用户名: 密码: 验证码:
乙醇脱氢法制备乙酸乙酯铜基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙酸乙酯(EA)是醋酸的重要下游产品,也是一种重要的绿色有机溶剂。EA作为一种高档溶剂,其生产方法的研究一直是关注的热点,其中乙醇脱氢法被认为是最有应用前景的工艺路线。目前Cu-Cr系催化剂对EA的选择性较高,且已成功应用于工业生产。量子化学方法可以深入研究反应基元步骤中各物种的结构和电子性质等,从而为催化剂改性和工艺改进提供理论依据。
     本文以Cu和Cu/Cr_2O_3催化剂作为研究体系,试图深入研究乙醇脱氢制备乙酸乙酯的反应机理,从微观角度分析Cu和Cr_2O_3催化剂组分在催化反应中的作用,揭示催化剂构效关系。
     首先通过表征和实验研究分析了Cu-Cr系催化剂的结构。结果表明,Cu-Cr系催化剂中Cu和Cr元素的存在形式分别是Cu0和Cr_2O_3,催化剂表面的活性中心是Cu0物种。以上实验结果为搭建合理的催化剂模型奠定了基础,保证了模拟研究的可靠性。
     基于实验研究结果,本文构建了活性中心Cu的模型,用DFT方法计算了乙醇脱氢反应中各个相关物种(包括CH_3CH_2OH、CH_3CH_2O、CH_3CHO、CH_3CO、CH_3COC2H_5)在Cu(111)面上最稳定的吸附位置与构型。参照Colley机理和Kanichiro机理,对乙醇脱氢制备乙酸乙酯过程中每一步基元反应进行过渡态搜索,得到相关反应能垒数据。通过对比两个机理的计算结果,认为在Cu (111)面上乙醇更倾向于按照Colley反应机理生成乙酸乙酯,乙醇分子断开O-H键脱氢生成乙氧基的能垒最高,反应能垒为1.32eV。
     通过搭建Cr_2O_3和Cu/Cr_2O_3模型,研究了乙醇在其上的吸附和脱氢过程。研究结果表明,乙醇分子吸附在Cu/Cr_2O_3催化剂上时,Cu_4团簇与Cr_2O_3的交界处提供的活性位最稳定,其最稳定构型的吸附能为0.80eV;乙醇与Cu_4团簇之间形成Cu-O键,这样就使得乙醇分子更好地化学吸附在Cu上,为其下一步脱氢提供有利条件;乙醇在Cr_2O_3(001)表面、Cu(111)表面和Cu/Cr_2O_3体系脱氢生成乙氧基的能垒分别为0.42eV、1.32eV和0.59eV,Cr_2O_3本身也较纯铜有较好的脱氢能力;铜和三氧化二铬的协同作用在很大程度上增强了乙醇分子在Cu/Cr_2O_3催化剂上的吸附稳定性,有效地降低了乙醇脱氢解离为乙氧基这一步的能垒,强化了Cu的活性中心作用,提高了乙醇的转化率。
     结合实验和模拟方法,深入研究Cu基催化剂的酸碱性。利用原位吸附吡啶-FT-IR测定方法得出纯Cu催化剂表面具有L酸中心,没有B酸中心;Cu-Cr催化剂具有L酸中心,同时Cr的加入,引入了B酸位,但这些B酸中心的数量相比L酸来说较少。分子模拟结果表明当有缺电子的分子或基团攻击时,纯铜表面和Cr_2O_3(001)面具有亲核性,即有L碱中心;而当有富电子的分子或基团攻击时,纯铜表面和Cr_2O_3(001)面具有亲电性,即有L酸中心。在乙醇脱氢过程中会产生很多游离态的H,铜和Cr_2O_3(001)面可以接受质子,因而具有B碱中心;但Cu不具备给出质子的能力,没有B酸中心,而Cr_2O_3(001)面可以给出质子,具有B酸中心。且Cr_2O_3表面的酸性强于Cu表面,Cr_2O_3的加入增加了催化剂的Lewis碱性和B酸性,可使催化剂酸碱性质更好地匹配。
     本文的研究成果对设计、开发和改进乙醇脱氢法新型催化剂与工艺具有重要的指导意义。
The ethyl acetate (EA) is an important downstream product of the acetic acid andalso an important green organic solvent. As a high grade solvent, the research on itsproduction process has received widely attention. Among all processes for thesynthesis of EA, the direct dehydrogenation of ethyl acetate from ethanol isconsidered as the technological route with fine application prospect. At present, theCu-Cr catalyst system shows very high EA selectivity, and has been already applied inthe industrial production successfully. The quantum chemical calculation couldprovide the information on the geometric configuration and electronic structure of theconcerned reactants, intermediates as well as products, and thus give us usefullinstructions to modify the performance of catalysts and to improve the productiontechnology.
