用户名: 密码: 验证码:
D-A-π-A结构芳胺类染料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSCs)是利用染料敏化剂吸收太阳光,从而将太阳能转化为电能的一种新型太阳能电池,具有成本低、制作工艺简单、光电转换效率较高等优势,引起了全世界的广泛关注。如何提高有机染料敏化太阳能电池的光电转换效率和稳定性是目前DSSCs研究的两个关键问题。本论文通过引入三种不同的额外缺电子基团,合成了五个系列以芳胺为电子给体的D.A-π-A型染料以及吡啶为吸附基团的染料,并将其应用于染料敏化太阳能电池中,系统地测试了其光电性能,并对其器件性能进行了优化。
     第一章,简要介绍了染料敏化太阳能电池的结构和工作原理、纳米晶半导体电极、电解质和对电极的发展状况,综述了近几年来具有高光电转换效率的D-A-π-A型有机敏化染料的研究进展,在此基础上提出了本论文的设计思路和研究内容。
     第二章,将窄能隙的异靛蓝引入到小分子染料敏化剂中,设计并合成了以三苯胺为给体,异靛蓝为辅助受体,噻吩(呋喃、苯)为π-链、氰基乙酸为受体的六个新型的具有D-A-π-A结构的染料敏化剂(ID1-ID6),并对其进行了核磁共振氢谱、碳谱和高分辨质谱的表征。通过光物理性能的测试,发现该系列化合物都有较宽的吸收光谱,部分化合物在TiO2膜上的光电响应甚至延伸至近红外区域(波长大于780nm);电化学性能测试表明给体和π-链的改变可以方便调节HOMO和LUMO能级。在AM1.5(100mW cm-2)光强条件下,基于ID1-ID6染料敏化太阳能电池的光电转换效率为3.33-5.35%。通过改变CDCA的浓度对器件的性能进行优化,浓度为20mM的CDCA共吸附的ID6敏化电池获得最高光电转换效率为5.98%(Jsc=14.77mA cm-2,Voc=644mV,ff=0.63).电化学交流阻抗谱测试进一步证实:在异靛蓝染料中添加适当浓度的CDCA可以减少电子的复合,延长电子寿命,提高开路电压。
     第三章,为了进一步拓宽异靛蓝染料敏化剂的吸收光谱,提高摩尔消光系数,增大开路电压,设计合成了吲哚啉为给体、2-乙基己基叉链取代的异靛蓝为额外受体、噻吩(呋喃、苯)为π-链、氰基乙酸为受体的新型D-A-π-A结构的染料敏化剂(ID7-ID9)。研究发现,强给体的引入使染料的吸收光谱红移,增大了短路电流;2-乙基己基叉链的引入,减少了染料的聚集,有效阻止了电荷的复合,提高了开路电压。在AM1.5(100mW cm-2)光强条件下,基于ID7染料敏化的电池最大光电转换效率达到5.83%(短路电流为13.58mA cm-2,开路电压为602mV,填充因子为0.71)。
     第四章,设计合成了一系列吡啶并[3,4-b]吡嗪(PP)为辅助受体、含有不同给体和不同π-链的D-A-π-A型染料敏化剂(PP-I和APP-Ⅰ~Ⅳ)与PP核相比,甲氧基苯取代的APP能增加电池的短路电流和开路电压;在APP-Ⅰ~Ⅳ体系中,苯环的引入可以提高化合物的开路电压;三苯胺给体上引入辛氧基链不仅能使染料光谱拓宽,增大短路电流,还能提高开路电压。在AM1.5(100m W cm-2)光强条件下,APP-Ⅳ染料敏化的电池光电转换效率达到7.12%(短路电流为13.56mA cm-2,开路电压为691mV,填充因子为0.76)。此外,APP-Ⅳ染料还被应用于离子液体电解质电池,得到12.28mA cm-2的短路电流、0.648V的开路电压、0.76的填充因子和6.20%的光电转换效率,且在60C持续光照射1000小时,电池效率仍保持在97%,呈现了很好的稳定性。
     第五章,为了进一步提高电池的开路电压,把吡啶并吡嗪核上的甲氧基苯换成辛氧基苯,设计合成了一系列三苯胺为给体、辛氧基苯取代的吡啶并[3,4-b]吡嗪为额外受体、噻吩(呋喃、苯)为π-链、氰基乙酸为受体的D-A-π-A型染料敏化剂(OPP-Ⅰ~Ⅲ),并与染料APP-Ⅰ进行对比。实验结果表明,用辛氧基取代甲氧基,能有效减少染料在Ti02表面的聚集,同时能阻止电解质和Ti02导带的接触,抑制电荷复合,提高了开路电压。在AM1.5(100m W cm-2)光强条件下,OPP-Ⅰ敏化的电池最大光电转换效率为6.57%(短路电流为11.7mA cm-2,开路电压为717mV,填充因子为0.78)。
     第六章,将吸电子能力更强的[1,2,5]噻二唑并[3,4-c]吡啶(PT)作为辅助受体引入到染料中,合成了以三苯胺(二苯胺噻吩)为给体,PT为辅助受体,噻吩和苯为π-链的D-A-π-A结构染料敏化剂(PT1-PT4).研究了三苯胺和二苯胺噻吩给体、噻吩和苯共轭桥链对化合物吸收光谱、能级的影响。实验结果表明,给体或桥链改变可以调节染料的吸收光谱波长和能级。在AM1.5(100m W cm-2)光强条件下,PT1-PT4染料敏化的电池效率分别为2.40%,4.23%,0.64%和1.23%。二苯胺噻吩强给体的引入并没有达到预期效果,短路电流和开路电压都有不同程度下降。可能是由于其摩尔消光系数低和电荷复合快所致;此外,还对PT2进行器件优化,通过改变CDCA的浓度和电解质的配比来提高电池效率。研究发现,在LP和E1两种电解质条件下,加入一定量的CDCA能大大提高染料的短路电流和效率。使用LP电解质能一定程度提高开路电压但会引起短路电流的减小。最终,在E1电解质条件下,20mM的CDCA处理的PT2敏化电池获得最高效率6.11%(短路电流为12.61mA cm-2,开路电压为668mV,填充因子为0.74)。
     第七章,将新型受体吡啶(氰基吡啶)引入到染料中,合成了4个染料敏化剂(PY1-PY4)。测试了化合物的紫外吸收、电化学和光电性能。同时对吡啶上的氰基对染料性能的影响进行了讨论。实验结果表明,氰基的引入不仅能使染料吸收光谱拓宽,还能提高染料的摩尔消光系数。将PY1-PY4染料敏化的电池在AM1.5(100m W cm-2)光强下进行性能测定,PY1获得了2.14%的效率。虽然氰基取代的吡啶类染料电池有更高的短路电流,但是开路电压有所下降,总的光电转换效率值比PY1略低,进一步的器件优化测试正在进行中。
Dye-Sensitized Solar Cells (DSSCs) is a type of solar cells which convert light to electricity by means of harvesting the solar irradiation by the sensitizers. DSSCs have attracted great worldwide attention due to their considerable efficiency and low cost, in which the sensitizer is deemed as the crucial component. To achieve high efficiency, the organic dyes are usually required to possess high charge carrier mobility, broad and intense spectral absorption and high stability. In this paper, several series of sensitizers have been designed and synthesized. Their photovoltaic performances have been studied in detail. In addition, a novel anchoring group of pyridine has been introduced into the organic dyes and has been studied.
