲劳实验系统,对上述脐带缆疲劳性能的分析模型与方法进行检验。
     (4)脐带缆单元布局的优化设计
     脐带缆规范ISO13628-5中关于截面的布局要求仅给出了对称性等一般性原则,并未给出可操作的具体方法及工具。基于对称性及结构力学性能要求,提出脐带缆单元的最优布局设计方法。首先为保证截面每层单元的对称排布,提出旋转对称及最大对称轴的数学描述模型,并开发相应设计软件进行求解。然后建立不同布局方式的截面精细分析有限元模型,定量分析结构力学性能,筛选确定最优的截面布局,保证脐带缆具有更优的抗拉性能及抗疲劳性能。
The subsea production system is an effective and economic development mode for the deepwater offshore oil exploitation. With the rapid progress of the oil development in the South China Sea, it has a good application prospect. Dynamic umbilical that connect the top floating platform and the subsea device is one of the key equipments of the subsea production system. It provides power, data transmission, hydraulic and chemical injection for the subsea device. Only a small number of foreign companies have the ability to design and manufacture umbilicals. All the umbilicals that used in China were bought from foreign companies. The application and development of the subsea production system are seriously restricted by the expensive price and long cycle of umbilical.
     The design of deepwater dynamic umbilicals has a higher requirement of the structure performance. It needs to meet big tension due to self-weight, bending and high fatigue life due to rugged ocean environment and floating movement. Therefore, in order to prevent the tension, bending and fatigue failure, the umbilical structure should be designed with better tension performance, bending performance, fatigue performance and optimal layout. Due to the umbilical characteristics of multi-unit, multi-material and helical wound structure, the predicting model of the structural performance is complex. The theoretical and numerical models are imprecise. So the design needs to be verified by experiment.
     The support for the research is provided by the subject "The Key Technology of Umbilical of Subsea Production System"(No.2009AA09Z301) of the marine technology field of the "863" High Technology Research and Development Program of China. The analysis method and experimental research, which aimed to improve the structure performance of deepwater umbilicals, are developed. The predicting models and experimental verification platform of tension performance, bending performance, and fatigue performance are studied in the dissertation. Quantitative method of the optimal layout design is proposed. The main works and research results are summarized as follows:(1) Tension stiffness design and analysis of umbilical
     The top of deepwater dynamical umbilicals will be subjected to large tension loads during installation and operation. If the tension stiffness of the structure is too low, it will lead to a large deformation, which may lead to structural deformation failure. Umbilicals tension stiffness is an important design indicator to measure the performance of the structure tension. Due to the radial contraction characteristics of the umbilical core, a semi-analytic model of the tension stiffness that considered the radial stiffness of the core is proposed. The model combined with theory analysis model and numerical analysis model. The radial stiffness of the umbilical core which can be got from the two-dimension finite element analysis model of the cross-section is the input parameter of the theory analysis model. The tension stiffness of the umbilical can be rapidly and accurately calculated by the semi-analytic model. To verify the applicability of the proposed model, the analysis results were compared with results of the tension test in the lab. Parametric studies are conducted to investigate the effect of the umbilical design parameters that consist the radial stiffness, diameter and laying angle of armored wires on the results of tension stiffness.
     (2) Bending stiffness design and analysis of umbilical
     The top and bottom of dynamic umbilicals will be subjected to large bending loads. Thus reducing the curvature load can avoid bending failure. The bending stiffness of the umbilical is an important input parameter of dynamic load analysis. It has a great effect on the curvature load response. So the bending stiffness is an important design indicator to measure the performance of structural bending. The full three-dimension finite element analysis model of umbilical that considers the friction effect between components is established. The nonlinear bending behavior from no-slip stage, part-slip stage to full-slip stage can be accurately simulated by the model. The analysis results were compared with results of the bending test in the lab to verify the correctness of the finite element model. Parametric studies are conducted to investigate the effect of the umbilical design parameters that consist of the frictional coefficient, laying angle of components and the material of sheaths on the results of bending stiffness.