     In this work, the pure Cu and Cu/Cr_2O_3catalysts were chosen as the researchsystems to reveal the possible reaction mechanism of the EA synthesis from ethanoldehydrogenation as well as the role played by Cu and Cr_2O_3components. The resultswould be helpful to understand the relationship between structure and catalystic effectfrom the microscopic point of view.
     First, the strcture of Cu-Cr catalyst system was analysied by characterization andexperimental study. It was found that the components Cu and Cr existed as Cu0andCr_2O_3, and then the active sites were Cu0based on the TPSR study. According to theexperimental results, the reasonable simplified catalyst model could be established,which could ensure the reliability of simulation.
     Based on the experimental results, the model of Cu as active sites wasconstructed, using DFT methods, the most stable configuration of all concernedspecies during ethanol dehydrogenation (including CH_3CH_2OH, CH_3CH_2O, CH_3CHO,CH_3CO and CH_3COOC2H_5) on the Cu (111) surface were obtained. Then, twopossible reaction mechanisms proposed by Colley and Kanichiro were referenced,respectively, and the transition states for the elementary reaction steps in this processwere searched. After the comparision between calculation results, it was consideredthat the possible reaction mechanism on Cu(111)surface might be the mechanismroute proposed by Colly et al. The energy barrier of C2H_5OH dehydrogenation toC2H_5OE1
     awas1.32eV, which should be highest of the whole reaction.
     Then, the models of Cr_2O_3and Cu/Cr_2O_3were built up, the adsorption anddehydrogenation of ethanol were studied. It was demonstrated that the active sitesprovided by the interface between Cu_4cluster and Cr_2O_3were most stable, when theethanol molecule was adsorbed on the Cu/Cr_2O_3. The adsorption energy of the moststable configuration was0.80eV, and the Cu-O bond was formed between ethanol andCu_4cluster. In this way, the ethanol molecule could be better chemisorbed on the Cu(111) surface, which would benefit the next ethanol dehydrogenation.
     The barriers of C2H5OH dissociation on the Cr_2O_3(001) surface, Cu (111) surfaceand Cu/Cr_2O_3system were0.42eV,1.32eV and0.59eV, respectively. It was found thatCr_2O_3showed also better dehydrogenation ability than pure Cu. The synergistic effectprovided by the interface between Cu_4cluster and Cr_2O_3would enhance the stabilityof the ethanol molecule adsorbed on Cu/Cr_2O_3system to a great extent. Theintroduction of Cr_2O_3could effectively reduce the energy barrier of C2H5OHdehydrogenation to C2H5O, consequently strengthen the role of Cu as active sites thusincrease the conversion of ethanol.
     The acidity and basicity of the Cu based catalyst were also studied by means ofexperimental determination and molecule simulation. Using in situ adsorbedPyridine-FTIR method, it was found that pure Cu surface showed Lewis acidic sites,but no Br nsted acidic sites. Cu-Cr system not only has Lewis acidic sites but also hasBr nsted acidic sites because of the introduction of Cr, while quantity of Br nstedacidity was small. The results of molecule simulation demonstrated that pure Cu andCr_2O_3surface have Lewis basic sites while attacked by molecules or groups who werepoored in electron; while the two surfaces have Lewis acidic sites while attacked bymolecules or groups who were riched in electron. There were many dissociated H inthe process of ethanol dehydrogenation, pure Cu and Cr_2O_3surface can accepted H, sothey have Br nsted basic sites; but Cu can not present H, so it doesn’t has Br nstedacidic sites, while Cr_2O_3surface can present H, so it has Br nsted acidic sites. Cr_2O_3can strengthen the Lewis basicity and Br nsted acidity of the Cu-Cr catalyst and makethe acidity and basicity of catslyst match better.
     The results in this work would provide some useful instructions to develop novelpractical catalysts and to improve the process technology of EA synthesis fromethanol dehydrogenation.