     In chapter1, the definition of the structure and principle for the dye-sensitized solar cells, nanoporous semiconductor electrode, electrolytes and counterelectrode are introduced. Recent researches of D-A-π-A dye-sensitizers have been reviewed. Then the research strategy of the dissertation is presented.
     In chapter2, six new D-A-π-A sensitizers (ID1-ID6), withtriarylamine as the electron donor; isoindigo as an auxiliary electron withdrawingunit; thiophene, furan, and benzene as the linker; and cyanoacrylic acid as theanchoring group, were synthesized through simple synthetic procedures and with low cost. Their absorption spectra were broad with long wavelengthabsorption maximum approximately at589nm and the absorption onset at720nm on the TiO2film. Electrochemical experiments indicate that the HOMOand LUMO energy levels can be conveniently tuned by alternating the donormoiety and the linker. All of these dyes performed as sensitizers for the DSSCstest under standard global AM1.5solar light condition, and a maximum overall conversion efficiency of5.98%(Jsc=14.77mA cm-2, Voc=644mV,ff=0.63) is obtained for ID6-based DSSCs when TiO2films were first immersed for6h in20mM CDCA ethanol solution followed by12h of dipping in the dye CH2CI2solution. Electrochemical impedance measurement data implies that the electron lifetime can be increased bycoadsorption of CDCA, which leads to a lower rate of charge recombination and thus improved Voc.
     In chapter3, a series of new D-A-π-A organic dyes (ID7-ID9) containing indoline as electron donor have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The influence of the donor and the2-ethyl-hexyl chain on isoindigo sensitizer and cell efficiency was studied. In comparison with the model dye ID1, these dyes containing indoline donor display broader absorption spectrum and higher molar extinction coefficient, which would enhance the short-circuit photocurrent density. Attaching the2-ethyl-hexyl chain in the middle of the isoindigo proved to be an effective means for reducing the π-π aggregation of the dyes on TiO2. Moreover, the steric hindrance of the banched chain successfully suppressed charge recombination and improved the open-circuit voltage. As a result, ID7-based DSSCs achieved a high overallconversion efficiency of5.83%(Jsc=13.58mA cm-2, Voc=602m V,ff=0.71) under standard global AM1.5solar light condition.
     In chapter4, a series of new pyrido[3,4-b]pyrazine-based organic sensitizers (PP-I and APP-I-IV) containing different donors and π-spacers have been synthesized and employed in dye-sensitized solar cells (DSSCs). It was found that APP-Ⅳ based DSSCs with liquid electrolyte display the highest power conversion efficiency (PCE) of7.12%. Importantly, a PCE of6.20%has been achieved for APP-IV based DSSCs with ionic-liquid electrolytes and retained97%of the initial value after continuous light soaking for1000h at60℃. This renders these pyrido[3,4-b]pyrazine-based sensitizers quite promising candidates for highly efficient and stable DSSCs.
     In chapter5, a series of new D-A-π-A sensitizers (OPP-Ⅰ-Ⅲ), with triarylamine as the electron donor, pyrido[3,4-b]pyrazine as the additional acceptor, thiophene and benzene as the linker and cyanoacrylic acid as the acceptor moiety has been synthesized to further improve the efficiency. The replacement of a methoxy group with anoctyloxy group can effectively reduce the π-π aggregation of the dyes on TiO2. Moreover, the steric hindrance of the octyloxy group successfully suppressed charge recombination and improved the open-circuit voltage (about80mV). OPP-Ⅰ-sensitized cell showedthe best conversion efficiency (PCE) of6.57%(Jsc=11.70mA cm-2, Voc=717m V, ff=0.78) under standard global AM1.5solar light condition.
     In chapter6, a series of new D-A-π-A sensitizer (PT1-PT4) containing [1,2,5]thiadiazolo[3,4-c]pyridine moiety were synthesized and used for dye-sensitized solar cells (DSSCs). Their absorption spectra, electrochemical and photovoltaic properties were fully characterized. Electrochemical measurement data indicate that the tuning the LUMO and HOMO energy levels can be conveniently accomplished by alternating the donor moiety. All of these dyes performed as sensitizers for DSSC test, PT2-sensitized cell treated with20mM CDCA showed the best conversion efficiency (PCE) of6.11%(Jsc=12.61mA cm-2, Voc=668mV, ff=0.74) under standard global AM1.5solar light condition.
