用户名: 密码: 验证码:
以高油脂产率为目标的小球藻光自养培养工艺优化与初步放大
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石燃料的短缺和二氧化碳减排的迫切性,微藻生物质能源产业化的发展备受关注。微藻培养是微藻生物质能源产业化中的重要环节,且高油脂产率是微藻培养的核心目标。高油脂产率微藻培养工艺优化与放大的研究成为近些年的研究热点,但文献结果大多以室内研究为主,即使涉及户外培养但其规模也很小。小球藻是淡水能源微藻中的主要藻种,但对其高产油脂光自养培养工艺优化和放大方面的研究很少。
     本文主要以小球藻(Chlorella sp.)为研究对象,考察了营养方式、昼夜温度、pH值、营养盐浓度、培养模式等条件对油脂产率的影响,建立了“异养种子-光自养培养”新模式,获得了高产油脂蛋白核小球藻的光自养培养基,并建立了室内高油脂产率小球藻的培养工艺。结合室内培养工艺,建立了户外0.35m2敞开式反应器中的小球藻光自养培养工艺并对其进行了优化。将种子制备工艺从5L摇瓶放大到500L发酵罐,为户外大规模光自养培养提供了充足的种子。此外,还将户外光自养培养规模从0.35m2反应器成功放大到80m2水泥跑道池。本文主要研究结论如下:
     (1)建立了小球藻“异养种子-光自养培养”新模式(以异养细胞作为种子进行光自养培养)。考虑到能源微藻光自养接种时,由于种子自养培养存在耗时长、易被杂藻和原生动物污染等缺点从而难以提供充足且稳定的藻种,本文首次建立了小球藻“异养种子-光自养培养”的新模式。对于蛋白核小球藻而言,藻种制备过程中异养培养的细胞产率是自养培养的20.9倍;“异养种子-光自养培养”模式下的油脂产率是“自养种子-光自养培养”(以自养细胞作为种子进行光自养培养)的1.59倍;且该模式下的脂肪酸组成主要以2-3个双键且碳链长度在16-18之间的脂肪酸为主,十分适合作为生产生物燃料的原料。此外,该模式还适用于椭圆小球藻和普通小球藻:该模式下椭圆小球藻和普通小球藻的油脂产率分别是“自养种子-光自养培养”模式下的1.52倍和1.58倍。
     (2)通过筛选及优化获得了适合室内和户外生长的小球藻光自养培养基。结果表明,在室内及户外3L平板式反应器中,小球藻在优化后培养基中的油脂产率分别是初始培养基中的1.61和1.67倍;在户外0.35m2敞开式反应器中,小球藻在优化后培养基中的油脂产率是初始培养基中的1.33倍。
     (3)白昼温度对油脂产率影响显著。由于户外培养时存在昼夜的变化,夜晚藻细胞密度和油脂含量的下降导致了油脂产率的降低。因此,在一定光暗周期下考察温度与藻细胞密度、油脂含量和脂肪酸组成的变化规律是十分重要的。研究结果表明,30℃是小球藻光自养培养的最适温度。夜晚藻细胞损失会随着白天温度的升高或夜晚温度的降低而下降;夜晚油脂含量的增幅则会随着白天温度的升高或夜晚温度的降低而增加。此外,在任何温度下,随着培养时间的延长(生物量增加),夜晚细胞损失也会逐渐减小:在6种主要的脂肪酸中C16:0含量最高且最易受温度的影响,其值随着温度的升高而增加。
     (4)在室内建立了基于CO2控制最佳pH及氮胁迫的半连续光自养培养工艺。在分批培养过程中通CO2调节藻液pH值在7.0±0.2时可以提高细胞的油脂产率:在该条件下的油脂产率是分批培养过程中不控pH处理的2.64倍。细胞在适度氮胁迫条件下培养时有利于提高油脂产率。初始硝酸钠浓度为200mg/L处理的油脂含量高达38.7%,是初始硝酸钠浓度为500mg/L处理的1.25倍。此外,在相同的培养条件下,半连续培养方式下的油脂产率是分批培养的1.47倍。因此,在半连续培养过程中结合通CO2进行pH调控及氮胁迫的培养策略可以明显提高油脂产率;而且在每隔24小时带放1/3体积藻液的半连续培养操作时的油脂产率最高,其值是分批培养中不控pH和不限氮条件下的3.64倍。
     (5)在户外0.35m2敞开式反应器中建立了蛋白核小球藻光自养培养工艺。结果表明,培养过程中的最佳pH值为7.0±0.2且发酵尾气可代替纯CO2进行pH调控以及作为碳源:白天时最佳通气量为0.5vvm,夜晚则不通气最好;最佳的液位深度和初始接种密度分别为14cm和0.3g/L。结合室内培养工艺,进一步优化户外培养工艺:当户外温度较低时(最高温度小于30℃),提高白天培养温度使其值在30-36℃,小球藻的油脂产率可提高81%;在户外相同培养条件下,小球藻在半连续培养方式下的油脂产率是分批培养时的1.85倍。
     (6)将种子制备工艺从5L摇瓶成功放大到50L和500L发酵罐,为户外放大提供了充足的藻种。首次将“异养种子-光自养培养”模式应用于蛋白核小球藻户外大规模培养,并将培养工艺逐步放大到了80m2水泥跑道池,该培养规模下的油脂产率高达46.4mg/L/d (5.22g/m2/d),是目前文献报道的最大规模及最高油脂产率。
     上述研究结果不仅为高油脂产率小球藻培养的产业化奠定了基础,而且还对其他能源微藻的培养研究具有重要的参考价值。