     (3) Fatigue life design and analysis of umbilical
     At the top of dynamic deepwater umbilicals, it is subjected to big tension load and cyclic bending load due to the periodic wave loads and platform motion. Alternating stress of components are produced, which can lead to cumulative damage and fatigue failure of the umbilical. The fatigue life analysis method of dynamic umbilical is presented. One of the important structural characteristic of the umbilical is the contact and friction between components. During the process of the fatigue life analysis, nonlinear bending stiffness is considered in the fatigue load analysis and friction stress are considered in the fatigue stress analysis. Based on the fatigue load analysis model and the fatigue stress analysis model, more accurate fatigue life can be predicted. Four-point bending fatigue test is proposed to verify the fatigue performance of the umbilical.
     (4) Cross-sectional layout design of umbilical
     Only general principles of such as symmetry of the layout requirements are given in the umbilical specification ISO13628-5. But methods and tools which can be specifically operated did not give. The optimal layout design method of umbilical cross-section is proposed based on component symmetry and structural mechanical properties. Firstly, in order to make sure the symmetrical arrangement of components in each layer, mathematical description model and the appropriate design software of symmetry is developed based on the rotational symmetry and the maximum number of the axis. Then after the symmetry arrangement of each layer of different layout design concepts, the quantitative analysis results based on finite element analysis of mechanical properties to determine the final optimal layout design is presented.
引文
[1]白少成.浅谈世界能源危机及中国的战略决战[J].实验科学与技术,2006,(增刊):168-170.
    [2]徐华.深海石油之争(J).中国船检,2009,(07):23-27.
    [3]白云程,周晓惠,万群等.世界深水油气勘探现状及面临的挑战[J].特种油气藏,2008,15(2):7-10.
    [4]何家雄,夏斌,施小斌等.世界深水油气勘探进展与南海深水油气勘探前景[J].天然气地球科学,2006,17(6):747-752.
    [5]莫杰.海洋能源将获更大力度支持[J].海洋信息,1997,9:24-25.
    [6]阳连丰,彭艳.我国海洋油气开发面临的历史机遇[J].中国造船,2006,47:27-31.
    [7]李国荣.我国深水石油钻采装备现状及发展建议[J].石油机械,2009,37(S):87-91.
    [8]张凤成.中国海洋油气产业发展战略研究[J].海洋开发与管理,2007,2:99-102.
    [9]中国科学技术协会,2007-2008海洋科学学科发展报告[M],北京:中国科学技术出版社.
    [10]吴伦楷.浮式生产系统新的发展动向[J].中国海洋平台,2002,17(5):7-10
    [11]陈家庆.海洋油气开发中的水下生产系统(一)[J].石油机械,2007,35(5):54-58.
    [12]陈家庆.海洋油气开发中的水下生产系统(二)[J].石油机械,2007,35(5):150-156.
    [13]李长春,连琏.水下成产系统在石油开发中的应用[J].海洋工程,1995,13(4):25-30.
    [14]王玮,孙丽萍,白勇.水下生产系统[J].中国海洋平台,2009,24(6):41-45.
    [15]于柏峰,苏峰.碳纤维复合材料在深海油气田开发中的新应用[J].材料工程,2008,1:175-179.
    [16]Swanson R C, Rae V S, Langner C G. Metal tube umbilicals-deepwater and dynamic considerations[C]. The Offshore Technology Conference, Houston,1995:201-210.
    [17]孙晶晶,刘培林,段梦兰等.深水脐带缆安装技术发展现状与趋势[J].石油矿产机械,2011,40(12):1-5.
    [18]郭宏,屈衍,李博等.国内外脐带缆技术研究现状以在我国的应用展望[J].中国海上油气,2012,24(1):74-78.
    [19]API 17E. Specification for Subsea Production Control Umbilica [S].2010.
    [20]ISO 13628-5. Petroleum and natural gas industries-Design and operation of subsea production systems-Part 5:Subsea Umbilicals[S].2002.
    [21]王世文,冯继玲.弹性钢丝绳理论研究进展[J].力学进展,1999,29(4):486-500.