     In Chapter7, a new anchoring group of pyridine (picolinonitrile) was introduced into the organic dyes, and four new dye sensitizers PY1-PY4were synthesized. Their absorption spectra, electrochemical and photovoltaic properties were fully characterized. The effect of the cyano group on photovoltaic performance was investigated. All of these dyes performed as sensitizers for DSSC test, PYl showed the best conversion efficiency (PCE) of2.14%(Jsc=6.49mA cm-2, Voc=509mV, ff=0.65) under standard global AM1.5solar light condition. Cyano-substituted pyridine dye (PY2) has a higher short-circuit current but the total value of the PCE is slightly lower than PYl because the open circuit voltage of PY2decreased, the further optimization is in progress.
引文
[1]Becquerel E. Mcoire Surles effets electriques produits Sous Finfluence des rayons Solaires[J]. C. R. Acad, Sci. Pairs,1839,9:561-567.
    [2]Chapin D. M, Fuller C. S., PearSon G. L. A new Silicon P-N junction photocell for converting Solar radiation into electrical power[J].J. Appl. Phys.,1954,25:676-677.
    [3]Goetzberger A., Hebling C., Schock H. Photovoltaic materials, history, Status and outlook[J]. Mater. Sci. Eng. R,2003,40:1-46.
    [4]ORegan B., Gratzel M. A low-cost, high-efficiency Solar cell based on dye-Sensitized colloidal TiO2 films[J]. Nature,1991,353(24):737-740.
    [5]Nazeeruddin M. K., Kay A., Rodicicio I., Humphry-Baker R., Muller E., LiSka P., Volachopoulos N., Gratzel M. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer Sensitizers (X= Cl-, Br-, I", CN- and SCN-) on nanocrystalline TiO2 electrodes[J]. J. Am. Chem. Soc.,1993,115 (14): 6382-639.
    [6]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, M. Gratzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature,1998,395,583-585.
    [7]Clifford N. J., Eugenia M. F., Aurelien V., Emilo P. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells[J]. Chem. Soc. Rev.,2011,40: 1635-1646.
    [8]Yum J. H., Baranoff E., Wenger S., Nazeeruddin M. K., Gratzel M. Panchromatic engineering for dye-sensitized solar cells[J]. Energy Environ. Sci.,2011,4:842-857.
    [9]Ning Z. J, Fu Y., Tian H. Improvement of dye-sensitized solar cells:what we know and what we need to know[J]. Energy Environ. Sci.,2010,3,1170-1181.
    [10]Yella A., Lee H. W., Gratzel M., et al. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency [J]. Science,2011,344: 629-633.
    [11]Wei Q., Hirota K., Tajima K., Hashimoto K. Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices[J]. Chem. Mater.,2006,18: 5080-5087.
    [12]Jiu J., Isoda S., Wang F., Adachi M. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film[J]. J. Phys. Chem. B,2006,110(5): 2087-2092.
    [13]Okuya M., Nakade K., Kaneko S. Porous TiO2 thin films Synthesized by a Spray pyrolysis deposition (SPD) technique and their application to dye-sensitized Solar cells[J]. Sol. Energy Mater. Sol. Cells,2002,70:425-435.
    [14]Gopal K. M., Karthik S., Maggie P., et al. Use of Highly-orderes TiO2 Nanotube Arrays in Dye-sensitized Solar Cells[J]. Nano Lett.,2006,6(2):215-218.
    [15]LindStr6m H., Mafnusson E., et al. A new method for manufacturing nano-structured electrodes on glass substrates[J], Sol. Energy Mater. Sol. Cells,2002,73(1):91-101.
    [16]Adach M., Murata Y, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. Journal of Electeoeh-emical Society,2003,150(8):493-499.
    [17]Wang Z. S., Sayama K., Sugihara H. Efficient eosin Y dye-Sensitized Solar cell containing Br-/Br3- electrolyte[J]. J. Phys. Chem. B,2005,109(47):2449-22455.
    [18]Kakiage K., Tokutome T., Iwamoto S., Kyomen T., Hanaya M. Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3-/Br- redox mediator with a high open-circuit photo voltage of 1.21 V[J].Chem. Commun.,2013,49: 179-180.
    [19]Daeneke T., Kwon T. H., Hohnes A. B., Duffy N. W., Bach U., Spiccia L.High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes[J].Nat. Chem.,2011,3(3):211-215.
    [20]Sonmezoglu S., Akyurek C., Akin S. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers[J]. J. Phys. D:Appl. Phys.45, 425101.
    [21]Bergeron B. V., Marton A., OSkam G., Meyer G. J. Dye-Sensitized SnO2 electrodes with iodide and pseudohalide redox mediators[J]. J. Phys. Chem. B,2005,109 (2):937-943.
    [22]Oskam G., Bergeron B. V., Meyer G. J., Searson P. C. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells[J]. J. Phys. Chem. B,2001,105 (29): 6867-6873.
    [23]Feldt S. M., GibSon E. A., Hagfeldt A., et al. Design of Organic and Cobalt Polypyridine Redox Mediators for Hige-Efficiency Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc, 2010,132:16714-16724.
    [24]Bai Y, Zhang J., Zhou D. F., Wang P., et al. Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells:Red-Shifted Current Response Concomitant with Attenuated Charge Recombination[J]. J. Am. Chem. Soc,2011,130:11442-11445.
    [25]Zhang M., Liu J. Y., Wang Y. H., Zhou D. F., Wang P. Redox couple related influences of p-conjugation extension in organic dye-senSitized mesoscopic solar cells[J]. Chem. Sci.,2011,2:1401-1406.
    [26]Zhou D. F., Yu Q. J., Cai N., Bai Y., Wang Y. H., Wang P. Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(Ⅱ/Ⅲ) redox shuttle[J]. Energy Environ. Sci.,2011,4:2030-2034.
    [27]Zhang Z., Chen P., Murakami T. N., Zakeeruddin S. M., Gratzel M. The 2,2,6,6-Tetramethyl-l-piperidinyloxy Radical:An Efficient, Iodine Free Redox Mediator for Dye-Sensitized Solar Cells[J].Adv. Funct. Mater.,2008,18:341-346.
    [28]Gregg, B. A., Pichot, F., Ferrere, S., Fields, C. L. Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces[J]. J. Phys. Chem. B.,2001,105:1422-1429.
