用户名: 密码: 验证码:
离子液体对Ni_2P/SiO_2催化剂加氢脱硫性能的强化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展,汽车尾气中SOx对环境的污染越来越严重,因此各国相继立法以推进低硫含量(小于10ppm)清洁汽油的生产。选择性加氢脱硫是当前降低催化裂化汽油中硫含量的工业化方法,然而面临着如何提高深度加氢脱硫反应选择性的挑战。本文从研制新型选择性加氢脱硫催化剂的角度出发,选择了具有较高加氢脱硫活性的二氧化硅负载型磷化镍催化剂,研究了离子液体对其加氢脱硫性能的影响作用,通过离子液体的涂覆显著提高了加氢脱硫的选择性。主要研究内容包括:
     首先选择了三种二氧化硅载体制备相应的磷化镍型催化剂Ni_2P/M5、Ni_2P/EH5、NixPy/MCM-41,以噻吩和异戊烯为反应物,对其加氢脱硫活性和选择性进行了详细的研究,确定了最优的加氢脱硫操作条件。研究表明,当反应温度高于300oC时噻吩转化率由高到低的顺序为Ni_2P/M5>Ni_2P/EH5>NixPy/MCM-41,选择性的顺序为NixPy/MCM-41>Ni_2P/EH5>Ni_2P/M5;原料中初始硫含量为1350μg/g~450μg/g,初始烯烃含量为20vol.%~40vol.%,反应温度为340oC时,Ni_2P/M5催化剂上噻吩的转化率稳定在90%以上,选择性因子为4~7。
     其次,研究了双三氟甲基硫酰胺类离子液体涂覆对Ni_2P/M5催化加氢脱硫性能的影响规律。结果表明,咪唑类的离子液体比吡啶类的离子液体更能有效的提高催化剂的加氢脱硫选择性;随着咪唑类离子液体涂覆量的增加,即离子液体与Ni_2P/M5催化剂质量比mIL/mcatal.由0.02增大至0.18,噻吩和异戊烯的转化率随之降低,离子液体达到单层涂覆时催化剂的选择性达到最优,当原料中的初始硫含量为800μg/g,反应温度分别为320oC和340oC时,催化剂的选择性因子分别为16.7和14.1;改变模拟汽油的组成,进一步研究了0.06-IL-Ni_2P/M5催化剂的加氢脱硫性能,催化剂的选择性随着模拟汽油中噻吩含量的减小而增大,同时烯烃含量对催化剂选择性影响较小。
     最后,研究了离子液体涂覆对催化剂表面特性的影响规律。热重分析和原位傅里叶变换红外分析表明,催化剂表面的离子液体在加氢脱硫反应过程中存在流失现象,当反应温度升温至340oC时离子液体阴离子的结构发生了变化;0.06-IL-Ni_2P/M5催化剂在320oC下反应110h后其加氢脱硫选择性为11.3,仍高于Ni_2P/M5催化剂,而且加氢脱硫反应过程中催化剂的Ni_2P微晶主体没有显著变化,据此可以推测离子液体分解后的产物或者剩余的阳离子吸附在了催化剂的表面,从而提高了催化剂加氢脱硫选择性。
Owing to severe environmental pollution problems involving SOxresulted fromorganosulfur species in fuel oils, more stringent legislations have been enactedworldwide to impose the manufacture of cleaner gasoline with ultra-low (10ppm orless) sulfur content. The selective hydrodesulfurization (HDS) is nowadays industrialmethod for sulphur removal from of fluidized catalytic cracking (FCC) gasoline. Thechallenge of deep HDS is to provide catalysts with high HDS selectivity. In thisdissertation, the silica-supported nickel phosphide (Ni_2P/SiO_2) catalysts wereprepared and modified by coating with the ionic liquid (IL), in order to explore aneffective method to increase the HDS selective of model FCC gasoline. Majorcontributions were listed as below.
     Firstly, three kinds of supported Ni_2P catalysts were prepared using the support ofM5, EH5and MCM-41, and their selective HDS performances were investigatedusing thiophene and isoamylene model FCC gasoline. Under the optimized operationconditions, the thiophene conversion decreases in the following order: Ni_2P/M5>Ni_2P/EH5> NixPy/MCM-41at the reaction temperatures higher than300oC, whilethe HDS selectivity follows the sequence of NixPy/MCM-41> Ni_2P/EH5> Ni_2P/M5.The selective HDS of the Ni_2P/M5catalyst was further evaluated using the modelgasoline with the initial thiophene content ranging from1350μg/g to450μg/g andthe initial olefin content ranging from40vol.%to20vol.%. The results suggest thatover Ni_2P/M5catalysts the thiophene conversion is higher than90%at340oC withthe selectivity factors of4~7.
     Secondly, the IL-Ni_2P/M5catalysts were prepared by coating Ni_2P/M5with thebis[(trifluoromethyl)sulfonyl]amide based ionic liquid and their selective HDSperformances were investigated using model FCC gasoline. The imidazolium-basedionic liquid showed better enhancement of the selectivity than the pyridinium-basedionic liquid. The thiophene conversion decreases with increasing ionic liquid coatingquantity of mIL/mcatal.from0.02to0.18, while the selectivity factor presents amaximum with a full monolayer coverage by the ionic liquid, i.e.,16.7at320oC and14.1at340oC with the initial thiophene content at800μg/g. The selective HDS of the0.06-IL-Ni_2P/M5catalyst was further evaluated using the model gasoline with different compositions. The selectivity factor of IL-Ni_2P/M5increases with thedecreasing sulfur content and is less sensitive to the olefin contents in the feedstock.