Due to the lack of fossil energy and the urgency of CO2emission reduction, the development for industrilization of biofuels from microalgae has been paid much more attention. Microalage cultivation is the key to biofuels from microalgae, and high lipid productivity is the central aim of microalgae cultivation. Therefore, optimizaition and scale up of microalgae photoautotrophic cultivation for high lipid productivity has been a research focus in recent years. However, many researches in the literature mainly focused on indoor cultivation; some results refered to outdoor culture but the scales of them were not large. Chlorella spp. are main species of fresh oleaginous algae, however, few research has done into the optimization and scale up of Chlorella photoautotrophic cultivation for high lipid productivity.
     Chlorella sp. has been used as the research object. The effects of trophic modes, temperature, nutrient concentrations and culture modes on the lipid productivity have been investigated; the novel model of "heterotrophic seed-photoautotrophic cultivaton" of Chlorella has been found; photoautotrophic medium of C. pyrenoidosa for high lipid productivity has been selected and optimized; and the C. pyrenoidosa indoor photoautotrophic cultivation for high lipid productivity has been established. Based on the indoor results, the Chlorella outdoor photoautotrophic culture has been established and optimized in0.35m2open basins. Moreover, for outdoor photoautotrophic mass culture, the seed preparation scale has been magnified from5L flasks to50L and500L fermenters, and the photoautotrophic cultivation scale has been enlarged from0.35m2open basins to80m2raceway ponds. The main results are as follows:
     (1) Establish a novel Chlorella culture model of "heterotrophic seed-photoautotrophic cultivation"("HS-PC", the photoautotrophic culture with heterotrophic cells as seed). For overcoming the long period of seed cultured photoautotrophically, difficulty for algal species control and inadequate cells supply for the inoculation of microalgae photoautotrophic cultivation, a novel model of "HS-PC" has been firstly established. For C. pyrenoidosa, the biomass productivity of heterotrophy was20.9-fold higher than that of photoautotrophy during the seed preparation process; the lipid productivity of "HS-PC" was1.59times higher than that of "PS-PC"(the photoautotrophic culture with photoautotrophic cells as seed); The fatty acids of "HS-PC" model were in medium length (16-18carbons) with2or3unsaturation degree, which were suitable for biofuels-making. Furthermore, the "HS-PC" model also can be applied to C. ellipsoidea and C. vulgaris; the lipid productivity of C. ellipsoidea and C. vulgaris in "HS-PC" model were1.52-fold and1.58-fold higher than those in "PS-PC" model, respectively.