    [29]Kusama H., Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance[J]. J. Photochem. Photoviol. A:Chem.,2003, 160(3):171-179.
    [30]Kusama H., Arakawa H. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance[J]. J. Photochem. Photobiol. A:Chem.,2004, 162(2-3):441-448.
    [31]Tennakone K., Kumara G. R., Kumarasinghe A. R., et al. A dye-sensitized nano-porous solid-state photovoltaic cell[J]. Semicond. Sci. Tech.,1995,10(12):1689-1693.
    [32]Garcia-Canadas J., Fabregat-Santiago F., Bcilink H. J., et al. Determination of electron and hole energy levels in mesoporous nanocrystalline TiO2 solid-state dye solar cell[J]. Synth. Met.,2006,156(14-15):944-948.
    [33]Konno A., Kitagawa T., Kida H., Kumara G. R. A., Tennakone K. The effect of particle size and conductivity of Cul layer on the performance of solid-state dye-sensitized photo-voltaic cells[J]. Curr. Appl. Phys.,2005,5 (1):149-151.
    [34]Taguchi T., Zhang X. T., Sutanto I., Tokuhiro K., Rao T. N., Watanabe H., Nakamori T., Uragami M., Fujishima A. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film[J]. Chem. Commun.,2003, (19): 2480-2481.
    [35]CTRegan B., Schwartz D. T., Zakeeruddin S. M., Gratzel M. Electrodeposited nano-composite n-p heterojunctions for solid-state dye-sensitized photovoltaics[J]. Adv. Mater.,2000,12 (17):1263-1267.
    [36]O'Regan B., Lenzmann F., Muis R., Wienke J. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN:analysis of pore filling and IV characteristics[J]. Chem. Mater.,2002,14(12):5023-5029.
    [37]CRegan B., Lenzmann F. Charge transport and recombination in a nanoscale inter-penetrating network of n-type and p-type semiconductors:transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells[J]. J. Phys. Chem. B.,2004, 108 (14):4342-4350.
    [38]Perera V. P. S., Senevirathna M. K. I., Pitigala P. K. D. D. P., Tennakone K. Doping CuSCN films for enhancement of conductivity:Application in dye-sensitized solid-state solar cells[J]. Sol. Energy Mater. Sol. Cells,2005,86 (3):443-450.
    [39]Meng Q. B., Takahashi K., Zhang X. T., et al. Fabrication of an efficient solid-state dye-sensitized solar cell[J]. Langmuir,2003,19(9):3572-3574.
    [40]Perera V. P., Tennakone K. Recombination processes in dye-sensitized solid-state solar cells with Cul as the hole collector[J]. Sol. Energy Mater. Sol. Cells,2003,79(2): 249-255.
    [41]Schmidt-Mende L., Zakeeruddin S. M., Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye[J]. Appl. Phys. Lett.,2005,86 (1):013504-1-013504-3.
    [42]Hauch, A., Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J]. Electrochim. Acta.,2001,46: 3457-3466.
    [43]Yau, S.-L., Moriyama, T., Uchida, H., Watanabe, M. In situ STM observation with atomic resolution on platinum film electrodes formed by a sputtering method [J]. Chem.Commun.,2000,2279-2280.
    [44]Stoychev. D., Papoutsis. A., Kelaidopoulou. A., Kokkinidis. G., Milchev. A. Electrodeposition of platinum on metallic and nonmetallic substrates-selection of experimental conditions[J]. Mater. Chem. Phys.,2001,72:360-365.
    [45]Kay. A., Gratzel. M.,Sol. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J]. Energy Mater. Sol. Cells,1996, 44:99-117.
    [46]Imotoa. K., Takahashib. K., Yamaguchib. T., Komurab. T., Nakamura. J.-I., Muratad, K. High-performance carbon counter electrode for dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells,2003,79:459-469.
    [47]Li. P., Wua. J., Lin. J., Huang. M., Huang. Y., Li. Q. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells[J]. SolarEnergy,2009,83:845-849.
    [48]Jang. S.-Y., Kim. Y.-G., Kim. D. Y., Kim. H.-G., Jo. S. M. Electrodynamically Sprayed Thin Films of Aqueous Dispersible Graphene Nanosheets:Highly Efficient Cathodes for Dye-Sensitized Solar Cells[J].ACS Appl. Mater. Interfaces,2012,4 (7):3500-3507.
    [49]Kavan. L., Yum. J. H., Gratzel M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets[J].ACS Nano,2011,5:165-172.
    [50]Lee. K. S., Lee. W. J., Park. N. G., Kim. S. O., Park. J. H.Transferred vertically aligned N-doped carbon nanotube arrays:use in dye-sensitized solar cells as counter electrodes[J].Chem.Commun.,2011,47:4264-4266.
    [51]Cho. S., Hwang. S. H., Kim. C.,Jang. J.Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells[J]. J. Mater. Chem.,2012,22:12164-12171.
    [52]Yang. Z. B., Chen. T., He. R. X., Li. H. P., Lin. H. J., Li. L., Zou. G. F., Jia. Q. X., Peng. H. S.A novel carbon nanotube/polymer composite film for counter electrodes of dye-sensitized solar cells[J].Polym. Chem.,2013,4:1680-1684.
    [53]Qian. J., Jiang. K. J., Huang. J. H., Liu. Q. S., Yang. L. M., Song. Y. L. A Selenium-Based Cathode for a High-Voltage TandemPhotoelectrochemical Solar Cell[J]. Angew. Chem. Int. Ed.2012,51:10351-10354.
    [54]Gong. F., Xu. X., Li. Z. Q., Zhou. G., Wang. Z. S. NiSe2 as an efficient electrocatalyst for a Pt-freecounter electrode of dye-sensitized solar cells[J]. Chem. Commun.,2013,49: 1437-1439.
    [55]Gong. F., Wang. H., Xu. X., Zhou. G., Wang. Z. S. In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc.,2012,134 (26):10953-10958.