引文
[1]徐寿昌,有机化学(第二版),北京:高等教育出版社,1983,336
    [2]刑其毅,有机化学(上册),北京:高等教育出版社,1957,149
    [3]程能林,胡声闻,溶剂手册(下册),北京:化学工业出版社,1987:14-15
    [4]李雄,几种工业乙酸乙酯制备方法的技术经济对比,石油化工技术经济,2002,18(1):19~22
    [5]汪子昌,醋酸乙酯市场及技术概况,化工科技市场,2007,30(8):6~7
    [6]李雅丽,醋酸乙酯生产技术和市场分析,精细与专用化学品,2006,14(14):29~32
    [7]乙酸乙酯的市场分析,国内外香化信息,2008,6(252):1~2
    [8]金菲,乙酸及其下游产品市场分析,医药化工,2005,4:25~30
    [9]李涛,曹晓岚,乙酸乙酯的生产及市场,精细石油化工进展,2002,3(9):37~40
    [10]潘伟雄,乙醇脱氢法制乙酸乙酯技术进展和经济性分析,精细与专用化学品,2007,15(18):11~15
    [11] Colley S W, Tabatabaei J, Waugh K C, et al., Journal of Catalysis,2005,236:21~33
    [12] Inui K, Kurabayashi T, Sato S, Direct Synthesis of Ethyl acetate fromEthanol Carried Out under Pressure, Journal of Catalysis,2002,212:207~215
    [13]王爱军,赵地顺,庞登甲,Fe3+/HZSM-5分子筛催化合成乙酸乙酯,河北化工,2004,3:30~33
    [14]王爱军,赵地顺,韩文爱等,TiO2/SO42--HZSM-5催化合成乙酸乙酯,河北化工,2003,4:26~27
    [15] Wu K C, Chen Y W, An efficient two-phase reaction of ethyl acetateproduction in modified ZSM-5zeolites, Appilied catalysis A: General,2004,257(1):33~42
    [16]张立,孙明珠,袁兴东等,含磺酸基的介孔分子筛SBA-15-SO3H催化合成乙酸乙酯,抚顺石油学院学报,2003,23(2):20~23
    [17] Lim M H, Blanford C F, Stein A, Synthesis of ordered microporous silicateswith organosulfur surface groups and theirapplications as solid acid catalysts,Chemistry of Materials,1998,10:467~470
    [18]张怀彬,张爱华,乙酸与正丁醇在HZSM-5上的酯化反应,精细石油化工,1992,15(3):24~28
    [19]王绍艳,张志强,吕玉珍等,纳米固体超强酸SO42-/Fe2O3的制备及其催化成乙酸乙酯,无机化学学报,2002,18(3):279~283
    [20] Hino M, Arata K, Synthesis of esters from acetic acid with methanol, ethanol,propanol, butanol and isobutyl alcohol catalyzed by solid superacid,Chemistry Letters,1981,12:1671~1672
    [21]胡百华,乙酸酯化反应催化剂有效酸强度的研究,精细石油化工,1990,19(1):6~10
    [22]邹欣平,吴宇,TiSiW12O40/TiO2催化合成乙酸乙酯,青岛大学学报,2001,14(4):82~84
    [23]彭少洪,黄运凤,钟理等,SO42-/TiO2固体超强酸薄膜化催化剂合成乙酸乙酯的研究,工业催化,2006,14(4):39~41
    [24]王新平,叶兴凯,吴越等,用杂多酸固载化催化剂催化酯化反应,精细石油化工,1994,2:15~20
    [25]刘淑芬,孙琳,刘春萍等,多胺交联树脂的合成及其对合成乙酸乙酯的催化作用,烟台师范学院学报(自然科学版),2005,21(1):48~50
    [26] Gimenz J, Costa J, Cervera-March S, Catalysis by ion-exchange sulfonatedresins: coMParative study of gel and macroporous types and influence ofdivinylbenzene concentration, Applied Catalysis A: General,1987,31(2):221~234
    [27]冉瑞成,高分子载体Lewis酸催化剂聚苯乙烯-四氯化锡复合物:制备及其在有机合成中的应用,高等学校化学学报,1986,7(3):281~283
    [28]冉瑞成,高分子载体Lewis酸催化剂聚苯乙烯-四氯化钛复合物,应用化学,1985,2(1):29~33
    [29]张俊华,陈永生,乙醛法合成乙酸乙酯,精细化工,1998,15(4):5~57
    [30]金海涛,国内外乙醛下游产品的生产开发,湖南化工,1999,29(6):22~24
    [31] Albert S, Hester, Himmler K, Chemicals from acetaldehyde, Industrial andenineering chemistry,1959,51(12):1424~1430
    [32] Dutia P, Ethyl Acetate, A Techno-Commercial Profile, Chemical Weekly,2004,8:179~186
    [33]刘明,乙酸乙酯的市场需求与生产方法,化学工业与工程技术,2004,25(5):54~56
    [34]潘伟雄,乙醇脱氢歧化酯化一步合成乙酸乙酯,石油化工,1991,20(5):330~337
    [35]万志强,乙酸乙酯的生产技术及市场分析,化工科技市场,2005,12:1~3
    [36] Elliot D J, Pennella F, The Formation of Ketones in the Presence of carbonMonoxide over CuO/ZnO/Al2O3,Journal of Catalysis,1989,119:359~367
    [37] Inui K, Kurabayashi T, Sato S, Direct Synthesis of Ethyl acetate fromEthanol over Cu-Zn-Zr-Al-O catalyst, Applied Catalysis A: General,2002,237:53~61
    [38] Inui K, Kurabayashi T, Sato S, et al., Effective Formation of Ethyl acetatefrom Ethanol over Cu-Zn-Zr-Al-O catalyst, Journal of Molecular Catalysis A:Chemical,2004,216:147~156
    [39] Vanderspurt, Thomas H, Production of esters from alcohols, USA4052424,1977
    [40] Ying D H S, Madix R J, Thermal desorption study of formic aciddecomposition on a clean Cu(110) surface, Journal of Catalysis,1980,61:48~56
    [41] Hayden B E, Prince K, Woodruff D P, et al., An iras study of formic acid andsurface formate adsorbed on Cu(110), Surface Science,1983,133:589~604