     Finally, the surface chemistry of IL-Ni_2P/M5catalysts was investigated to explainthe logic concerning the HDS selectivity enhancement by ionic liquid. The ionicliquid film on the IL-Ni_2P/M5catalyst had a partial desorption and decompositionduring HDS reaction and the anion of ionic liquid demonstrates some structuraltransition as the reaction temperature is as high as340oC, reflected by the TG andin-situ FT-IR analyses. However, the selective factor of the0.06-IL-Ni_2P/M5catalystafter110h HDS reaction at320oC was11.3, still higher than that of the Ni_2P/M5catalyst. Meanwhile, the HDS processes had no obvious effect on the bulk ofcrystallites Ni_2P particles of IL-Ni_2P/M5catalyst. Therefore, it is reasonable to deducethat, the decomposition products of the ionic liquid and part of the cation bind tocatalysts surface, contributing to the maintenance of the selectivity enhancement witha long-term stability.
引文
1.王基铭,21世纪我国炼油工业面临的挑战和对策,石油炼制与化工,1999,30(5):1~4
    2. L. D. Krenzke, J. E. Kennedy, K. Baron, et al., Hydrotreating technologyimprovement for low emissions fuels, NPRA Annual Meeting,1996, AM-96-67
    3. M. F. Ali, A. Al-Malki, B. El-Ali, et al., Deep desulphurization of gasoline anddiesel fuels using non-hydrogen consuming techniques, Fuel,2006,85(10-11):1354~1363
    4. E. Ito, J. A. Rob van Veen, On Novel processes for removing sulphur from refineryStreams, Catalysis Today,2006,116(4):446~460
    5. T. Sutikno, Optimal HDS for lower-sulfur gasoline depends on several factors, Oiland Gas Journal,1999,97(23):55~59
    6.章炜,陈富强,沈捷,用毛细管气相色谱与等离子体原子发射检测器联用技术测定汽油中的硫化物,石油炼制与化工,1996,27(1):46~50
    7.杨永坛,石油馏分中硫化物分析,第七届全国石油化工色谱学术报告会,2004,44~46
    8.杨永坛,石油馏分中含硫化合物、含氮化合物分析探讨,第八届全国石油化工色谱学术会议,2008,26~29
    9. A. Takahashi, F. H. Yang, R. T. Yang, New sorbents for desulfurization byπ-complexation: thiophene/benzene adsorption, Industrial and EngineeringChemistry Research,2002,41(10):2487~2496
    10. A. B. S. H. Salem, H. S. Hamid, Removal of sulfur compounds from naphthasolutions using solid adsorbents, Chemical Engineering and Technology,1997,20(5):342~347
    11.康善娇,窦涛,巩雁军,等,常温常压下β沸石改性吸附剂脱除噻吩类硫的研究,燃料化学学报,2006,34(5):628~635
    12. R. L. Irvien, Process for desulfurizing gasoline and hydrocarbon feedstocks,U.S.Patent,5730860,1998-3-24
    13. D. L. Holyermann, W. E. Brown, Method for removing sulfur to ultra low levelsfor protecting of reforming catalysts, U.S.Patent,5322615,1994-6-21
    14. R. L. Irvine, B. A. Benson, D. M. Varraveto, et al., Low cost breakthrough for lowsulfur gasoline, NPRA Annual Meeting,1999, AM-99-42
    15. P. C. Stynes, M. Thompson, T. Shepherd, et al., Innovation key to new technologyproject success Phillips S Zorb becomes low sulfur gasoline solution, NPRAAnnual Meeting,2001, AM-01-43
    16.张晓静,秦如意,刘金龙, FCC汽油吸附脱硫工艺技术—LADS工艺,天然气与汽油,2003,21(1):39~41
    17.秦如意,张晓静,刘金龙, FCC汽油吸附脱硫工艺的研究,石油炼制与化工,2003,34(3):24~28
    18.宗保宁,林海龙,孟祥堃,等,一种汽油吸附脱硫方法,中国专利,1179020,2004-12-8
    19.谷涛,慕旭宏,宗保宁,磁稳定床中镍基非晶态合金汽油吸附脱硫研究,石油学报(石油加工),2007,(1):8~14
    20. B. D. Alexander, G. A. Huff, V. R. Pradhan, et al., Sulfur removal process,U.S.Patent,6024865,2000-2-15
    21. F. G. Stuntz, J. R. Smiley, R. T. Halbert, Naphtha desulfunzation with no octaneloss and increased olefin retention, W.O.Patent,2005019391,2003-8-19
    22. X. J. Zhao, S-BraneTMtechnology brings flexibility to refiner's clean fuel solutions,NPRA Annual Meeting,2004, AM-04-17
    23. J. Gentry, T. Khanmaedov, R. W. Wytcherlry, GT-DeSuifTMtakes a profitable lookat desulfurization, Chemistry and Technology of Fuels and Oils,2002,38(3):150~153
    24.王军民,袁铁,超低硫清洁汽油的生产技术进展,天然气与石油,2001,19(4):14~17
    25. J. J. Kilbane, Desulfurization of coal: the microbial solution, Trends inBiotechnology,1989,7(4):97~101
    26. D. J. Boron, W. R. Deever, R. M. Atlas, et al., Biodesulfurization of gasoline: anassessment of technical and economic feasibility and outline of R&D roadmaptoward commericalization, NPRA Annual Meeting,1999, AM-99-06
    27.习远兵,熊震霖,石玉林,等,一种生产低硫汽油的方法,中国专利,1224675,2005-10-26
    28.李明丰,夏国富,褚阳,等,催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发,石油炼制与化工,2003,34(7):1~4