    [56]Zhang. H. J., Yang. L. T.,Liu. Z.,Ge. M., Zhou. Z.,Chen. C., Li. Q. Z.,Liu. L. Facet-dependent activity of bismuth sulfide as low-cost counter-electrode materials for dye-sensitized solar cells[J].J. Mater. Chem.,2012,22:18572-18577.
    [57]Liang M., Chen J. Arylamine organic dyes for dye-sensitized solar cells[J]. Chem. Soc. Rev.,2013,42:3453-3488.
    [58]Hara K., Sato T., Katoh R., Furube A., Ohga Y., Shinpo A., Suga S., Sayama K., Sugihara H., Arakawa H. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B,2003,107:597-606.
    [59]Wenger S., Bouit P. A., Chen Q., Teuscher J., Censo D. Di, Humphry-Baker R., Moser J. E., Delgado J. L., Martin N., Zakeeruddin S. M., Gratzel M. Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells[J]. J. Am. Chem. Soc.,2010,132:5164-5169.
    [60]Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cells[J]. Angew. Chem., Int. Ed.,2006,45:2338-2345.
    [61]Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. Dye-Sensitized Solar Cells[J]. Chem. Rev.,2010,110:6595-6663.
    [62]Mishra A., Fischer M. K R., Bauerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules[J]. Angew. Chem., Int. Ed.,2009,48:2474-2499.
    [63]Yen Y. S., Chou H. H., Chen Y. C., Hsu C. Y., Lin J. T. Recent developments in molecule-based organic materials for dye-sensitized solar cells[J]. J. Mater. Chem.,2012, 22:8734-8747.
    [64]Ning Z. J., Tian H. Triarylamine:a promising core unit for efficient photovoltaic materials[J]. Chem. Commun.,2009 (37):5483-5495.
    [65]Ning Z., Fu Y., Tian H. Improvement of dye-sensitized solar cells:what we know and what we need to know[J]. Energy Environ. Sci.,2010,3:1170-1181.
    [66]Li C, Wonneberger H. Perylene Imides for Organic Photovoltaics:Yesterday, Today, and Tomorrow[J]. Adv. Mater.,2012,24:613-636.
    [67]Wu, Y., Zhu W.. Organic sensitizers from D-π-A to D-A-π-A:effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances[J]. Chem. Soc. Rev.,2013,42:2039-2058.
    [68]Justin Thomas K. R., Lin J. T., Velusamy M., Tao Y. T., Chuen C. H. Color Tuning in Benzo[1,2,5]thiadiazole-Based Small Molecules by Amino Conjugation/Deconjugation: Bright Red-Light-Emitting Diodes[J]. Adv. Funct. Mater.,2004,14:83-90.
    [69]Raimundo J. M., Blanchard P., Brisset H., Akoudad, S., Roncali J. Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity[J]. Chem. Commun.,2000 (11):939-940.
    [70]Velusamy M., Justin Thomas K. R., Lin J. T., Hsu Y. C., Ho K. C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells[J]. Org. Lett., 2005,7:1899-1902.
    [71]Zhu W., Wu Y., Wang S., Li W., Li X., Chen J., Tian H. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response[J]. Adv. Funct. Mater.,2011, 21:756-763.
    [72]Wu Y., Zhang X., Li W., Wang Z., Tian H., Zhu W.. Hexylthiophene-Featured D-A-n-A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells[J]. Adv. Energy Mater.,2012,2:149-156.
    [73]Ning Z., Zhang Q., Pei H., Luan J., Lu C., Cui Y., Tian H. Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design[J]. J. Phys. Chem. C.,2009, 113:10307-10313.
    [74 Koumura N., Wang Z. S., Mori S., Miyashita M., Suzuki E., Hara K. Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics[J]. J. Am. Chem. Soc,2006,128:14256-14257.
    [75]Miyashita M., Sunahara K., Nishikawa T., Uemura Y., Koumura N., Hara K., Mori S. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes[J]. J. Am. Chem. Soc., 2008,130:17874-17881.
    [76]Jorgensen M., Norrman K., Gevorgyan S. A., Tromholt T., Andreasen B., Krebs F. C. Stability of polymer solar cells[J]. Adv. Mater.,2012,24:580-612.
    [77]Lee D. H., Lee M. J., Song H. M., Song B. J., Seo K. D., Pastore M., Kim H. K. Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells[J]. Dyes Pigm.,2011,91:192-198.
    [78]Liu B., Liu Q., You D., Li X., Naruta Y., Zhu W. Molecular engineering of indoline based organic sensitizers for highly efficient dye-sensitized solar cells[J]. J. Mater. Chem.,2012,22:13348-13356.
    [79]Kim J. J., Choi H., Lee J. W., Kang M. S., Song K., Kang S. O., Ko J. A polymer gel electrolyte to achieve≥ 6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore[J]. J. Mater. Chem.,2008,18:5223-5229.
    [80]Tang Z. M., Lei T., Jiang K. J., Song Y. L., Pei J. Benzothiadiazole Containing D-π-A Conjugated Compounds for Dye-Sensitized Solar Cells:Synthesis, Properties, and Photovoltaic Performances[J]. Chem.-Asian J.,2010,5:1911-1917.
    [81]Kim S., Lim H., Kim K., Kim C., Kang T. Y., Ko M. J., Park N. G. Synthetic Strategy of Low-Bandgap Organic Sensitizers and Their Photoelectron Injection Characteristics[J]. IEEE. J. Sel. Top. Quantum Electron.,2010,16:1627-1634.
    [82]Haid S., Marszalek M., Mishra A., Wielopolski M., Teuscher J., Moser J. E., Bauerle P. Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes[J]. Adv. Funct. Mater.,2012,22: 1291-1302.
    [83]Wu Y., Marszalek M., Zakeeruddin S. M., Zhang Q., Tian H., Gratzel M., Zhu W. High-conversion-efficiency organic dye-sensitized solar cells:molecular engineering on D-A-π-A featured organic indoline dyes[J]. Energy Environ. Sci.,2012,5:8261-8272.