    [22]Hruska F H. Calculation of stresses in wire ropes [J]. Wire and wire products.1951, 26(9):766-767.
    [23]Hruska F H. Radial forces in wire ropes [J]. Wire and wire products.1952,27(5):459-463.
    [24]Hruska F H. Tangential forces in wire ropes [J]. Wire and wire products.1953,28(5):455-460.
    [25]Knapp R H. Nonlinear analysis of a helically armored cable with nonuniform mechanical properties in tension and torsion[C]. Proceeding of IEEE/MTS conference of Engineering in the Ocean Environment, San Diego,1975:155-164.
    [26]M cConnell K G, Zemke W P. A model to predict the coupled axial torsion properties of ACSR electrical conductors [J]. Experimental Mechanics,1982,22(7):237-244.
    [27]Feret, J J, Bournazel, C L. Calculation of stresses and slip in structural layers of unbonded flexible pipes [J]. Journal of Offshore Mechanics and Arctic Engneering. 1987.109:263-269.
    [28]Ramos, J R, Pesce, C P. A consistent analytical model to predict the structural behavior of flexible risers subjected to combined Loads [J]. Journal of Offshore Mechanics and Arctic Engneering.2004.126:141-146.
    [29]Ramos, J R, et al. A case study on the axial-torsional behavior of flexible risers. Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering, Portuga,2008:481-491.
    [30]董俊宏,王瑛剑,赵四新等.双层铠装海底光缆抗拉强度的计算[J].光纤与电缆及其应用技术,2004,1:28-31.
    [31]胡斌,周学军,王瑛剑.浅海双层铠装海底光缆破断拉力的计算[J].舰船电子工程,2008,28(9):98-100.
    [32]Love AEH. A treatise on the mathematical theory of elasticity. NewYork:Dover Publications; 1944.
    [33]Machida S, Durelli A J. Response of a strand to axial and torsional displacements. Journal of Mechanical Engineering science.1973;15:241-251.
    [34]Knapp R H. Nonlinear analysis of a helically armored cable with nonuniform mechanical properties in tension and torsion [C]. International Conference of Engineering in the Ocean Environment, San Diego,1975:155-164.
    [35]Knapp R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion [J]. International Journal for Numerical Methods in Engineering,1979,14:515-529.
    [36]Knapp R H. Torque and stress balanced design of helically armoured cables [J]. Journal of Engineering for Industry,1981,103:61-66.
    [37]Costello G A, Philips J W. Effective Modulus of twisted wire cables[J]. Journal of the Engineering Mechanics Division.1976,102:171-181.
    [38]Philips J W, Costello G A. Analysis of wire rope with internal-wire-rope cores [J]. Journal of Applied Mechanics.1985,52:510-516.
    [39]Phillips J W, Costello G A. Large deflections of impacted helical springs [J]. The Journal of the Acoustical Society of America,1972,51(3):967-973.
    [40]Velinsky S A. General nonlinear theory for complex wire rope [J]. International Journal of Mechanical Sciences.1985,27:497-507.
    [41]Costello G A. Theory of wire rope.2nd ed. New York:Springer,1997.
    [42]Kumar K, Cochran J J. Closed-form analysis for elastic deformations of multilayered strand [J]. Journal of Applied Mechanics.1987,54:898-903.
    [43]Kumar K, Botsis J. Contact stresses in multilayered strands under tension and torsion [J]. Journal of Applied Mechanics.2001,68:432-440.
    [44]Jolicoeur C, Cardou A. A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads [J]. Journal of Energy Resources Technology 1991,113(1):241-249.
    [45]Utting W S, Jones N. The response of wire rope strands to axial tensile loads-Part Ⅰ. Experimental results and theoretical predictions [J]. International Journal of Mechanical Sciences.1987,29(9):605-619.
    [46]Utting W S, Jones N. The response of wire rope strands to axial tensile loads-Part Ⅱ. Comparison of experimental results and theoretical predictions [J]. International Journal of Mechanical Sciences.1987,29(9):621-636.