    29.赵乐平,刘继华,方向晨,等,中国石油学会第五届石油炼制学术论文集,北京:中国石化出版社,2005,357~363
    30.刘晓欣,王艳涛,赵乐平,等, FCC汽油选择性加氢脱硫降烯烃工艺技术的工业应用,石油炼制与化工,2006,37(8):44~48
    31. J. Nocca, Q. Debuisschert, Prim-G+TM: from pilot to starup of world's firstcommercial10ppm FCC gasoline, NPRA Annual Meeting,2002, AM-02-12
    32. Q. Debuisschert, J. Nocca, Prime-G+TMcommercial performance of FCC naphthadesulfurization technology, NPRA Annual Meeting,2003, AM-03-26
    33. J. P. Greeley, T. R. Halbert, G. B. Brignac, Selctive cat naphtha hydrofining withminimal octane loss, NPRA Annual Meeting,1999, AM-99-31
    34. J. P. Greeley, T. R. Halbert, G. B. Brignac, et al., Technology options for meetinglow sulfur mogas targets, NPRA Annual Meeting,2000, AM-00-11
    35. R. Gdner, E. A. Schwarz, Start-up of first CHDydro/CDHDS unit at Irving Oil'sSaint John, new brunswick refinery, NPRA Annual Meeting,2001, AM-01-39
    36. G. R. Gildert, W. A. Groten, H. M. Putman, Process for the simultaneous trearmentand fractionation of light naphtha hydrocarbon streams, U.S.Patent,6083378,2000-6-4
    37.李大东,石玉林,胡云剑,等,一种汽油深度脱硫降烯烃的方法,中国专利,1208436,2005-6-29
    38. D. D. Li, M. F. Li, Y. Chu, et al., Skeletal isomerization of light FCC naphtha,Catalysis Today,2003,81(1):65~73
    39. S. S. Shi, P. J. Owens, S. Palit, et al., Mobil's OCTGAINTMprocess: FCC gasolinedesulfurization reaches a new performance level, NPRA Annual Meeting,1999,AM-99-30
    40. G. K. Chitnis, M. J. Dabkowski, J. A. Richter, et al., Commecial OctgainSMunitprocides "Zero" sulfur gasoline with higher octane from a heavy cracked naphthafeed, NPRA Annual Meeting,2003, AM-03-125
    41. J. A. Salazar, N. P. Martines, J. A. Perez, The ISALTMprocess: a refinery's optionto meet RFC specifications, NPRA Annual Meeting,1998, AM-98-50
    42. N. P. Martinz, J. A. Salazar, J. Tejada, et al., Meet gasoline pool sulfur and octanetargets with the ISAL process, NPRA Annual Meeting,2000, AM-00-52
    43.石亚华,石油加工过程中的脱硫,北京:中国石化出版社,2008,148~157
    44. C. Flego, V. Arrigoni, M. Ferrari, et al., Mixed oxides as a support for new CoMocatalysts, Catalysis Today,2001,65(2-4):265~270
    45.杨道胜,汽车排放的发展对燃料质量及添加剂的影响,石油商技,2003,21(1):7~12
    46. D. Delmon, New technical challenges and recent advances in hydrotreatmentcatalysts, Catalysis Letters,1993,22(1,2):1~32
    47. J. Mijoin, V. Thvenin, H. Yuze, et al., Thioreduction of cyclopentanone andhydrodesulfurization of dibenzothiophene over sulfided nickel orcobalt-promoted molybdenum on alumina catalysts, Applied Catalysis A:General,1999,180(1-2):95~104
    48. G. Perot, Activation of hydrogen over sulfide catalysts. Relevance to kinetics andmechanisms of hydrotreating reactions, Preprints: Fuel Chemistry Division ofAmerican Chemical Society,2003,48(1):127~128
    49. S. Hatanaka, M. Yamada, Hydrodesulfurization of catalytic cracked gasoline.2.The difference between HDS active site and olefin hydrogenation active site,Industrial and Engineering Chemistry Research,1997,36(12):5110~5117
    50. M. Badawi, L. Vivier, G. Pérot, et al., Promoting effect of cobalt and nickel on theactivity of hydrotreating catalysts in hydrogenation and isomerization of olefins,Journal of Molecular Catalysis A: Chemical,2008,293(1-2):53~58
    51. C. Fontainea, Y. Romeroa, A. Daudinb, et al., Insight into sulphur compounds andpromoter effects on molybdenum-based catalysts for selective HDS of FCCgasoline, Applied Catalysis A: General,2010,388(1-2):188~195
    52.张铁珍,贾云刚,孙宏宇,等, FCC汽油选择性加氢脱硫催化剂的研制,石油与天然气化工,2010,39(3):223~225
    53.齐和日玛,袁蕙,张韫宏,等,原位FTIR和XPS研究汽油选择性加氢脱硫催化剂的活性和选择性,光谱学与光谱分析,2011,31(7):1752~1757
    54. T. Klimova, D. S. Casados, J. Ramirez, New selective Mo and NiMo HDScatalysts support on Al2O3-MgO(x) mixed oxides, Catalysis Today,1998,43(1-2):135~146
    55. Y. Okamoto, T. Kubota, A model catalyst approach to the effects of the support onCo-Mo hydrodesulfurization catalyst, Catalysis Today,2003,86(1-4):31~34
    56. R. Zhao, C. Yin, H. Zhao, et al., Synthesis, characterization, and application ofhydotalcites in hydrodesulfurization of FCC gasoline, Fuel ProcessingTechnology,2003,81(2):201~209