    [84]Manceau M., Chambon S., Rivaton A., Gardette J. L., Guillerez S., Lemaitre N. Effects of long-term UV-visible light irradiation in the absence of oxygen on P3HT and P3HT: PCBM blend[J]. Sol. Energy Mater. Sol. Cells,2010,94:1572-1577.
    [85]Price S. C., Stuart A. C., Yang L., Zhou H., You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. J. Am. Chem. Soc.,2011,133:4625-4631.
    [86]Zhang Z., Peng B., Liu B., Pan C., Li Y., He Y., Zhou K., Zou Y. Copolymers from benzodithiophene and benzotriazole:synthesis and photovoltaic applications[J]. Polym. Chem.,2010,1:1441-1447.
    [87]Cui Y., Wu Y., Lu X., Zhang X., Zhou G., Miapeh F. B., Zhu W. H., Wang, Z. S. Incorporating Benzotriazole Moiety to Construct D-A-π-A Organic Sensitizers for Solar Cells:Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group[J]. Chem. Mater.,2011,23:4394-4401.
    [88]Mao J., Guo F., Ying W., Wu W., Li J., Hua J. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance[J]. Chem.-Asian J.,2012,7:982-991.
    [89]Chang D. W., Lee H. J., Kim J. H., Park S. Y., Park S. M, Dai L., Baek J. B. Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells[J]. Org. Lett.,2011, 13:3880-3883.
    [90]Pei K., Wu Y., Wu W., Zhang Q., Chen B., Tian H., Zhu W. Constructing Organic D-A-π-A-Featured Sensitizers with a Quinoxaline Unit for High-Efficiency Solar Cells: The Effect of an Auxiliary Acceptor on the Absorption and the Energy Level Alignment[J]. Chem.-Eur. J.,2012,18:8190-8200.
    [91]Lu X., Feng Q., Lan T., Zhou G., Wang Z. S. Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells[J]. Chem. Mater.,2012,24:3179-3187.
    [92]Shi J., Chen J., Chai Z., Wang H., Tang R., Fan K., Wu M., Han H. W., Qin J. G., Peng T. Y., Li Q. Q., Li, Z. High performance organic sensitizers based on 11,12-bis (hexyloxy) dibenzo [a, c] phenazine for dye-sensitized solar cells[J]. J. Mater. Chem., 2012,22:18830-18838.
    [93]Li W., Wu Y., Zhang Q., Tian H., Zhu W. DA-π-A featured sensitizers bearing phthalimide and benzotriazole as auxiliary acceptor:Effect on absorption and charge recombination dynamics in dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2012,4:1822-1830.
    [94]Qu S. Y., Wu W. J., Hua J. L., Kong C., Long Y. T., Tian H. New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells[J]. J. Phys. Chem. C.,2010,114: 1343-1349.
    [95]Qu S. Y., Wang B., Guo F. L., Li J., Wu W. J., Kong C., Long Y. T., Hua J. L. Molecular Design of Diketo-pyrrolo-pyrrole (DPP) Based Organic Dyes for Efficient Dye-Sensitized Solar Cells[J]. Dyes Pigments,2012,92:1384-1393.
    [96]Qu S., Qin C., Islam A., Wu Y., Zhu W., Hua J., Tian H., Han, L. A novel D-A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells[J]. Chem. Commun.,2012,48: 6972-6974.
    [97]He J., Wu W., Hua J., Jiang Y., Qu S., Li J., Long Y., Tian, H. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance[J]. J. Mater. Chem.,2011,21:6054-6062.
    [98]He J., Guo F., Li X., Wu W., Yang J., Hua J. New Bithiazole-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells[J]. Chem. Eur. J.2012,18:7903-7915.
    [99]Wang Z. S., Cui Y., Hara K., Dan-oh Y., Kasada C., Shinpo A. A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells[J]. Adv. Mater.,2007,19:1138-1141.
    [100]Wang Z. S., Cui Y., Dan-oh Y., Kasada C., Shinpo A., Hara K. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells[J], J. Phys. Chem. C,2008,112:17011-17017.
    [101]Chen B. S., Chen D. Y., Chen C. L., Hsu C. W., Hsu H. C., Wu K. L., Liu S. H., Chou P. T., Chi Y. Donor-acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells[J]. J. Mater. Chem.,2011,21:1937-1945.
    [102]Zhou D. F., Cai N., Long H. J., Zhang M., Wang Y. H., Wang P. Anion Effects in Organic Dye-Sensitized Mesoscopic Solar Cells with Ionic Liquid Electrolytes: Tetracyanoborate vs Dicyanamide[J]. J. Phys. Chem. C.,2011,115:3163-3171.
    [103]Ooyama Y., Inoue S., Nagano T., Kushimoto K., Ohshita J., Imae I., Komaguchi K., Harima, Y. Dye-Sensitized Solar Cells Based On Donor-Acceptor π-Conjugated Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing Anchoring Group[J]. Angew. Chem., Int. Ed.,2011,50:7429-7433.
    [104]Ooyama Y., Nagano T., Inoue S., Imae I., Komaguchi K., Ohshita J., Harima Y. Dye-Sensitized Solar Cells Based on Donor-π-Acceptor Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing-Injecting Anchoring Group[J]. Chem.-Eur. J.,2011,17:14837-14843.
    [105]Numata Y., Ashraful I., Shirai Y., Han L. Preparation of donor-acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application[J]. Chem. Commun.,2011,47:6159-6161.
    [106]Katono M., Bessho T., Wielopolski M., Marszalek M., Moser J. E., Humphry-Baker R., Zakeeruddin S. M., Gratzel, M. Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of D-π-A Dyes[J]. J. Phys. Chem. C.,2012,116: 16876-16884.
    [107]Zhao J., Yang X., Cheng M., Li S., Wang X., Sun L. Highly efficient iso-quinoline cationic organic dyes without vinyl groups for dye-sensitized solar cells[J]. J. Mater. Chem. A,2013,1:2441-2446.