    [42] Hayden B E, Prince K, Woodruff D P, et al., Infrared-Active CombinationBand in a Surface Formate Species, Physical Review Letters,1983,51:475~478
    [43] Puschmann A, Haase J, Crapper M D, et al., Structure Determination of theFormate Intermediate on Cu(110) by Use of X-Ray Absorption FineStructure Measurements, Physical Review Letters,1985,542250~2252
    [44] Crapper M D, Riley C E, Woodruff D P, et al., Determination of theadsorption structure for formate on Cu(110) using SEXAFS and NEXAFS.Surface Science,1986,171:1~12
    [45] Somers J, Robinson A W, Lindner Th, et al., Application of molecularsymmetry in near-edge x-ray-absorption spectroscopy of adsorbed species.Physical Review B,1989,40:2053~2059
    [46] Davies P R, Bowker M, On the nature of the active site in catalysis: thereactivity of surface oxygen on Cu(110), Catalysis Today,2010,154:31~37
    [47] Sung S, Axel G, Density functional theory study of the partial oxidation ofmethanol on copper surfaces, Journal of Catalysis,2005,231:420~429
    [48] Zuo Z J, Sun L L, Huang W, et al., Surface properties of copper in differentsolvent mother solutions: A density functional theory study, AppliedCatalysis A: General,2010,375:181~187
    [49] Sexton B A, Surface vibrations of adsorbed intermediates in the reaction ofalcohols with Cu(100), Surface Science,1979,88:299~318
    [50] Dubois L H, Ellis T H, Zegarski B R, et al., New insights into the kinetics offormic acid decomposition on copper surfaces. Surface Science,1986,172:385~397
    [51] Stohr J, Outka D, Madix R J, Dobler U, Evidence for a Novel ChemisorptionBond: Formate(HCO2) on Cu(100), Physical Review Letters,1985,54:1256~1259
    [52] Outka D, Madix R J, Stohr J, Structural studies of formate and methoxygroups on the Cu(100) surface using NEXAFS and SEXAFS, SurfaceScience,1985,164:235~259
    [53] Michelsen H A, Auerbach D J, A critical examination of data on thedissociative adsorption and associative desorption of hydrogen at coppersurfaces, The Journal of chemical physics,1991,94:7502~7520
    [54] Michelsen H A, Rettner C T, Auerbach D J, State-specific dynamics of D2desorption from Cu(111): The role of molecular rotational motion inactivated adsorption-desorption dynamics, Physical Review Letters,1992,69:2678~2681
    [55] Rettner C T, Auerbach D J, Michelsen H A, Role of vibrational andtranslational energy in the activated dissociative adsorption of D2on Cu(111),Physical Review Letters,1992,68:1164~1167
    [56] Gross A, Hammer B, Scheffler M, et al., High-Dimensional QuantumDynamics of Adsorption and Desorption of H2at Cu(111), Physical ReviewLetters,1994,73:3121~3124
    [57] Wang X J, Selvam P, La C, Kubo M, et al., A theoretical study on thecyclopropane adsorption onto the copper surfaces by density functionaltheory and quantum chemical molecular dynamics methods, Journal ofMolecular Catalysis A: Chemical,2004,220:189~198
    [58] Gomes J R B, Gomes J A N F, Illas F, First-principles study of the adsorptionof formaldehyde on the clean and atomic oxygen covered Cu(111) surface,Journal of Molecular Catalysis A: Chemical,2001,170:187~193
    [59] Li X, Gellman A J, Sholl D S, Orientation of ethoxy, mono-, di-, andtri-fluoroethoxy on Cu(111): a DFT study, Journal of Molecular Catalysis A:Chemical,2005,228:77~82
    [60] Kizilkaya A C, Senkan S, Onal I, Investigation of ruthenium–copperbimetallic catalysts for direct epoxidation of propylene: A DFT study, Journalof Molecular Catalysis A: Chemical,2010,330:107~111
    [61] Greeley J, Mavrikakis M, Methanol Decomposition on Cu(111): A DFTStudy, Journal of Catalysis,2002,208:291~300