    57. T. Mochizuki, H. Itou, M. Toba, et al., Effects of acidic properties on the catalyticperformance of CoMo sulfide catalysts in selective hydrodesulfurization ofgasoline fractions, Energy and Fuels,2008,22(3):1456~1462
    58. M. Li, H. Li, F. Jiang, et al., The relation between morphology of (Co)MoS2phases and selective hydrodesulfurization for CoMo catalysts, Catalysis Today,2010,149(1-2):35~39
    59. Y. Fan, G. Shi, H. Liu, et al., Selectivity enhancement of Co-Mo/Al2O3FCCgasoline hydrodesulfurization catalysts via incorporation of mesoporousSi-SBA-15, Fuel,2011,90(5):1717~1722
    60.刘百军,郑宇印,新型Ni-Mo/Al2O3加氢脱硫催化剂的研究,燃料化学学报,2004,32(2):195~198
    61.孔会清,张孔远,张景成,等, FCC汽油选择性HDS催化剂Co-Mo/镁铝尖晶石—Al2O3的研制,石油学报(石油加工),2010,26(4):499~505
    62.张振莉,周亚松,宗海生,等,镁铝复合氧化物载体的制备与性质研究,燃料化学学报,2007,35(1):91~97
    63.温广明,王文寿,陈黎行,等, ZnO/θ-Al2O3催化剂上全馏分FCC汽油的选择性加氢脱硫,催化学报,2007,28(9):823~828
    64. D. Mey, S. Brunet, C. Canaff, et al., HDS of a model FCC gasoline over a sulfidedCoMo/Al2O3catalyst: effect of the addition of potassium, Journal of Catalysis,2004,227(2):436~447
    65. Y. Fan, J. Lu, G. Shi, et al., Effect of synergism between potassium andphosphorus on selective hydrodesulfurization performance of Co-Mo/Al2O3FCCgasoline hydro-upgrading catalyst, Catalysis Today,2007,125(3-4):220~228
    66. Y. Fan, G. Shi, H. Liu, et al., Morphology tuning of supported MoS2slabs forselectivity enhancement of fluid catalytic cracking gasoline hydrodesulfurizationcatalysts, Applied Catalysis B: Environmental,2009,91(1-2):73~82
    67.秦鸣霞,俞斌,杨婧,等,金属改性对Co-Mo/γ-Al2O3加氢脱硫催化剂选择性的影响,工业催化,2009,19(5):45~49
    68. S. Hatanaka, M. Yamada, O. Sadakane, Hydrodesulfurization of catalytic crackedgasoline.3. Selective catalytic cracked casoline hydrodesulfurization on theCo-Mo/γ-Al2O3catalyst modified by coking pretreatment, Industrial andEngineering Chemistry Research,1998,37(5):1748~1754
    69. M. Toba, Y. Miki, Y. Kanda, et al., Selective hydrodesulfurization of FCC gasolineover CoMo/Al2O3sulfide catalyst, Catalysis Today,2005,104(1):64~69
    70. B. Liua, Y. Chai, Y. Wanga, et al., A simple technique for preparation ofpresulfided eggshell MoS2/Al2O3catalysts and kinetics approach for highlyselective hydrodesulfurization of FCC gasoline, Applied Catalysis A: General,2010,388(1-2):248~255
    71.林凌,伊晓东,邱波,等,免预硫化的加氢脱硫MoNiP/Al2O3催化剂的制备和表征,催化学报,2007,28(12):1096~1100
    72.周慧波,张舜光,侯凯湖, P和NTA对Co-Mo选择性加氢脱硫催化剂性能的影响,石油炼制与化工,2010,41(11):40~44
    73.赵乐平,周勇,段为宇,等, OCT-M FCC汽油选择性加氢脱硫技术的开发和工业应用,工业催化,2004,12(1):16~19
    74. P. J. Mangnus, J. A. Rob van Veen, S. Eijsbouts, Structure of phosphoruscontaining CoO-MoO3/Al2O3catalyst, Applied Catalysis1990,61(1):99~102
    75. H. Kraus, R. Prins, The effect of phosphorus on oxidic NiMo(CoMo)/γ-Al2O3catalysts: a solid state NMR investigation, Journal of Catalysis,1997,170(1):20~28
    76. S. J. Sawhill, K. A. Layman, D. R. Van Wyk, et al., Thiophenehydrodesulfurization over nickel phosphide catalysts: effect of the precursorcomposition and support, Journal of Catalysis,2005,231(2):300~313
    77.宋立民,李伟,张明慧等, Ni2P/SiO2-Al2O3催化剂的制备、表征及其对4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能,催化学报,2007,28(2):143~147
    78. Y. Y. Shu, Y. K. Lee, S. T. Oyama, Structure-sensitivity of hydrodesulfurization of4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts,Journal of Catalysis,2005,236(1):112~121
    79. S. T. Oyama, Y. K. Lee, The active site of nickel phosphide catalysts for thehydrodesulfurization of4,6-DMDBT, Journal of Catalysis,2008,258(2):393~400
    80. T. Kawai, S. Sato, S. Suzuki, et al., In situ X-ray absorption fine structure studieson the structure of nickel phosphide catalyst supported on K-USY, ChemistryLetters,2003,32(10):956~957
    81. Y. K. Lee, Y. Y. Shu, S. T. Oyama, Active phase of a nickel phosphide (Ni2P)catalyst supported on KUSY zeolite for the hydrodesulfurization of4,6-DMDBT,Applied Catalysis A: General,2007,322:191~204
    82. Y. Y. Shu, S. T. Oyama, A new type of nonsulfide hydrotreating catalyst: nickelphosphide on carbon, Chemical Communications,2005,(9):1143~1145
