用户名: 密码: 验证码:
列管式固定床反应器流体流动、传热及其数值特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列管式固定床反应器是用于进行强放热气固相催化反应的主要反应器,在化学工业中有着广泛的应用。目前,列管式固定床反应器规模在不断扩大,其操作要求也在不断提高。如何实现反应器的优化设计和操作、提高反应过程的稳定性和经济性是化学反应工程研究的重要议题。本文从反应器设计和操作角度研究列管固定床反应器的流体流动、传热及其数值特征,为大型工业反应器设计及操作提供参考和依据。
     论文分别建立起并流列管反应器冷却介质流动与均布的计算模型以及盘环型错流列管反应器管间流动与传热的计算模型,研究了并流反应器中影响分布板布孔的主要因素以及盘环型列管式固定床中影响反应器操作性能的主要结构参数。并在盘环型列管式固定床反应器研究的基础上对其数值特征进行了探索,用于反应器的监测和控制。论文的主要研究结论如下:
     对于并流反应器,在对反应器分布板布孔过程中,相对于环隙孔调节,通过在分布板上固定环隙孔孔径,沿不同径向位置分布不同大小的附加小孔(附加小孔调节)可以得到更大的小孔孔径分布范围,更有利于工程上调节、加工。在分布板环隙孔大小不变的情况下,反应器并流区设计流速越大,分布板上得到的小孔孔径分布范围相应越小。为了增大分布板上小孔分布范围,可以在设计过程中使分布板基准位置(分布板边缘位置)流体的穿孔压降略大于并流区流体均布条件下分流室中流体压降。并流反应器放大过程中,分流室中流体压降会迅速增大,反应器直径每增大10%,分流室中流体压降将增大31~33%。在分布板上进行分布小孔的同时,还需要减小分布板上环隙孔孔径。环隙孔过小会给分布板加工以及反应器装配带来不便,成为反应器放大的瓶颈。对反应器设置较大的中心不布管区域以及增大反应器分流室高度可以降低反应器分流室中流体压降,增大分布板上所要求的环隙孔孔径,达到放大并流反应器的目的。反应器直径每增大10%,分流室高度要增大20%以平衡反应器放大引起的分流室流体压降的增大。在反应器中心设置较大的不布管区域,分流室压降降低效果较为明显。反应器直径增大10%,需要在反应器中心设置30%的不布管区域来平衡反应器放大引起的分流室中流体压降的增大。
     对于盘环型错流反应器,反应器窗口区(泄流区)会使冷却介质错流流量迅速衰减,使反应器中心区域以及近壁区域冷却介质流量过小,不利于传热。对反应器中心区域进行不布管后,可以保证反应器最内侧反应管周围的流体环境,控制反应器中心区域反应管催化剂床层热点温度,达到减小反应器热点温差的目的。对直径4.6m的反应器,不布管区域大小取反应器内径的10%最为有利。通过调节环板缺口大小可以调整反应器盘环板之间主体区域以及中心窗口区中冷却介质流量大小。环板缺口越大,盘环板之间主体区域中冷却介质的流量越大,但中心窗口区过大,导致反应器中心区域冷却介质流量过小。减小环板缺口可以使反应器中心区域流量增大,但是反应器盘环板之间的主体区域中冷却介质流量相应降低,反应器压降也会因为环板缺口减小而显著增大。在反应器中心不布管区域较大的情况下,适合将反应器环板缺口开大,以增大盘环板间主体区域中冷却介质的流量。当反应器中心10%区域不布管时,反应器环板缺口取反应器内径的25%较为合适。相应地,可以通过调节盘板直径大小来调整壁面窗口区大小。反应器折流板-反应管环隙间距对反应器中冷却介质流动分布以及温度分布影响较大。折流板-反应管环隙间距较小时,冷却介质在反应器中的流动以错流流动为主,冷却介质温度沿流动方向逐渐升高,反应器催化剂床层温度分布较为均匀。折流板-反应管环隙间距较大时,冷却介质在折流板上的流动会出现明显的漏流,冷却介质流量分布以及温度分布都呈现显著的径向分布,催化剂床层的径向温差也较大。减小折流板层间距有助于强化盘环板之间主体区域中冷却介质的移热能力,但是壁面附近反应管中反应的热点位置也会因为折流板层间距的变化移到第二层壁面窗口区的深处,使得壁面附近反应管的热点温度上升,反应器热点温差增大。
     在对反应器数值特征的研究中,通过对不同操作条件下盘环型列管反应器床层温度数据进行两步Karhunen-Loeve (K-L)展开,第一步展开三项,展开的各项进一步展开一项得到的截断展开可以很好地重建反应器催化剂床层温度分布。催化剂床层温度分布可以由K-L展开式中三个与操作参数关联的系数进行表示,进而反应器催化剂床层温度分布可以简化成系数空间的一个状态点。不同操作变量的变化会使状态点在系数空间沿不同轨迹移动。论文建立了两个模型参数:偏离角度θ以及偏离程度r,分别用于识别反应器操作过程中偏离设计条件的操作变量以及相应变量的参数。
Multitubular fixed-bed reactors which are the main reactors to carry out highly exothermic heterogeneous catalytic reactions have been widely used in chemical industry. With the expansion of the Multitubular reactor scales and the highly-demand of the operational requirement, how to optimize the reactor design and operation, and how to improve the stability and economy of the reaction process are the important issues in the field of chemical reaction engineering. In this work, the coolant flow, heat transfer and numerical characteristics in a multitubular fixed-bed reactor are studied from the reactor design and operation point of view, so as to provide the reference and basis for large-scale industrial reactor design and operation.