    [62] Greeley J, Gokhale A A, Kreuser J, et al., CO vibrational frequencies onmethanol synthesis catalysts: a DFT study, Journal of Catalysis,2003,213:63~72
    [63] Caitlin A C, Saurabh A V, Ilie F, et al., Topological analysis of catalyticreaction networks: Water gas shift reaction on Cu(111), Applied Catalysis A:General,2008,345:213~232
    [64] Vayssieres L, Manthiram A,2-D mesoparticulate arrays of α-Cr2O3, TheJournal of Physical Chemistry B,2003,107(12):2623~2625
    [65] Rehbein C, Harrison N M, Wander A, Structure of the α-Cr2O3(0001) surface:An ab initio total-energy study, Physical Review B,1996,54:14066~14070
    [66] Rohrbach A, Hafner J, Kresse G, Ab initio study of the (0001) surfaces ofhematite and chromia: Influence of strong electronic correlations, PhysicalReview B,2004,70(12):125426-1~125426-17
    [67] Sun J Z, Stirner T, Matthews A, Structure and surface energy of low-indexsurfaces of stoichiometric α-Al2O3and α-Cr2O3, Surface&CoatingsTechnology,2006,201:4205~4208
    [68] Pykavy M, Staemmler V, Seiferth O, et al., Adsorption of CO on Cr2O3(001),Surface Science,2001,479:11~25
    [69] Borck, Schr der E, Adsorption of methanol and methoxy on theα-Cr2O3(001) surface, Journal of Physics: Condensed Matter,2006,18:10751~10763
    [70] Borck, Hyldgaard P, Schr der E, Adsorption of methylamine onα-Al2O3(001) and α-Cr2O3(001): Density functional theory, Physical ReviewB,2007,75(3):035403-1~035403-7
    [71]卢嘉锡,过渡金属原子簇化学研究,中国科学基金,1994,1~6
    [72] Herry C R, Surface studies of supported model catalysts, Surface sciencereports,1998,31(7-8):235~325
    [73] Jung C, Tsuboi H, Koyama M, et al., Different support effect of M/ZrO2andM/CeO2(M=Pd and Pt) catalysts on CO adsorption: A periodic densityfunctional study, Catalysis Today,2006,111:322~327
    [74] Liu Z P, Gong X Q, Kohanoff J, et al., Catalytic Role of Metal Oxide inGold-Based Catalysts: A First Principle Study of CO Oxidation on TiO2Supported Au, Phys. Rev. Lett.,2006,91(26):266102.1~266102.4
    [75] Yashar Y, Valentino R C, Alexie M K, et al., Catalytic behavior at thenanoscale: CO adsorption on Al2O3-sopported Pt clusters, PhysicalChemistry of interfaces and Nanomaterials Ⅱ, Proceeding of SPIE,5223,223~231
    [76] Ferreira M L, Nichio N N, Ferretti O A, A semiempirical theoretical study ofNi/α-Al2O3and Ni Sn/α-Al2O3catalysts for CH4reforming, Journal ofMolecular Catalysis A: Chemical,2003,202:197~213
    [77] Zhou D H, Ma D, Wang Y, et al., Study with density functional theorymethod on methane C–H bond activation on the MoO2/HZSM-5activecenter, Chem. Phys. Lett.,2003,373(1-2):46~51
    [78] Dellwing T, Hartmann J, Libuda J, et al., Complex model catalysts underUHV and high pressure conditions: CO adsorption and oxidation onalumina-supported Pd particles, Journal of Molecular Catalysis A: Chemical,2000,162:51~66
    [79] Wolter K, Seiferth O, Libuda J, et al. Infrared study of CO adsorption onalumina supported palladium particles, Surface Science,1998,402~404:428~432
    [80] Gomes J R B, Lodziana Z, Illas F, Adsorption of Small Palladium Clusters onthe Relaxed α-Al2O3(001) Surface, The Journal of Physical Chemistry B,2003,107:6411~6424
    [81] Ma Q S, Klier K, et al., Interaction between Catalyst and Support.2. LowCoverage of Co and Ni at the Alumina Surface, The Journal of PhysicalChemistry B,2001,105:2212~2221
    [82] Jung C, Ishimoto R, Tsuboi H, et al, Interfacial properties of ZrO2supportedprecious metal catalysis: A density functional study, Applied Catalysis A:General,2006,305:102~109