    [47]Witz J A, Tan Z. On the axial-torsional structural behaviour of flexible pipes, umbilicals and marine cables [J]. Marine Structures,1992,1:205-227.
    [48]Witz J A. A case study in the cross-section analysis of flexible risers [J]. Marine structures,1996,9:885-904.
    [49]Machida S, Durelli A J. Response of a strand to axial ans torsional displacements [J]. Journal of Mechanical Engneering Science,1973,15:241-251.
    [50]Custodio A B, Vaz M A. A nonlinear formulation for the axisymmetric response of umbilical cables and flexible pipes [J]. Applied Ocean Research,2002,24:21-29.
    [51]Slotboom 0 F. Simplified estimation of helically steel armored cable elongation, diameter reduction and rotation [C]. Challenges of Our Changing Global Environment, San Diego,1986:126-137.
    [52]Costello, G A. Theroy of wire rope [M].New York:Springer,1997.
    [53]LeClair RA, Costello GA. Axial, bending and torsional loading of a strand with friction [J]. ASME,1988,110:38-42.
    [54]Witz J A, Tan Z. On the flexural structural behaviour of flexible pipes, umbilicals and marine cables [J]. Marine Structures,1992,5:229-249.
    [55]Witz, J A, Tan, Z. Rotary bending of marine cables and umbilicals [J]. Engneering Structures,1995,17(4),267-275.
    [56]Kraincanic I, Kebadze E. Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behavior [J]. Journal of Strain Analysis for Engineering Ddesign,2001,236:265-275.
    [57]Ramos, J R, Pesce, C P. A new analytical expression to estimate the bending stiffness of flexible risers [C]. Proceedings of 22nd International Conference on Offshore Mechanics and Arctic Engineering, Portuga,2003:513-522.
    [58]Hong K J, Kiureghian A D, Sackman J L. Bending behavior of helically wrapped cables [J]. Journal of Engineering Mechanics-ASCE,2005,131(5):500-511.
    [59]Lutchansky, M. Axial stresses in armour wires of bent submarine cables [J]. Journal of Engineering for Industry,1969,91(3):687-693.
    [60]Spillers WR, Eich ED, Greenwood AN, Eaton RA. A helical tape on cylinder subjected to bending [J]. ASCE,1983,109:1124-1133.
    [61]Vinogradow OG, Atatekin IS. Internal friction due to wire twist in bent cable [J]. ASCE,1986,112:859-873.
    [62]Oliveira, J G. Goto, Y, Okamoto, T. Theoretical and methodological approaches to flexible pipe design and application [C]. Offshore Technology Conference, Houston, 1985:517-526.
    [63]Feret J J, Bournazel C L. Calculation of stresses and slip in structural layers of unbounded flexible pipes [J]. Journal Offshore Mech. & Arctic Engg,1987,109:263-269.
    [64]Out, J M M. On the prediction of the endurance strength of flexible pipe [C]. Offshore Technology Conference, Houston,1989:487-96.
    [65]Out J M M, Vom Morgen B J. Slippage of helical reinforcing on a bent cylinder [J]. Engineering Structures,1997,19:507-515.
    [66]Knapp RH. Helical wire stresses in bent cables [J]. Journal of Offshore Mechanics and Arctic Engineering,1988,110:55-61.
    [67]Leroy JM, Estrier P. Calculation of stresses and slips in helical layers of dynamically bent flexible pipes [J]. Oil & Gas Science and Technology,2001,56(6):545-554.
    [68]Cardou A, Jolicoeur C. Mechanical models of helical strands [J]. Journal of Offshore Mechanics and Arctic Engineering,1997,50:1-14.
    [69]Knapp R H, Chiu E, Tension fatigue model for helically armored cables [J]. Journal of Energy Resources Technology,1988,110(1):12-18.
    [70]Knapp R H. Tension and bending fatigue modeling of cables [C]. International Society of Offshore and Polar Engineers, Toulon,2004:289-285.
    [71]Nawrocki A, Labrosse M. A finite element model for simple straight wire rope strands [J]. Computers and Structures,2000,77:345-359.