    [108]Mao J., He N., Ning Z., Zhang Q., Guo F., Chen L., Wu W., Hua J., Tian, H. Stable Dyes Containing Double Acceptors without COOH as Anchors for Highly Efficient Dye-Sensitized Solar Cells[J]. Angew. Chem., Int. Ed.,2012,51:9873-9876.
    [109]Weea X., Yeo W., Zhang B., Tan V., Lim K., Tay T., Go M. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents [J]. Bioorg. Med. Chem.,2009, 17:7562-7571.
    [110]Mei J., Graham K., Stalder R., Reynolds J., Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells[J]. Org. Lett.,2010,12: 660-663.
    [111]Zhang G., Fu Y., Xie Z., Zhang, Q. Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers[J]. Macromolecules,2011,44: 1414-1420.
    [112]Liu B., Zou Y., Peng B., Zhao, B., Huang K., He Y., Pan C. Low bandgap isoindigo-based copolymers:design, synthesis and photovoltaic applications[J]. Polym. Chem.2011,2:1156-1162.
    [113]Wang E., Ma Z., Zhang Z., Henriksson P., Ingana"s O., Zhang, F., Andersson, M.. An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage[J]. Chem. Commun.2011,47:4908-4910.
    [114]Wang E., Ma Z., Zhang Z., Vandewal K, Henriksson P., Ingana"s O., Zhang F., Andersson M. An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells[J]. J. Am. Chem. Soc.2011,133:14244-14247.
    [115]Qin C., Peng W., Zhang K., Islam A., Han L. A Novel Organic Sensitizer Combined with a Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells. Org. Lett.[J]. 2012,14:2532-2535.
    [116]Chou M., Leung M., Su Y., Chiang C., Lin C., Liu J., Kuo C., Mou C. Electropolymerization of Starburst Triarylamines and Their Application to Electrochromism and Electroluminescence[J]. Chem. Mater.2004,16:654-661.
    [117]Lin L., Tsai C., Wong K., Huang T., Hsieh L., Liu S., Lin H., Wu C., Chou S., Chen S., Tsai A. Organic Dyes Containing Coplanar Diphenyl-Substituted Dilhienosilole Core for Efficient Dye-Sensitized Solar Cells[J]. J. Org. Chem.2010,75:4778-4785.
    [118]Frisch M. et al. Gaussian, Inc., Wallingford CT,2009.
    [119]Stephens P., Devlin F., Chabalowski C., Frisch M. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry,1994,98(45):11623-11627.
    [120]Rassolov V., Pople J., Ratner M., Windus T.6-31G basis set for atoms K through Zn[J]. The Journal of chemical physics,1998,109:1223-1229.
    [121]Dreuw A., Head-Gordon M. Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States:The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes[J]. J. Am. Chem. Soc.2004,126: 4007-4016.
    [122]Fabregat-Santiago F., Garcia-Belmonte G., Mora-Sero I., Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy[J]. Phys. Chem. Chem. Phys.2011,13:9083-9118.
    [123]Zou L., Hunt C. Characterization of the Conduction Mechanisms in Adsorbed Electrolyte Layers on Electronic Boards Using AC Impedance[J]. Electrochem. Soc. 2009,156:C8-C15.
    [124]Brabec C., Gowrisanker S., Halls J., Lard D., Jia S., Williams S. Polymer-Fullerene Bulk-Heterojunction Solar Cells[j]. Adv. Mater.2010,22:2839-3856.
    [125]Jin L., Wu Z., Wei T., Zhai J., Zhang X. Dye-sensitized solar cell based on blood mimetic thixotropy sol-gel electrolyte[J]. Chem. Commun.,2011,47,997-999.
    [126]Redmond G., Fitzmaurice D., Gratzel M. Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline titania film[J]. J. Phys. Chem.,1993,97(27): 6951-6954.
    [127]Ying W., Guo F., Li J, Zhang Q, Wu W., Tian H, Hua J. Series of New D-A-π-A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces,2012,4:4215-4224.
    [128]Lee B., Yamamoto T. Syntheses of new alternating CT-type copolymers of thiophene and pyrido [3,4-b] pyrazine units:their optical and electrochemical properties in comparison with similar CT copolymers of thiophene with pyridine and quinoxaline[J]. Macromolecules,1999,32(5):1375-1382.
    [129]DuBois C., Reynolds J.3,4-Ethylenedioxythiophene-Pyridine-Based Polymers:Redox or n-Type Electronic Conductivity?[J]. Advanced Materials,2002,14(24):1844-1846.
    [130]Jonforsen M, Johansson T, Ingana's O, Andersson M. Synthesis and characterization of soluble and n-dopable poly(quinoxaline vinylene)s and poly (pyridopyrazine vinylene)s with relatively small band gap[J]. Macromolecules,2002,35(5):1638-1643.
    [131]Jonforsen M, Johansson T, Spjuth L, Ingana's O, Andersson M. Synthesis and characterization of poly (quinoxaline vinylene) s and poly (pyridopyrazine vinylene)s with phenyl substituted side-groups[J]. Synthetic metals,2002,131(1):53-59.
    [132]Thompson B., Madrigal L., Pinto M., Kang T., Schanze K., Reynolds J. Donor-acceptor copolymers for red-and near-infrared-emitting polymer light-emitting diodes[J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(7):1417-1431.
    [133]Wu, P., Kim F., Champion R., Jenekhe S. Semiconductors C D A C. Synthesis, Optical Properties, Electrochemistry, and Field-Effect Carrier Mobility of Pyridopyrazine-Based Copolymers[J]. Macromolecules,2008,41(19):7021-7028.
    [134]Wu P., Bull T., Kim F., Luscombe C., Jenekhe S. Organometallic Donor-Acceptor Conjugated Polymer Semiconductors:Tunable Optical, Electrochemical, Charge Transport, and Photovoltaic Properties[J]. Macromolecules,2009,42(3):671-681.
    [135]Huang X., Shi Q., Chen W., Zhu C., Zhou W., Zhao Z., Duan X., Zhan X. Low-Bandgap Conjugated Donor-Acceptor Copolymers Based on Porphyrin with Strong Two-Photon Absorption[J]. Macromolecules,2010,43(23):9620-9626.