    [83] Hernández N C, Sanz J F, First Principles Study of Cu Atoms Deposited onthe α-Al2O3(001) Surface, The Journal of Physical Chemistry B,2002,106:11495~11500
    [84] Han Y, Liu C J, Ge Q F, Interaction of Pt Clusters with the Anatase TiO2(101)Surface: A First Principles Study, The Journal of Physical Chemistry B,2006,110:7463~7472
    [85] Chafi Z, Keghouche N, Minot C, DFT study of Ni-CeO2interaction:Adsorption and insertion, Surface Science,2007,601:2323~2329
    [86] Heisenberg W K, Quantum-Theoretical Re-Interpretation of Kinematic andMechanical Relations, Zeitschrift fur Physik,1925,33:879~893
    [87]杨宇,若干与吸附相关的表面问题的第一原理研究:[博士学位论文],比较:清华大学,2008
    [88] Schr dinger E, über das Verh ltnis der Heisenberg-Born-JordanschenQuantenmechanik zu der meinem, Annalen der Physik,1926,384(8):734~756
    [89] Heitler W, London F., Wechselwirkung neutraler Atome und hom opolareBindung nach der Quantenmechanik, Zeitschrift fur Physik,1927,44(6-7):455~472
    [90] Pauling L, The Nature of the Chemical Bond, Ithaca: Cornell UniversityPress, New York,1960
    [91] Robert S M, Bonding Power of Electrons and Theory of Valence. ChemicalReviews,1931,9(3):347~388
    [92] Fukui K, Fujimoto H, Frontier Orbitals and Reaction Paths: Selected Papersof Kenichi Fukui, Hackensack: World Scientific Publishing Company,1997
    [93]潘云翔,CO2催化转化的理论与实验研究:[博士学位论文],天津:天津大学,2010
    [94]韩优,Pt/TiO2界面作用机理及其对甲醇分解催化性能的理论研究:[博士学位论文],天津:天津大学,2008
    [95]张永波,Ni/α-Al2O3的结构及其在POM中催化性能的DFT研究:[硕士学位论文],天津:天津大学,2008
    [96]王荣顺,基础量子化学,长春,东北师范大学出版社,2006
    [97]陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨,哈尔滨工业大学出版社,2002
    [98]封继康,基础量子化学原理,北京,高等教育出版社,1987
    [99]唐敖庆等,量子化学,北京,科学出版社,1982
    [100]徐光宪,量子化学基本原理和从头算法,北京,科学出版社,2008
    [101]林梦海,量子化学计算方法与应用,北京,科学出版社,2004
    [102]李炳瑞,结构化学,北京,高等教育出版社,2004
    [103]潘道恺等,物质结构,北京,人民教育出版社,1982
    [104] Schr dinger E, An Undulatory Theory of the Mechanics of Atoms andMolecules, Physical Review,1926,28(6):1049~1070
    [105]余庆森,朱龙观,分子设计导论,北京:高等教育出版社,2000,4~5
    [106] Slater J C, A simplification of the Hartree-Fock method. Physical Review,1951,81(3):385~390
    [107] Sun J, Stirner T, Hagston W E, et al., A simple transferable interatomicpotential model for binary oxides applied to bulk α-Al2O3and the (001)α-Al2O3surface, Journal of Crystal Growth,2006,290:235~240
    [108] Santen R V, The cluster approach to molecular heterogeneous catalysis.Journal of Molecular Catalysis A: Chemical,1997,115(3):405~419
    [109] Santen R V, kramer G, Reactivity theory of zeolitic Broensted acidic sites,Chemical Reviews,1995,95(3):637~660
    [110] Whitten J L, Yang H, Theory of chemisorption and reactions on metalsurfaces, Surface Science Reports,1996,24(3-4):55~124
    [111] Sauer J, Molecular models in ab initio studies of solid and surfaces: fromionic crystals and semiconductors to catalysts, Chemical Reviews,1989,89(1):199~255
    [112] Sauer J, Ugliengo P, Garrone E, et al., Theoretical study of van der Waalscomplexes at surface site in comparison with the experiment, ChemicalReviews,1994,94(7):2095~2160
    [113] Sierka M, Sauer J, Finding transition structures in extended systems: astrategy based on a combined quatntum mechanics-empirical valence bondapproach, Journal of Chemical Physics,2000,112(16):6983~6996
    [114] Hammer B, N rskov J K, Theoretical surface science and catalysiscalculations and concepts, Advances in Catalysis,2000,45:71~129
    [115] Perdew J P, Wang Y., Pair-distribution function and its coupling-constantaverage for the spin-polarized electron-gas, Physical Review B,1992,46:12947~12954