    [72]Ghoreishi S R, Messagera T, Cartraud P. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model[J]. Mechanics Science,2007,25:1251-1261.
    [73]Knapp R H, Structural modeling of undersea cables [J]. Journal of Offshore Mechanics and Arctic Engineering Transactions of the ASME,1989,111:323-330.
    [74]Knapp R H and Das S. Finite element stress analysis of cables [C]. Oceans'99. MTS/IEEE. Riding the Crest into the 21st Century,1999:1026-1033.
    [75]Knapp R H. Structural analysis of composite umbilical cables [C]. International Society of Offshore and Polar Engineers, Lisbon,2007:3487-3491.
    [76]S(?)vik S. A finite element model for predicting stresses and slip in flexible pipe armouring tendons [J]. Computer & Structures,1993,46(2):219-230.
    [77]S(?)vik S, Ekeberg K I. Non-linear stress analysis of complex umbilical cross- sections [C]. International Conference on Ocean, Off shore Mechanics and Artic Engineering, Oslo, 2002, No.28126.
    [78]S(?)vik S, Bruaseth S. Theoretical and experimental studies of the axisymmetric behaviour of complex umbilical cross-sections [J]. Applied Ocean Research,2005,25:97-106.
    [79]S(?)vik S, Gj(?)steen J K. Comparision between predicted and measured umbilical bending stresses during manufacturing [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Hamburg,2006, No.92563.
    [80]S(?)vik S. Comparision between theoretical and experiment flexible pipe bending stresses [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Shanghai,2010, No.20352.
    [81]Hegadal 0. The integrated production umbilical and design tools for deep watter [C]. Offshore Technology Conference, Houston,2005, No.17151.
    [82]Probye I, Dobsom A, Michael Martinez. Advances in 3D FEA techniques for metallic tube umbilicals [C]. International Society of Offshore and Polar Engineers, Lisbon,2007: 848-854.
    [83]Corre, V L, Probye, I. Validation of a 3-dimensional finite element analysis model of a deep water steel tube umbilical in combined tension and cyclic bending [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, 2009, No.79168.
    [84]Bahtui A, Bahai H, Alfano G. A finite element analysis for unbonded flexible risers under axial tension [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Estoril,2008, No.57627.
    [85]Bahtui A, Bahai H, Alfano G. A finite element analysis for unbonded flexible risers under torsion [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Estoril,2008, No.021401.
    [86]Bahtui A, Bahai H, Alfano G. Numerical and analytical modeling of unbonded flexible risers [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Honolulu,2009, No.041301.
    [87]Merino H, Sousa J R, Magluta C, et al. Numerical and experimental study of a flexible pipe under torsion [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Shanghai,2010, No.20902.
    [88]Zhang, Y Q, Qiu, L. Numerical model to simulate tensile wire behavior in unbonded flexible pipe during bending [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, California,2007:17-29.
    [89]李清泉,杨和振.深海脐带缆内套管间相互作用研究[J].中国海洋平台,2012,25(6):28-32.
    [90]Dixon M, Zhao T.3D modeling improves deepwater umbilical design dependability [C]. Offshore Technology Conference, Houston,2008, No.19513.
    [91]Ye, N Q, gj(?)steen J, S(?)vik S. On choice of finite element type for the filled bodies in umbilicals for deep water application [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Shanghai.2010, No.20677.
    [92]Vaz M A, Angelo L D, Estefen S. Experimental determination of axial, torsional and bending stiffness of umbilical cables [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Portugal,1998, No.20677.
    [93]Kagoura, K I. Development of a flexible pipe for pipe-in-pipe technology [J]. Furukawa review,2003,24:69-74.
    [94]Magluta, C, Roitman, N. Experimental estimation of physical properties of a flexible riser [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Portugal, Rio de Janeiro 2001, PIPE-4116.
    [95]Berge, S, S(?)vik, S. Recent Developments in Qualification and Design of Flexible Risers[C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Portugal, Rio de Janeiro,2001, MAT-3340
    [96]Hoffman J, Dupont W, Reynolds B. A fatigue-life prediction model for metallic tube umbilicals [C]. Offshore Technology Conference, Houston,2001, No.13203.