    83. Y. Y. Shu, S. T. Oyama, Synthesis, characterization, and hydrotreating activity ofcarbon-supported transition metal phosphides, Carbon,2005,43(7):1517~1532
    84.李冬燕,余夕志,陈长林等, Ni2P/TiO2上噻吩加氢脱硫反应性能,高等化学工程学报,2006,20(5):825~830
    85.殷爱云,余夕志,陈长林等, Ni2P/HZSM上噻吩加氢脱硫反应性能研究,燃料化学学报,2006,34(5):572~577
    86. J. A. Rodriguez, J. Y. Kim, J. C. Hanson, et al., Physical and chemical propertiesof MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-raydiffraction, density functional, and hydrodesulfurization activity studies, Journalof Physical Chemistry B,2003,107(26):6276~6285
    87. T. I. Korányi, Phosphorus promotion of Ni (Co)-containing Mo-free catalysts inthiophene hydrodesulfurization, Applied Catalysis A: General,2003,239(1-2):253~267
    88. Y. Teng, A. Wang, X. Li, et al., Preparation of high-performance MoPhydrodesulfurization catalysts via a sulfidation-reduction procedure, Journal ofCatalysis,2009,266(2):369~379
    89. S. T. Oyama, Novel catalysts for advanced hydroprocessing: transition metalphosphides, Journal of Catalysis,2003,216(1-2):343~352
    90. F. Sun, W. Wu, Z. Wu, et al., Dibenzothiophene hydrodesulfurization activity andsurface sites of silica-supported MoP, NiP, and NiMoP catalysts, Journal ofCatalysis,2004,228(2):298~310
    91. S. J. Sawhill, D. C. Phillips, M. E. Bussell, Thiophene hydrodesulfurization oversupported nickel phosphide catalysts, Journal of Catalysis,2003,215(2):208~219
    92. S. T. Oyama, X. Wang, Y. K. Lee, et al., Effect of phosphorus content in nickelphosphide catalysts studied by XAFS and other techniques, Journal of Catalysis,2002,210(1):207~217
    93. S. T. Oyama, X. Wang, Y. K. Lee, et al., Active phase of Ni2P/SiO2inhydroprocessing reactions, Journal of Catalysis,2004,221(2):263~273
    94. A. Wang, L. Ruan, Y. Teng, et al., Hydrodesulfurization of dibenzothiophene oversiliceous MCM-41-supported nickel phosphide catalysts, Journal of Catalysis,2005,229(2):314~321
    95. A. W. Burns, A. F. Gaudette, M. E. Bussell, Hydrodesulfurization properties ofcobalt-nickel phosphide catalysts: Ni-rich materials are highly active, Journal ofCatalysis,2008,260(2):262~269
    96. A. F. Gaudette, A. W. Burns, J. R. Hayes, et al., Mossbauer spectroscopyinvestigation and hydrodesulfurization properties of iron-nickel phosphidecatalysts, Journal of Catalysis,2010,272(1):18~27
    97.杨秀娜,李翔,王瑶,等, CeO2改性的Ni2P催化剂加氢脱硫反应性能,化学反应工程与工艺,2008,24(4):332~336
    98. K. R. Seddon, Ionic liquid for clean technology, Journal of Chemical Technologyand Biotechnology,1997,68(4):351~356
    99. J. F. Brennecke, E. J. Maginn, Ionic liquids: innovative fluids for chemicalprocessing, AIChE Journal,2001,47(11):2384~2389
    100.张锁江,吕兴梅,等,离子液体—从基础研究到工业应用,北京:科学出版社,2006,60~63
    101. H. B. Xie, S. B. Zhang, H. F. Duan, An ionic liquid based on cyclic guanidiniumcation is an efficient medium for the selective oxidation of benzyl alcohols,Tetrahedron Letters,2004,45(9):2013~2015
    102. H. Matsumoto, T. Matsuda, Y. Miyazaki, Room temperature molten slats basedon trialkylsulfonium cations and bis(trifluoromethysullsulfonyl)imide, ChemistryLetters,2000,29(12):1430~1431
    103. A. C. Cole, J. L. Jensen, I. Ntai, et al., Novel Bronsted acidic ionic liquids andtheir use as dual solvent-catalysts, Journal of the American Chemical Society,2002,124(21):5962~5963
    104. C. Baudequin, J. Baudoux, J. Levillain, et al., Ionic liquids and chirality:opportunities and challenges, Tetrahedron: Asymmetry,2003,20(14):3081~3093
    105. J. G. Huddleston, A. E. Visser, W. M. Reichert, et al., Characterization andcomparison of hydrophilic and hydrophobic room temperature ionic liquidsincorporating the imidazolium cation, Green Chemistry,2001,3(4):156~164
    106. P. Bonh te, A. P. Dias, N. Papageorigiou, et al., Hydrophobic, highly conductiveambient temperature molten salts, Inorganic Chemistry,1996,35(5):1168~1178
    107. R. Hagiwara, Y. Ito, Room temperature ionic liquids of alkylimidazolium cationsand fluoroanions, Journal of Fluorine Chemistry,2000,105(2):221~227