    [116] Langreth D C, Perdew J P, Theory of nonuniform electronic systems. I.Analysis of the gradient approximation and a generalization that works,Physical Review B,1986,21:5469~5493
    [117] Becke A D, Density-functional exchange-energy approximation with correctasymptotic behavior, Physical Review A,1988,38:3098~3100
    [118] Perdew J P, Density-functional approximation for the correlation energy ofthe inhomogeneous electron gas, Physical Review B,1986,33:8822~8824
    [119] Perdew J P, Wang Y, Accurate and simple density functional for theelectronic exchange energy: Generalized gradient approximation, PhysicalReview B,1986,33:8800~8802
    [120] Perdew J P, Wang Y, Accurate and simple analytic representation of theelectron-gas correlation-energy, Physical Review B,1992,45:13244~13249
    [121] Kresse G, Hafner J, Ab initio molecular dynamics for open shell transitionmetals, Physical Review B,1993,48:13115~13118
    [122]肖海燕,原子和分子在Rh(111)表面吸附行为的周期性密度泛函理论研究:[博士学位论文],四川:四川大学,2004
    [123] Eyring H, The activated complex and the absolute rate of chemical reactions,Chemical Reviews,1935,17:65~77
    [124]姚淑娟,气体分子在过渡金属催化剂上吸附行为的密度泛函理论研究:[博士学位论文],武汉:中国地质大学(武汉),2009
    [125]杨华清,陈耀强,胡常伟等,Ni原子活化甲烷中C-H键的密度泛函研究,四川大学学报,2001,38(4):605~608
    [126] Mulliken R S, Electronic population analysis on LCAO-MO molecular wavefunctions, Journal of Chemical Physics,1955,23(10):1833~1840
    [127] Mulliken R S, Overlap populations, bond orders, and covalent bond energies.Ⅱ, Journal of Chemical Physics,1955,23(10):1841~1846
    [128]李桂明,乙醇脱氢法制备乙酸乙酯铜基催化剂研究:[博士学位论文],天津:天津大学,2010
    [129] Nagaraja B M, Padmasri A H, Seetharamulu P, et al., A highly activeCu-MgO-Cr2O3catalyst for simultaneous synthesis of furfuryl alcohol andcyclohexanone by a novel coupling route-Combination of furfuralhydrogenation and cyclohexanol dehydrogenation, Journal of MolecularCatalysis A: Chemical,2007,278:29~37
    [130] Pantaleo G, Liotta L F, Venezia A M, et al., Support effect on the structureand CO oxidation activity of Cu-Cr mixed oxides over Al2O3and SiO2,Materials Chemistry and Physics,2009,114(2-3):604~611
    [131] Philip G H, Nicholas C L, Wayne D, et al., Evolution of Microstructureduring the Thermal Activation of Copper(II) and Chromium(III) DoublyPromoted Tin(IV) Oxide Catalysts: An FT-IR, XRD, TEM, XANES/EXAFS,and XPS Study, Chemistry of Materials,2000,12(10):3113~3122
    [132] El-Shobaky G A, El-Khouly S M, Ghozza A M, et al., Surface and catalyticinvestigations of CuO-Cr2O3/Al2O3system, Applied Catalysis A: General,2006,302:296~304
    [133] Rajeev R, Devi K A, Abraham A, et a1., Thermal decomposition studies.Part19. kinetics and mechanism of thermal decomposition of copperammonium chromate precursor to copper chromite catalyst and correlation ofsurface parameters of the catalyst with propellant burning rate,Thermochimica Acta,1995,254:235~247
    [134] Liang C H, Ma Z Q, Ding L, et a1., Template preparation of highly activeand selective Cu-Cr catalysts with high surface area for glycerolhydrogenolysis, Catalysis Letters,2009,130(1-2):169~176
    [135] Plyasova L M, Molina I Y, Structure transformations of copper chromiteunder reduction-reoxidation conditions, Journal of Molecular Catalysis A:Chemical,2000,158:331~336
    [136] Laine J, Brito J, Severino F, Surface Copper Enrichment by Reduction ofCopper Chromite Catalyst Employed for Carbon Monoxide Oxidation,Catalysis Letters,1990,5(1):45~54
    [137] Takeshita K, Nakamura S, Kawamoto K, Reduced Copper CatalyzedConversion of Primary Alcohols into Esters and Ketones, Bulletin of theChemical Society of Japan,1978,51(9):2622~2627