    [97]Heggdal 0, Parman D G, Voet M, et al. Integrated production umbilicals (IPU):efficient in both shallow and deepwater and phase qualification [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering,Rio de Janerio,2001, No.2165.
    [98]Dobson A, Fogg, D. Fatigue testing and analysis of a deep water steel tube umbilical [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Estoril,2008, No.57151.
    [99]Lemos, C A, Vaz, M A. Flexible Riser Fatigue Design and Testing [C]. International Society of Offshore and Polar Engineers, Korea,2005:166-170.
    [100]Theodoro A.N, Marcelo, L, Adriana, B. Fatigue Performace of Reeled Risers [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Canada, 2004, No.51426.
    [101]Zhang, J, Tan, Z, Sheldrake, T. Effective bending stiffness of an unbonded flexible riser[C]. Proceeding of 27th Offshore Mechanics and Arctic Engineering. Estoril, 2008:117-123.
    [102]API 17B. Reommended Practice for Flexible Pipe [S].2002.
    [103]徐芝纶.弹性力学[M].北京:高等教育出版社,2007.
    [104]Seyed R G, Tanguy M. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model[J]. International Journal of Mechanical Sciences,2007,49:1251-1261
    [105]周宁等.ANSYS APDL高级工程应用实例与二次开发[M].北京:中国水利水电出版社,2007.
    [106]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [107]张家琦.钢丝绳生产工艺[M].北京:兵器工业出版社,2001.
    [108]ANSYS, Inc. Theory reference and user guides.
    [109]ASTM D 1894. Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting [S].
    [110]ISO 8295. Coefficient of Friction of Plastics, Film and Sheeting [S].
    [111]Miner M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanica,1945, 12(3):159-165.
    [112]陈传尧,高大兴.疲劳断裂的基础[M].武汉:华中理工大学出版社,1991.
    [113]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社.2001.
    [114]API RP 2A. Recommended practice for planning, design, and constructing fixed offshore structures[S].1991.
    [115]DNY.Rules for the design, construction, and inspection of fixed offshore structures[S].
    [116]林吉忠,刘淑华.金属材料的断裂与疲劳[M].北京:中国铁道出版社,1989.
    [117]李洪波.点支式玻璃幕墙金属连接件的疲劳性能研究[D].东南大学.2009.
    [118]郑学祥.船舶及海洋工程结构的断裂与疲劳分析[M].北京:海洋出版社,1988:202-214.
    [119]谢彬,段梦兰等,海洋深水立管的疲劳断裂与可靠性评估研究进展[J].石油学报,2004.5(25).
    [120]范佰明,嵇春艳,张强.波流联合作用下深海立管疲劳寿命计算方法研究[J].船海工程,2008,32(2):91-94.
    [121]郭海燕.傅强,娄敏.海洋输液立管涡激振动相应及其疲劳寿命研究[J].工程力学,2005,22(4):220-224.
    [122]潘志远,崔维成,缪泉明.细长海洋立管涡激振动预报模型(英文)[J].船舶力学,2006,10(3):42-52.
    [123]Teigen P, Karunakaran D. A consistent approach to riser fatigue analysis including diffraction [C].17th International Conference on Offshore Mechanics,1998.
    [124]Martins C A, Higashi E, Silva R M C. A parametric analysis of steel catenary risers:fatigue behavior near the top[C]. Proc. of the 10th International Offshore and Polar Engineering Conference,2000:54-59.
    [125]Longuet-Higgins M S, On the joint distribution of wave periods and amplitudes in a random wave field [A]. Proceedings Royal Society London,1983 Series A, Mathematical and Physical Sciences[C].389,241-258.
    [126]McNamara J F, Hibbitt H D. Numerical analysis of flexible pipes and risers in offshore application[C]. Proceeding of 1st Offshore Mechanics and Arctic Engineering. New Orleans,1986:343-353.
    [127]陈海飞.深水柔性立管非线性静动力分析[D].青岛:中国海洋大学,2011.6-7.