     (2) Obtain the optimum C. pyrenoidosa photoautotrophic medium for both indoor and outdoor culture through the selection and optimization. The results showed that the lipid productivity of the cells cultured with the optimized medium were1.61-fold and1.67-fold higher than those with the original one in the3L panel bioreactor for indoor and outdoor culture; the lipid productivity with the optimized medium was1.33-fold higher than that with the original one in the outdoor0.35m2open basins.
     (3) Temperatures during the daytime and night have great effects on lipid productivity. For outdoor culture with light-dark cycle, the losing of biomass and lipid at night decreased the biomass and lipid productivity. Hence, studies on the effects of temperature on the variations of biomass concentration, lipid content and fatty acids composition under a light-dark cycle culture were absolutely important. The results showed that30℃was the optimal temperature for achieving high biomass and lipid productivity. The night biomass loss decreased with the increasing daytime temperature or the decreasing night temperature; the extent to the lipid content at night increased with the increasing daytime temperature or the decreasing night temperature. In addition, the night biomass loss decreased with the increasing biomass concentration at any temperature; among the six main fatty acids, C16:0was the most abundant fatty acid and apparently influenced by the temperature, which was increased with the increasing temperature.
     (4) Establish an indoor photoautotrophic cultivation strategy of semi-continuous culture with pH-regulation by CO2and nitrogen-limitation. In the batch culture, the lipid productivity can be enhanced with pH-regulation at7±0.2by CO2, which was2.64-fold higher than that without pH control. The lipid productivity of the cells can be increased under the nitrogen-limitation conditions; the lipid content of Chlorella with the initial NaNO3concentration at200mg/L was38.7%, which was1.25times higher than that at500mg/L. Additionally, under the same culture conditions, the lipid productivity of the cells in the semi-continuous culture was1.47-fold higher than that in the batch culture. Hence, the culture strategy of integrating both nitrogen-limitation and pH-regulation by CO2in a semi-continuous cultivation was investigated for enhancing the lipid productivity. The results showed that the lipid productivity of the above semi-continuous system with one-third replacement and24h's interval was3.64times higher than that in the batch culture without pH control and nitrogen limitation.
     (5) Establish an outdoor photoautotrophic cultivation in0.35m2open basins. The results showed that the optimal pH was7±0.2and the fermenter exhaust-gas can take place of pure CO2as carbon source and for pH-regulation; the optimal ventilation volumn, broth depth and inoculation concentration were0.5vvm,14cm and0.3g/L as well as no mixing during the night. Additionally, the Chlorella outdoor photoautotrophic culture has been optimized by indoor culture results:when the natural temperature was low (maximium temperature<30℃), the lipid productivity can be enhanced by81%through controlling the daytime temperature between30℃and36℃; Under the same culture conditions, the lipid productivity of Chlorella in the semi-continuous culture with nitrogen-limitation was1.85-fold higher than that in the batch culture.
     (6) The seed preparation process has been enlarged from5L flasks to500L fermenters for adequate cells supply for the inoculation of the photoautotrophic culture. The "HS-PC" model was firstly carried out for outdoor mass culture:the photoautotrophic culture scale was magnified to80m2raceway ponds. The maximum lipid productivity of Chlorella cultured in80m2raceway ponds reached46.4mg/L/d (5.22g/m2/d), which was the biggest scale and highest lipid productivity in the literature.
     Our results can not only load a good foundation for industrialization of Chlorella cultivation with high lipid productivity, but also provide a valuable reference for other oleaginous microalgae cultivation.