    108. H. L. Ngo, K. LeCompte, L. Hargents, et al., Thermal properties of imidazoliuminic liquids, Thermochimica Acta,2000,357:97~102
    109. J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, et al., Phase transition anddecomposition temperatures, heart capacities and viscosities of pyridinium ionicliquids, Journal of Chemical Thermodynamics,2005,37(6):559~568
    110. A. B smann, L. Datsevich, A. Jess, et al., Deep desulfurization of diesel fuel byextraction with ionic liquids, Chemical Communications,2001,(23):2494~2495
    111.张进,朴香兰,朱慎林,离子液体对燃油含硫化合物的萃取性能研究,化学试剂,2006,28(7):385~387
    112. B. M. Su, S. G. Zhang, Z. C. Zhang, Structural elucidation of thiopheneinteraction with ionic liquids by multinuclear NMR spectroscopy, Journal ofPhysical Chemistry B,2004,108(50):19510~19517
    113.周瀚成,陈楠,石峰,等,离子液体萃取脱硫新工艺研究,分子催化,2005,19(2):94~97
    114. J. E er, P. Wasserscheid, A. Jess, Deep desulfurization of oil refinery streams byextraction with ionic liquids, Green Chemistry,2004,6(7):316~322
    115. C. P. Huang, B. H. Chen, J. Zhang, et al., Desulfurization of gasoline byextraction with new ionic liquids, Energy and Fuels,2004,18(6):1862~1864
    116. J. D. Holbrey, I. López-Martin, G. Rothenberg, et al., Desulfurisation of oilsusing ionic liquids: selection of cationic and anionic components to enhanceextraction efficiency, Green Chemistry,2008,10(1):87~92
    117. S. G. Zhang, Q. L. Zhang, Z. C. Zhang, Extractive desulfurization anddenitrogenation of fuels using ionic liquids, Industrial and EngineeringChemistry Research,2004,43(2):614~622
    118. S. Zhang, Z. C. Zhang, Novel properties of ionic liquids in selective sulfurremoval from fuels at room temperature, Green Chemistry,2002,4(4):376~379
    119. J. Planeta, P. Karásek, M. Roth, Distribution of sulfur-containing aromaticsbetween [hmim][Tf2N] and supercritical CO2: a case study for deepdesulfurization of oil refinery streams by extraction with ionic liquids, GreenChemistry,2006,8(1):70~77
    120.张傑,黄崇品,陈标华,等,用[BMIM][Cu2Cl3]离子液体萃取脱除汽油中的硫化物,燃料化学学报,2005,33(4):431~434
    121.王建龙,赵地顺,周二鹏,等,吡啶类离子液体在汽油萃取脱硫中的应用研究,燃料化学学报2007,35(3):293~296
    122. W. H. Lo, H. Y. Yang, G. T. Wei, One-pot desulfurization of light oils bychemical oxidation and solvent extraction with room temperature ionic liquids,Green Chemistry,2003,5:639~642
    123. F. Li, R. Liu, J. Wen, et al., Desulfurization of dibenzothiophene by chemicaloxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2ionic liquid,Green Chemistry,2009,11(6):883~888
    124. L. Lu, S. Cheng, J. Gao, et al., Deep oxidative desulfurization of fuels catalyzedby ionic liquid in the presence of H2O2, Energy and Fuels,2007,21(1):38~39
    125. D. Zhao, R. Liu, J. Wang, et al., Photochemical oxidation—ionic liquidextraction coupling technique in deep desulphurization of light oil, Energy andFuels,2008,22(2):1100~1103
    126. D. Zhao, J. Wang, E. Zhou, Oxidative desulfurization of diesel fuel using aBr nsted acid room temperature ionic liquid in the presence of H2O2, GreenChemistry,2007,9(11):1219~1222
    127. W. Zhu, H. Li, X. Jiang, et al., Oxidative desulfurization of fuels catalyzed byperoxotungsten and peroxomolybdenum complexes in ionic liquids, Energy andFuels,2007,21(5):2514~2516
    128. W. Zhu, H. Li, X. Jiang, et al., Commercially available molybdiccompound-catalyzed ultra-deep desulfurization of fuels in ionic liquids, GreenChemistry,2008,10(6):641~646
    129. L. He, H. Li, W. Zhu, et al., Deep oxidative desulfurization of fuels usingperoxophosphomolybdate catalysts in ionic liquids, Industrial and EngineeringChemistry Research,2008,47(18):6890~6895
    130. H. Li, W. Zhu, Y. Wang, et al., Deep oxidative desulfurization of fuels in redoxionic liquids based on iron chloride, Green Chemistry,2009,11(6):810~815
    131.刘丹,桂建舟,王利,等,功能化酸性离子液体催化柴油氧化脱硫的研究,燃料化学学报,2008,36(5):601~605
    132.王利,吴晓军,桂建舟,等,酸性离子液体[(CH2)4SO3HMIm]TSO在噻吩类氧化脱硫中的应用,石油化工高等学校学报2008,21(3):29~37
    133.安莹,陆亮,李才猛,等,磷钼杂多酸离子液体催化氧化脱硫,催化学报,2009,30(12):1222~1226
    134.赵地顺,周二鹏,王建龙,等,离子液体脱除汽油中含硫化合物的研究,化学工程,2010,38(1):1~4