    [128]Kokkinowrachos K, Giese K. Development of Flexible Riser for Floating Offshore Production[C]. Proceeding of Offshore Technology Conference. Houston,1987:27-30.
    [129]王安姣,陈加箐.柔性立管的非线性动力分析[J].海洋工程,1991,9(3):12-22.
    [130]孙丽萍,周佳,王佳琦.深水柔性立管的缓波型布置及参数敏感性分析[J].中国海洋平台,2011,26(3):37-42.
    [131]Sun L P, Qi B. Global Analysis of a Flexible Riser [J]. Journal of Marine Science and Application,2011,10:478-484.
    [132]Troina M B, Rosa F L, et al. An experimental investigation on the bending behaviour of flexible pipes[C]. Proceeding of 22th Offshore Mechanics and Arctic Engineering. Cancun,2003:637-645.
    [133]Bech, A, Skallerud,, B. Structural damping in flexiblepipes:Comparisons between dynamic tests and numerical simulations. Proceedings of Offshore and Engineering Conference, San Francisco.1992.
    [134]Siqueira, M, Sousa, J R, Mourelle, M M. Analysis of the dynamic behaviour of flexible risers considering hysteretic damping. International Conference on Offshore Mechanics and Arctic Engineering, Cancun,2003.
    [135]Zhang J, Tan Z and Sheldrake T. Effective bending stiffness of an unbonded flexible riser[C]. Proceeding of 27th Offshore Mechanics and Arctic Engineering. Estoril,2008: 117-123.
    [136]Bratu ch, Narzul P. Dynamical behavior of flexible riser [Z]. Behavior of offshore structure,1985.
    [137]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2002:166-167.
    [138]Orcaflex ManualVersion 9.4a[M], UK:Orcina Ltd.
    [139]陈金龙.海洋动态脐带缆的整体设计与分析[D].大连:大连理工大学,2011.28.
    [140]Sodahl, N, Skeie, G, Steinkjer,0, et al. Efficient fatigue analysis of helix elements in umbilicals and flexible risers [C]. International Conference on Ocean, Offshore Mechanics and Artic Engineering, Shanghai,2010, No.21012.
    [141]DNV RP C205, Environmental Conditions and Environmental Loads[S].
    [142]Berge, S, Bendiksen, E, Gudme, J. Corrosion fatigue testing of flexible riser armour procedures for testing and assessment of design criteria. Mexico,2003, Paper 37327.
    [143]Saevik S, Berge S. Fatigue testing and theoretical studies of two 4 in flexible pipes[J]. Engineering Structures.1995,17(4):276-292.
    [144]Kavanagh, W K, Doynov, K, et. Al.The effect of tube friction on the fatigue life of steel tube umbilical risers-new approaches to evaluating fatigue life using enhanced nonlinear time domain methods[C]. Proceedings of the Offshore Technology Conference, Houston,2004, Paper 16631.
    [145]Ekeberg, K I, Ottesen, T, Aarstein J, et al. Predicting, Measuring and implementing friction and bending stresses in dynamic umbilical design [C]. Proceedings of the Offshore Technology Conference, Houston,2006,Paper 17986.
    [146]Knapp R H, Le T T. Design methodology for undersea umbilical cables [C]. Oceans'91. MTS/IEEE,1991:1319-1327.
    [147]郑杰馨.海洋非粘接性柔性管设计分析的验证试验研究[D].大连:大连理工大学,2010.29.
    [148]席永辉.海洋柔性管缆疲劳半物理仿真试验研究[D].大连:大连理工大学,2012.47.
    [149]Liu, X, Knapp R H, Cable vibration considering internal friction [C]. International of Offshore and Polar Engineers, Korea,2005:213-219.
    [150]Knapp R H, Tension and bending fatigue modeling of ables [C]. International of Off shore and Polar Engineers, France,2004:289-295.
    [151]顾艳红.正多边形对称群的子群[J].纯粹数学与应用数学,2011,27(2):236-239.
    [152]罗建军,杨琦MATLAB教程.北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700