    [136]Shi Q., Chen W., Xiang J., Duan X., Zhan X. A Low-Bandgap Conjugated Polymer Based on Squaraine with Strong Two-Photon Absorption[J]. Macromolecules,2011, 44(10):3759-3765.
    [137]Blouin N., Michaud A., Gendron D., Wakim S., Blair E., Neagu-Plesu R., Belletete M., Durocher G., Tao Y., Leclerc M. Toward a rational design of poly (2,7-carbazole) derivatives for solar cells[J]. Journal of the American Chemical Society.2008,130(2): 732-742.
    [138]Yuan M., Chiu M., Chiang C.,et al. Synthesis and characterization of pyrido [3,4-b] pyrazine-based low-bandgap copolymers for bulk heterojunction solar cells[J]. Macromolecules,2010,43(15):6270-6277.
    [139]Zhang Q., Norton J., Wu P.., Barlow S., Jenekhe S., Kippelen B., Bredasa J., Marder S. Dithienopyrrole-quinoxaline/pyridopyrazine donor-acceptor polymers:synthesis and electrochemical, optical, charge-transport, and photovoltaic properties[J]. Journal of Materials Chemistry,2011,21(13):4971-4982.
    [140]Henriksson P., Muller C., Bergqvist J., Hadipour A., Heremans P., Andersson M. New quinoxaline and pyridopyrazine-based polymers for solution-processable photovoltaics[J]. Solar Energy Materials and Solar Cells,2012,105:280-286.
    [141]Handy S., Wilson T., Muth A. Disubstituted Pyridines:The Double-Coupling Approach[J]. J. Org. Chem.,2007,72:8496-9500.
    [142]Schwab P. F., Fleischer F., Michl J.. Preparation of 5-brominated and 5, 5'-dibrominated 2,2'-bipyridines and 2,2'-bipyrimidines[J]. J. Org. Chem.,2002,67: 443-449.
    [143]Fukumoto H., Yamamoto T.. Preparation and chemical properties of soluble π-conjugated poly (aryleneethynylene) consisting of azabenzothiadiazole as the electron-accepting unit[J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46:2975-2982.
    [144]Zhou H., Yang L., Price S. C., Knight K. J., You W.. Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels[J]. Angew. Chem., Int. Ed.,2010,49:7922-7995.
    [145]Steinberger S., Mishra A., Reinold E., Levichkov J., Uhrich C., Pfeiffer M., Bauerle P.. Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes[J]. Chem. Commun.,2011,47:1982-1984.
    [146]Welch G. C., Bazan G. C Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers[J]. J. Am. Chem. Soc.,2011,133:4632-4644.
    [147]Welch G. C., Perez L. A., Hoven C. V., Zhang Y., Dang X. D., Sharenko A., Bazan G. C. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices[J]. Journal of Materials Chemistry,2011,21(34): 12700-12709.
    [148]Sun Y., Welch G., Leong W., Takacs C., Bazan G., Hegger A. Solution-processed small-molecule solar cells with 6.7% efficiency[J]. Nature materials,2011,11(1): 44-48.
    [149]Lin L. Y., Tsai C. H., Lin F., Huang T. W., Chou S. H., Wu C. C, Wong K. T. 2,1,3-Benzothiadiazole-containing donor-acceptor-acceptor dyes for dye-sensitized solar cells[J]. Tetrahedron,2012,68:7509-7516.
    [150]Chen Y. C., Chou H. H., Tsai M. C., Chen S. Y., Lin J. T., Yao C. F., Chen K.. Thieno[3,4-b]thiophene-based organic dyes for dye-sensitized solar cells[J]. Chem. Eur. J.2012,18:5430-5437.
    [151]Lin L. Y., Tsai C. H., Wong K. T., Huang T. W., Wu C. C., Chou S. H., Lin F., Chen S. H., Tsai A. I.. Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective p-spacer[J]. J. Mater. Chem.2011,21:5950-5958.
    [152]Chiu, S. W., Lin, L. Y., Lin, H. W., Chen, Y. H., Huang, Z. Y., Lin, Y. T., Lin F., Liu Y. H., Wong, K. T.. A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%[J]. Chem. Commun.,2012,48: 1857-1859.
    [153]Shang H., Fan H., Liu Y., Hu W., Li Y., Zhan X. A Solution-Processable Star-Shaped Molecule for High-Performance Organic Solar Cells. Advanced Materials,2011,23(13): 1554-1557.
    [154]Wu, I. Y., Lin, J. T., Tao, Y. T., Balasubramaniam, E., Su, Y. Z.,& Ko, C. W. Diphenylthienylamine-based star-shaped molecules for electroluminescence applications. Chemistry of materials,2001,13(8):2626-2631.
    [155]Bessho T., Zakeeruddin S. M., Yeh C. Y., Diau E. W. G., Gratzel M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins[J]. Angewandte Chemie International Edition,2010,49(37):6646-6649.
    [156]Wang P., Klein C., Humphry-Baker R., Zakeeruddin S. M., Gratzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells[J]. Journal of the American Chemical Society,2005,127(3):808-809.
    [157]Liang M., Chen J. Arylamine organic dyes for dye-sensitized solar cells[J]. Chemical Society Reviews,2013,42:3453-3488.
    [158]He H., Gurung,A., Si L.8-Hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells[J]. Chemical Communications,2012,48(47), 5910-5912.
    [159]Cong J., Yang X., Liu J., Zhao J., Hao Y., Wang Y., Sun L. Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells[J]. Chemical Communications,2012,48(53),6663-6665.
    [160]Tang J., Qu S., Hu J., Wu W., Hua J. A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell[J]. Solar Energy.2012,86: 2306-2311.
    [160]Lu J., Xu X., Li Z., Cao K., Cui J., Zhang Y., Wang M. Zinc Porphyrins with a Pyridine-Ring-Anchoring Group for Dye-Sensitized Solar Cells. Chemistry-An Asian Journal.2013, DOI:10.1002/asia.201201136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700