    135.刘植昌,胡建茹,高金森,离子液体用于催化裂化汽油烷基化脱硫的实验研究,石油炼制与化工,2006,37(10):22~26
    136.黄蔚霞,李云龙,汪燮卿,离子液体在催化裂化汽油脱硫中的应用,化工进展,2004,23(3):297~299
    137.柯明,周爱国,曹文智,等, Bronsted酸性离子液体在汽油烷基化脱硫中的应用,石油化工高等学校学报,2008,21(2):25~28
    138.柯明,汤奕婷,曹文智,等,离子液体在FCC汽油脱硫中的应用研究,西南石油大学学报(自然科学版),2010,32(3):145~149
    139. M. H. Valkenberg, C. deCastro, W. F. H lderich, Immobilisation ofchloroaluminate ionic liquids on silica materials, Topics in Catalysis,2001,14(1-4):139~144
    140. M. H. Valkenberg, C. deCastro, W. F. H lderich, Immobilisation of ionic liquidson solid supports, Green Chemistry,2002,4(2):88~93
    141. C. DeCastro, E. Sauvage, M. H. Valkenberg, et al., Immobilised ionic liquids aslewis acid catalysts for the alkylation of aromatic compounds with dodecene,Journal of Catalysis,2000,196(1):86~94
    142. M. H. Valkenberg, C. DeCastro, W. F. H lderich, Friedel-Crafts acylation ofaromatics catalysed by supported ionic liquids, Applied Catalysis A: General,2001,215(1-2):185~190
    143. K. Qiao, H. Hagiwara, C. Yokoyama, Acidic ionic liquid modified silica gel asnovel solid catalysts for esterification and nitration reactions, Journal ofMolecular Catalysis A: Chemical,2006,246(1-2):65~69
    144. C. P. Mehnert, R. A. Cook, N. C. Dispenziere, et al., Supported ionic liquidcatalysis—a new concept for homogeneous hydroformylation catalysis, Journalof the American Chemical Society,2002,124(44):12932~12933
    145. K. Yamaguchi, C. Yoshida, S. Uchida, et al., Peroxotungstate immobilized onionic liquid-modified silica as a heterogeneous epoxidation catalyst withhydrogen peroxide, Journal of the American Chemical Society,2005,127(2):530~531
    146. D. Li, F. Shi, S. Guo, et al., One-pot synthesis of silica gel confined functionalionic liquids: effective catalysts for deoximation under mild conditions,Tetrahedron Letters,2004,45(2):265~268
    147. D. Li, F. Shi, Y. Deng, One-step C=N, C=O bonds cleavage and C=O, C=Nbonds formation over supported ionic liquid in water, Tetrahedron Letters,2004,45(36):6791~6794
    148. C. P. Mehnert, E. J. Mozeleski, R. A. Cook, Supported ionic liquid catalysisinvestigated for hydrogenation reactions, Chemical Communications,2002,(24):3010~3011
    149. A. Riisager, P. Wasserscheid, R. van Hal, et al., Continuous fixed-bed gas-phasehydroformylation using supported ionic liquid-phase (SILP) Rh catalysts,Journal of Catalysis,2003,219(2):452~455
    150. A. Riisager, R. Fehrmann, M. Haumann, et al., Stability and kinetic studies ofsupported ionic liquid phase catalysts for hydroformylation of propene, Industrialand Engineering Chemistry Research,2005,44(26):9853~9859
    151. H. Hagiwara, Y. Sugawara, K. Isobe, et al., Immobilization of Pd(OAc)2in ionicliquid on silica: application to sustainable Mizoroki-Heck reaction, OrganicLetters,2004,6(14):2325~2328
    152. H. Hagiwaraa, Y. Sugawara, T. Hoshi, et al., Sustainable Mizoroki-Heck reactionin water: remarkably high activity of Pd(OAc)2immobilized on reversed phasesilica gel with the aid of an ionic liquid, Chemical Communications,2005,(23):2942~2944
    153. J. P. Mikkola, P. Virtanen, H. Karhub, et al., Supported ionic liquids catalysts forfine chemicals: citral hydrogenation, Green Chemistry,2006,8(2):197~205
    154. P. Virtanena, H. Karhub, K. Kordasc, et al., The effect of ionic liquid insupported ionic liquid catalysts (SILCA) in the hydrogenation of α,β-unsaturatedaldehydes, Chemical Engineering Science,2007,62(14):3660~3671
    155. P. Virtanen, J. P. Mikkola, T. Salmi, Kinetics of citral hydrogenation bysupported ionic liquid catalysts (SILCA) for fine chemicals, Industrial andEngineering Chemistry Research,2007,46(26):9022~9031
    156. P. Virtanen, T. Salmi, J. P. Mikkola, Kinetics of cinnamaldehyde hydrogenationby supported ionic liquid catalysts (SILCA), Industrial and EngineeringChemistry Research,2009,48(23):10335~10342
    157. P. Virtanen, H. Karhu, G. Toth, et al., Towards one-pot synthesis of mentholsfrom citral: modifying supported ionic liquid catalysts (SILCAs) with Lewis andBr nsted acids, Journal of Catalysis,2009,263(2):209~219