引文
[1]Chisti Y. Biodiesel from microalgae. Biotechnol Adv.2007,25 (3):294-306
    [2]童牧,周志刚.新一代生物柴油原料—微藻.农业工程技术(新能源产业).2009,5:19-26
    [3]Meier RL. Biological cycles in the transformation of solar energy into useful fuels. Solar Energy Research.1955,179-184
    [4]Sheehan J, Terri D, Benemann J, Roessler P. A Look Back at the U.S. Department of Energy's Aquatic Species Program-Biodiesel from Algae, the United States:National Renewable Energy Laboratory,1998:145-208
    [5]李元广,谭天伟,黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析.中国科学基础(工业生物技术专刊).2009,5:64-70
    [6]Chisti Y. Biodiesel from microalgae. Trends Biotechnol.2008,126:1-6
    [7]Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol Progr.2008,24 (4):815-820
    [8]Mata TM, Martins AA, Caetano NS. Mciroalgae for biodiesel production and other applications:A review. Renew Sust Energ Rev.2010,14:217-232
    [9]Feng YJ, Li C, Zhang DW. Lipid production of Chlorella vulgaris cultured in artificial wasterwater medium. Bioresour Technol.2011,102:101-105
    [10]Tang D, Han W, L PL, Miao XL, Zhong JJ. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol.2011,102 (3):3071-3076
    [11]Zhou XP, Xia L, Ge HM, Zhang DL, Hu CX. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresour Technol. 2013,138:131-135
    [12]Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production:A critical review. Bioresour Technol.2011,102 (1):71-81
    [13]蒋礼玲,张亚杰,李潇萍,郭荣波.微藻培养模式研究进展.可再生能源.2010,28(1):56-62
    [14]王长海,欧阳藩.紫球藻培养条件优化.化工冶金.1999,20(3):272-277
    [15]王长海,孙颖颖.流加培养对球等鞭会藻生长和生化成分的影响.天津大学学报.2008,41(2):142-146
    [16]Lababpour A, Shimahara K, Hada K. Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J biosci bioeng.2005,100 (3):339-342
    [17]焦改志.单胞藻培养过程中接种和添加增养液应注意的几个问题.海洋科学.1993(6):15-18
    [18]王克明.流加培养对杜氏盐藻生物量的影响.浙江技术学院学报.2005,17(3):167-170
    [19]许波,王跃海.微藻的平板式光生物反应器高密度培养.食品与发酵工业.2003,29(1):36-40
    [20]朱艺峰,林霞,徐同成.光、氮和半连续培养更新率对微绿球藻生长与采收量的影响.中国水产科学.2004,11(2):159-165
    [21]Fabregas J, Otero A, Morales ED. Modification of the nutritive value of phaeodactylum trieornutum for Artemia sp. in semicontinuous cultures. Aquaculture.1998,169 (3): 167-176
    [22]Favregas J, Dominguez A, Regueiro M. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biot. 2000,53 (5):530-535
    [23]Fabregas J, Patino M, Arredondado VB. Renewal rate and nutrient concentration as tools to modify productivity and biochemical composition of cyclostat cultures of the marine microalga Dunaliella tertiolecta. Appl Microbiol Biot.1995,44 (3):287-292
    [24]姜建国,朱跃辉,黄洋.光生物反应器连续培养盐藻的研究.海湖盐与化工.2005,34(1):29-31
    [25]Sanchez JF, Fernandze JM, Acien FG. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almefiensis. Process Biochem.2008,43 (4):398-405
    [26]Singh RN, Sharma S. Development of suitable photobioreactor for algae production-A review. Renew Sust Energ Rev.2012,16 (4):2347-2353
    [27]Xu L, Weathers PJ, Xiong XR. Microalgal bioreactors:Challenges and opportunities. Eng Life Sci.2009,9 (3):178-189
    [28]李文权,黄贤芒,陈清花.4种海洋单胞藻生化组成的环境因子效应研究.海洋学报.1999,21(3):59-65
    [29]Thompson PA, Harrison PJ, Whyte JNC. Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol.1990,26 (2):278-288
    [30]Orcutt DM, Patterson GW. Effect of light intensity upon lipid composition of Nitzschia closterium (Cylinddrotherca fusiformis). Lipids.1974,9:1000-1003
    [31]Opute FL. Lipid and fatty-acid composition of diatoms. J Exp Bot.1974,25:823-835
    [32]Sukenik A, Bennett J, Falkowski PG Light saturated photosynthesis limitation by electron transport or carbon fixation. Biochim Biophys Acta.1987,891:205-215
    [33]Richmond A. CRC Handbook of Microalgal mass culture. Florida:CRC Press.1986
    [34]Carvalho AP, Monteiro CM, Malcata FX. Simulataneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol. 2009,1 (5):543-552
    [35]Dermoun D, Chaumont D, Thebault J. Modelling of growth of Porphyridium cruentum in connection with intredependent factors:light and temperature. Bioresour Technol. 1992,42:113-117
    [36]Moheimani NR. The culture of Coccolithophorid algae for carbon dioxide bioremediation. Perth, Australia:Murdoch University.2005