    [138] Elliot D J, Pennella F, The formation of ketones in the presence of carbonmonoxide over CuO/ZnO/Al2O3, Journal of Catalysis,1989,119:359~367
    [139] Iwasa N, Takezawa N, Reforming of Ethanol–Dehydrogenation to EthylAcetate and Steam Reforming to Acetic Acid over Copper-Based Catalysts,Bulletin of the Chemical Society of Japan,1991,64:2619~2623
    [140] Witko M, Oxidation of hydrocarbons on transition metal oxide catalysts—quantum chemical studies, Journal of Molecular Catalysis,1991,70(3),277~333
    [141]黄昆,韩汝琦,固体物理学,北京:高等教育出版社,1988,15~20
    [142] Soon A, Todorova M, Delley B, Stampfl C, Oxygen adsorption and stabilityof surface oxides on Cu(111): A first-principles investigation, PhysicalReview B,2006,73(16):165424-1~165424-12
    [143] Gomes J R B, Gomes J A N F, A DFT study of the methanol oxidationcatalyzed by a copper surface, Surface Science,2001,471(1-3):59~70
    [144] Liu Z P, Hu P, Alavi A, Catalytic Role of Gold in Gold-Based Catalysts: ADensity Functional Theory Study on the CO Oxidation on Gold, Journal ofthe American Chemical Society,2002,124(49):14770~14779
    [145] Hammer B, Norskov J K, Theoretical surface science and catalysis—calculations and concepts, AdV. Catal.2000,45:71~129
    [146] Hammer B, Norskov J K, Electronic factors determining the reactivity ofmetal surfaces, Surface Science,1995,343:211~220
    [147] Maurice V, Cadot S, Marcus P, XPS, LEED and STM study of thin oxidefilms formed on Cr(110), Surface Science,2000,458:195~215
    [148] Rehbein C, Harrison N M, Wander A, Structure of the α-Cr2O3(0001) surface:An ab initio total-energy study, Physical Review B1996,54:14066~14070
    [149] Wolter K, Scarano D, Fritsch J, et al., Observation of a localized surfacephonon on an oxide surface, Chemical Physics Letters,2000,320(1-2):206~211
    [150] Rowley A J, Wilson M, Madden P A, Crystal structure and surface relaxationin with a transferable oxide interaction potential, Journal of Physics:Condensed Matter1999,11:1903~1914
    [151] Lawrence P J, Parker S C, Tasker P W, Computer Simulation Studies ofPerfect and Defective Surfaces in Cr2O3, Journal of the American CeramicSociety,1988,71(8),389~391
    [152]辛勤,固体催化剂研究方法,北京:科学出版社,2004,232
    [153] Lercher J A, Grundling C, Mirth G E, Infrared studies of the surface acidityof oxides and zeolites using adsorbed probe molecules, Catalysis Today,1996,27(3-4):353~376
    [154] Knozinger H, Huber S, Infrared Spectroscopy of Small and WeaklyInteracting Molecular Probes for Acidic and Basic Zeolites, Journal of theChemical Society, Faraday Transactions,1998,94(15):2047~2059
    [155] Corma A, Fornes V, Melo F V, et al., Comparison of the Information Givenby Ammonia TPD and Pyridine Adsorption-Desorption on the Acidity ofDealuminated HY and LaHY Zeolite Cracking Catalysts, Zeolites,1987,7(6):559~563
    [156] Deka R Ch, Hirao K, Lewis acidity and basicity of cation-exchanged zeolites:QM/MM and density functional studies, Journal of Molecular Catalysis A:Chemical,2002,181(1-2):275~282
    [157]王伊蕾,邢双英,曹亮,王善鹏,周丹红. TS-1分子筛Lewis酸性的理论研究,催化学报,2009,1:24~30
    [158] Nicholas, Haw, Theoretical explain of solvent effects in the zeolite catalysis,Topics in Catalysis,1999,9:181~189
    [159] Yuan S P, Wang J G, Li Y W, et al, Bronsted acidity of isomorphouslysubstituted ZSM-5by B, A1, Ga and Fe: Density functional investigations,The Journal of Physical Chemistry A,2002,106(35):8167~8172
    [160]袁淑萍,段云波,焦海军等,吡啶在H-MOR分子筛孔道中吸附的量子化学研究,催化学报,2006,27(8):664~668
    [161]徐华龙,MnO/γ-Al203和Cu/SiO2催化剂在苯甲酸甲酯加氢合成苯甲醛和苯甲醇反应中的研究:[博士学位论文],上海:复旦大学,2006
    [162]王心晨,多相光催化过程中的酸性作用机理研究:[硕士学位论文],福建:福州大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700