    158. P. Virtanen, T. O. Salmi, J. P. Mikkola, Supported ionic liquid catalysts (SILCA)for preparation of organic chemicals, Topics in Catalysis,2010,53(15-18):1096~1103
    159. F.Shi, Q.Zhang, D.Li, et al., Silica-Gel-Confined ionic liquids: a new attempt forthe development of supported nanoliquid catalysis, Chemistry-A EuropeanJournal,2005,11(18):5279~5288
    160. J. Huang, T. Jiang, H. Gao, et al., Pd Nanoparticles immobilized on molecularsieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation,Angewandte Chemie International Edition,2004,43(11):1397~1399
    161. S. Miao, Z. Liu, B. Han, et al., Ru Nanoparticles immobilized onmontmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for thehydrogenation of benzene, Angewandte Chemie International Edition,2006,45(2):266~269
    162. Y. Yang, C. Deng, Y. Yuan, Characterization and hydroformylation performanceof mesoporous MCM-41-supported water-soluble Rh complex dissolved in ionicliquids, Journal of Catalysis,2005,232(1):108~116
    163. U. Kernchen, B. Etzold, W. Korth, et al., Solid catalyst with ionic liquid layer(SCILL)—A new concept to improve selectivity illustrated by hydrogenation ofcyclooctadiene, Chemical Engineering and Technology,2007,30(8):985~994
    164. J. Arras, M. Steffan, Y. Shayeghi, et al., The promoting effect of a dicyanamidebased ionic liquid in the selective hydrogenation of citral, ChemicalCommunications,2008,(34):4058~4060
    165. J. Arras, M. Steffan, Y. Shayeghi, et al., Regioselective catalytic hydrogenationof citral with ionic liquids as reaction modifiers, Green Chemistry,2009,11(5):716~723
    166. V. S. Gowri, L. Almeida, T. Amorim, et al., Novel copolymer for SiO2nanoparticles dispersion, Journal of Applied Polymer Science,2012,124(2):1553~1561
    167. J. Yao, W. Zhan, X. Liu, et al., Catalytic performance of Ti-SBA-15prepared bychemical vapor deposition for propylene epoxidation, Microporous andMesoporous Materials,2012,148(1):131~136
    168. T. Cremer, M. Stark, A. Deyko, et al., Liquid/solid interface of ultrathin ionicliquid films:[C1C1Im][Tf2N] and [C8C1Im][Tf2N] on Au(111), Langmuir,2011,27(7):3662~3671
    169. T. Cremer, L. Wibmer, S. K. Calderón, et al., Interfaces of ionic liquids andtransition metal surfaces—adsorption, growth, and thermal reactions of ultrathin[C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces, PhysicalChemistry Chemical Physics,2012,14(15):5153~5163
    170. C. Kolbeck, J. Lehmann, K. R. J. Lovelock, et al., Density and surface tension ofionic liquids, Journal of Physical Chemistry B,2010,114:17025~17036
    171. M.Wagnera, C.Kvarnstr mb, A.Ivaska, Room temperature ionic liquids inelectrosynthesis and spectroelectrochemical characterization ofpoly(para-phenylene), Electrochimica Acta,2010,55(7):2527~2535
    172. T. Seki, J. D. Grunwaldt, A. Baiker, In situ attenuated total reflection infraredspectroscopy of imidazolium-based room-temperature ionic liquids under“supercritical” CO2, Journal of Physical Chemistry B,2009,113(1):114~122
    173. J. Kume an, á. P.-S. Kamps, D. Tuma, et al., Solubility of H2in the ionic liquid[hmim][Tf2N], Journal of Chemical and Engineering Data,2006,51(4):1364~1367
    174. J. Kume an, D. Tuma, á. P.-S. Kamps, et al., Solubility of the single gasescarbon dioxide and hydrogen in the ionic liquid [bmpy][Tf2N], Journal ofChemical and Engineering Data,2010,55(1):165~172
    175. M. Sobota, M. Schmid, M. Happel, et al., Ionic liquid based model catalysis:interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an orderedalumina film, Physical Chemistry Chemical Physics,2010,12(35):10610~10621
    176. J. Zhang, W. Yin, H. Shang, et al., In situ FT-IR spectroscopy investigations ofcarbon nanotubes supported Co-Mo catalysts for selective hydrodesulfurizationof FCC gasoline, Journal of Natural Gas Chemistry,2008,17(2):165~170
    177. T. Hammer, M. Reichelt, H. Morgner, Influence of the aliphatic chain length ofimidazolium based ionic liquids on the surface structure, Physical ChemistryChemical Physics,2010,12(36):11070~11080

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700