    [37]Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech.2000,27 (8):631-635
    [38]Kawata M, Nanba M, Matsukawa R. Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Stud Surf Sci Catal.1998,114:637-640
    [39]Takagi M, Watanabe K, Yamaberi K. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol.2000,54:112-117
    [40]Khozin GI, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 2006,67 (7):696-701
    [41]Reitan KI, Rainuzzo JR, Olsen Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol.1994,30:972-979
    [42]Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol.2008,99 (11):4717-4722
    [43]胡洪营,李鑫,于茵,巫寅虎等译.微藻生物质能源-基本原理、关键技术与发展路线图.北京:科学出版社,2011年10月
    [44]Matsumoto H, Hamasaki A, Sioji N. Influence of CO2, SO2 and NO2 in flue gas on microalgae productivity. J Chem Eng Japan.1997,30:620-624
    [45]Iwasaki I, Hu Q, Kurano N. Effect of extremly high-CO2 stress on energy distribution between photosystem land photosystem Ⅱ in a "high-CO2" tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem Photobiol B.1998,44:184-190
    [46]de Morais MG, Costa JAV. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag. 2007,48:2169-2173
    [47]Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. Trans Am Soc Civ Eng. 1957,122 (1):73-105
    [48]Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng.2006,28 (1):64-70
    [49]Hosetti BB. Application of microorganism on wastewater treatment. Environ ecol.1988, 6 (2):508-517
    [50]李建佳,邱雷,胡筱敏MBFA9对蛋白核小球藻生长的影响研究.环境保护与循环经济.2009,9:68-70
    [51]文锦,孙远,李宝硕.产油微藻培养条件调控.微生物学通报.2010,37(12):1721-1726
    [52]Liang YN, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixtrophic growth conditions. Biotechnol Lett. 2009,31:1043-1049
    [53]Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol.2008,99:3389-3396
    [54]Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol.2009,100:3921-3926
    [55]Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. J Biosci Bioeng.2010,110(2):194-200
    [56]Zemke PE, Sommerfeld MR, Hu Q. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol.2013,97 (12):5645-5655
    [57]Feng PZ, Deng ZY, Hu ZY, Fan L. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoor. Bioresour Technol.2011,102: 10577-10584
    [58]Moheimani NR. Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella teriolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol.2013,25:167-176
    [59]Huo S, Wang ZM, Zhu SN, Zhou WZ, Dong RJ, Yuan ZH. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wasterwater in winter, South China. Bioresour Technol.2012,121:76-82
    [60]Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol.2009,36:269-274
    [61]Zheng YB, Chi ZY, Lucker B, Chen SL. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol.2012,103: 484-488
    [62]Scragg AH, Illman AM, Carden A, Shales SW. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg.2002,23:67-73
    [63]Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil:strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng.2009,102:100-112
    [64]Zhou XP, Ge HM, Xia L, Zhang DL, Hu CX. Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresour Technol.2013,134:24-29
    [65]Moheimani NR. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp. (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol.2013,25 (2):387-398
    [66]Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol.2010,101:S71-S74
    [67]Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process.2009,48:1146-1151
    [68]Zhu LD, Wang ZM, Takala J, Hiltunen E, Qin L, Xu ZB, Qin XX, Yuan ZH. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol.2013,137:318-325
    [69]Feng PZ, Deng ZY, Fan L, Hu ZY. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng.2012,114 (4):405-410
    [70]Ong SC, Kao CY, Chiu SY, Tsai MT, Lin CS. Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol.2010,101:2880-2883
    [71]Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol.2009,21:493-507
    [72]Lee YK. Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol. 1997,9:403-411
    [73]Gors M, Schumann R, Hepperle D, Karsten U. Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol.2009,22: 265-276
    [74]Ogbonna JC, Masui H, Tanaka H. Sequential heterotrophic/autotrophic cultivation—an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol.1997,9:359-366
    [75]Endo H, Nakajima K, Chino R, Shirota M. Growth characteristics and cellular components of Chlorella vulgaris, heterotrophic fast growing strain. Agric Biol Chem. 1974,38:9-18
    [76]Li XW, Li YG, Shen GM, Yang D. Medium for culturing Chlorella vulgaris with sequential heterotrophic-autotrophic model. Chin J Process Eng.2006,6:277-280
    [77]Guillard RR, Ryther JH. Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (cleve) Gran. Can J Microbiol.1962,8:229-239
    [78]Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods.2009,77:41-47
    [79]Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol.1959,37:911-917
    [80]Roe JH. The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem.1954,208:889-896
    [81]AOAC. Official Methods of Analysis,15th Ed., Association of Official Analytical Chemists, Washington DC.1990
    [82]Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different sovents. Biochem Soc Trans.1983,11:591-592
    [83]Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F. Differential lipid and fatty acid profiles of phototrophic and heterotrophic Chlorella zofingiensis:Assessment of algal oils for biodiesel production. Bioresour Technol.2011,102:106-110
    [84]Wang HY, Guo SY, Zheng BS, Li CZ. Growth and biochemical components of Chlorella vulgaris under autotrophic, heterotrophic and mixtrophic cultivations. J South China Univ Technol.2004,32:47-55
    [85]Packer A, Li YT, Andersen T, Hu Q, Kuang Y, Sommerfeld M. Growth and neutral lipid synthesis in green microalgae:A mathematical model. Bioresour Technol.2011, 102:111-117
    [86]Xiong W, Gao CF, Yan D, Wu C, Wu QY. Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol.2010,101:2287-2293
    [87]Piorreck M, Baasch KH, Poul P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogren regimes. Phytochemistry.1984,23:207-216
    [88]Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol.2010,101: 6797-6804
    [89]Valenzuela-Espinoza E, Millan-Nunez R, Nunez-Cebrero F. Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis off. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacult Engi.2002,25:207-216
    [90]Knothe G. "Designer" biodiesel:optimizing fatty ester composition to improve fuel properties. Energ Fuel.2008,22:1358-1364
    [91]Terry K, Neenan B, Feinberg D, Hill A, Mcintosh R. Fuels from Microalgae, Technology status, Potential and Research Requirement (first eds.). Golden Colorado:Solar Energy Research Institute, United States Department of Energy.1986,32-37
    [92]韦志勇,黄宝祥,冯伟,王海英.产油脂小球藻的筛选及其培养基的研究.中国油脂.2011(36),8:37-39
    [93]Cheng KC, Ren M, Ogden LK. Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol Bioproc E.2010,15 (2): 277-284
    [94]Ryu HJ, Oh KK, Kim YS. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mas transfer rate. J Ind Eng Chem.2009,15:471-475
    [95]Lam MK, Lee KT. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl Energ.2012,94:303-308
    [96]Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev.1971,35:171-205
    [97]Ogbonna JC, Tanaka H. Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells:a method of achieving continuous cell growth under light/dark cycles. Bioresour Technol.1998,65:65-72
    [98]Geoghegan MJ. Experiments with Chlorella at Jealott's Hill. Algal culture from laboratory to pilot plant (J.S. Burlew eds.). Washington D.C.:Carnegie Institute of Washington.1953,9-13
    [99]Mayo AW. Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ Res.1997,69 (1):64-72
    [100]Ogbonna JC, Tanaka H. Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng.1996, 82:558-564
    [101]De Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol.2008,99:4980-4989
    [102]Tomaselli L, Giovannetti L, Sacchi A, Bocci F. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2, in:Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H. Algal Biotecnology (first eds.). London and New York:Elsevier Applied Science.1988,305-314
    [103]Torzillo G, Sacchi A, Materassi R. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour Technol.1991,38:95-100
    [104]Grobelaar JU, Soeder CJ. Respiration losses in green alga cultivated in raceway ponds. J Plankton Res.1985,7:497-506
    [105]Van Dongen JT, Gupta KJ, Ramirez-Aguilar SJ, Araujo WL, Nunes-Nesi A, Fernie AR. Regulation of respiration in plants:a role for alternative metabolic pathways. J Plant Physiol.2011,168:1434-1443
    [106]Raven JA, Beardall J. Respiration and photorespiration. Can Bull Fish Aquatic Sci. 1981,210:55-82
    [107]Peschek GA, Muchl R, Kienzl PF, Schmetterer G. Characteristic temperature dependences of respiratory and photosynthetic electron-transport activities in membrane preparations from Anacystic nidulans grown at different temperatures. B BBA Bioenergetics.1982,679:35-43
    [108]Grima EM, Perez JAS, Camacho FG, Selvilla JMF, Fernandez FGA, Cardona JU. Biomass and icosapentaenoic acid productivities form an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Appl Microbiol Biotechnol.1995,42:658-663
    [109]Torzillo G, Vonshak A. Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass Bioenerg.1994,6:399-403
    [110]Solovchenko AE, Khozin-Goldbery I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic in the green microalga Parietochloris incisa. J Appl Phycol.2008,20:245-251
    [111]Klyachko-Gurvich G, Tsoglin LN, Doucha J, Kopetskii J, Shebalina BI, Semeneko VE. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol Plant.1999,107:240-249
    [112]Patterson GW. Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids.1969,5:597-600
    [113]Liu XJ, Jiang Y, Chen F. Fatty acid profile of the edible filamentous cyanobacterium Nostoc flagelliforme at different temperatures and developmental stages in liquid suspension culture. Process Biochem.2005,40:371-377
    [114]Zhu L, Zhang X, Ji L, Song X, Kuang C. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem.2007,42:210-214
    [115]Yeh KL, Chen CY, Chang JS. pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. J Biochem Eng.2012,64:1-7
    [116]Celekli A, Donmez D. Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World J Microbiol Biotechnol.2006,22:183-189
    [117]Wang X, Hao C, Zhang F, Feng C, Yang Y. Inhibition of the growth of two blue-green algae species (Microsystisaruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide. Bioresour Technol.2011,2:5742-5748
    [118]Rodrigues MS, Ferreira LS, Converti A, Sato S. Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresour Technol.2011,102:6587-6592
    [119]Miron AS, Garcia MCC, Camacho FG, Grima EM, Chisti Y. Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors:studies in fed-batch culture. Enzyme Microb Tech.2002,31: 1015-1023
    [120]Li HS. The principle and technology of plant physiological and biochemical experiment (first ed.).Beijing:Higher Education Press.2000,58-69
    [121]Miller AG, Colman G Evidence for HCO3- transport by the blue green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol.1980,65:397-402
    [122]Khalil ZI, Aaker MMS, El-Sayed S, Kobbia IA. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol.2010,26:1225-1231
    [123]Barbosa MJGV. Microalgal photobioreactors:scale-up and optimization. The Netherlands:Wageningen University,2003
    [124]Eriksen NT. The technology of microalgal culturing. Biotechnol Lett.2008,30: 1525-1536
    [125]Ogbonna JC, Yada H, Tanaka H. Effect of cell movement by random mixing between the surface and bottom of photobioreactors on algal productivity. J Ferment Bioeng. 1995,79:152-157
    [126]Bechet Q, Shilton A, Fringer OB, Munoz R, Guieysse B. Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol.2010,44:2197-2203
    [127]Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol.2008,99:4021-4028
    [128]周海涛,秦宏跃,高士香.浅析铵盐在单细胞藻类培养中抑制原生动物污染的作用.河北渔业.2005,6:36-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700