     In the work, a coolant distribution and parallel flow model for a multitubular fixed-bed reactor and a coolant flow and heat transfer model for a cross flow multitubular reactor equipped with disk and doughnut baffles are respectively established. The main factors which have an influence on hole-distribution on the distributing plate in the parallel flow reactor and the main structural parameters which have an influence on operational performance in the cross flow reactor equipped with disk and doughnut baffles are studied. The numerical characteristics are explored on the basis of research on the cross flow reactor, which could be further applied to reactor monitoring and control. The main achievements in the thesis are as follows:
     As for parallel flow reactors, in the process of distributing tube holes and additional orifices on the distributing plate, additional orifice adjustment which fixes the size of the tube holes, and distributes the additional orifices on the distributing plate along the radial direction can obtain much wider range of the orifice size distribution than tube-to-plate clearance adjustment does. It is more feasible to adjust and manufacture the distributing plate through the additional orifice adjustment in an engineering sense. With the increase of designed velocity in the parallel flow region, the range of the orifice size distribution will decrease when the tube-to-plate clearances on the distributing plate keeps constant. In order to increase the orifice size distribution range, the perforation pressure drop in the margin of the distributing plate could be designed a little higher than the pressure drop in the distributing chamber in the design stage. In the process of scaling up the parallel flow reactor, the pressure drop in the distributing chamber will increase rapidly. The fluid pressure drop in the chamber will increase by31-33%when the diameter of the reactor increases by10%. The required tube-to-plate clearance accordingly needs to be decreased even though the additional orifices are well distributed on the plate. This small clearance is the bottleneck for manufacturing the distributing plate and assembling the reactor. Removing the tubes in the reactor central region and/or increasing the height of distributing chamber can reduce the fluid pressure drop in distributing chamber, and enlarge the required tube-to-plate clearance. The goal to scale up the reactor could be achieved. When the diameter of the reactor increases by10%, the height of the distributing chamber has to be increased by20%to balance the increased pressure drop in the chamber in process of scaling up the reactor. Setting a large area of non-tube region in the reactor center could also evidently reduce the pressure drop in distributing chamber. When the reactor size increases by10%, the diameter of the central non-tube region has to be set at least30%of the reactor inner diameter to balance the increased pressure drop in the chamber in process of scaling up the reactor.
     As for cross flow reactors equipped with disk and doughnut baffles, reactor window zones make the coolant flow rate decay rapidly. Low value of the coolant flow rate is unfavorable for heat transfer in the reactor central and wall adjacent region. Removing the tubes in the reactor central region ensures the proper fluid environment around reactor innermost tubes, keeps the hot spot temperature in the central region in a proper level, and thus reduces the difference of the hot spot temperature in the reactor. For a reactor with4.6m in diameter, the optimal size of the central non-tube region is10%of the reactor inner diameter. The coolant flow rate in the zone between the disk and doughnut baffles and that in the central window zone can be adjusted through adjusting the size of the doughnut baffle opening. The larger the doughnut baffle opening, the higher the coolant flow rate in the zone between the disk and doughnut baffles, but the large opening causes the central window zone large, which makes the flow rate in the reactor center low. Decreasing the doughnut baffle opening could increase the flow rate in the central region, but the flow rate in the zone between the disk and doughnut baffles decreases at the same time. The pressure drop of the reactor increases significantly with the doughnut baffle opening decrease. When the size of the central non-tube region is large, it is advisable to make doughnut baffle opening large, and thus the flow rate in the zone between the disk and doughnut baffles could be high. When the size of the central non-tube region is10%of the reactor inner diameter, the optimal size of the doughnut baffle opening is25%of the reactor inner diameter. Similarly, the wall adjacent window zone could be adjusted through adjusting the size of the disk baffles. Tube to baffle clearance has a great influence on coolant flow and temperature distribution. When the tube to baffle clearance is small, the cross flow is the predominant flow pattern in the reactor, and the coolant temperature increases along the coolant flow direction. The catalyst temperature distribution is desirable in this situation. When the tube to baffle clearance is relatively large, there is obvious leakage flow on the baffle, which makes coolant flow and temperature show marked radial distribution and makes the difference of the hot spot temperature large in the reactor. Decreasing the baffle clearance helps to strengthen the coolant capability of heat removal in the zone between the disk and doughnut baffles, but the hot spot position inside the tubes moves to the depth of the wall adjacent window zone, where the hot spot temperature in the tubes turns high, and makes the difference of the hot spot temperature large in the reactor.
     As for the research on the numerical characteristics of the reactor, the Karhunen-Loeve (K-L) expansion is performed in a two-step mode on the dataset of the catalyst bed temperature distribution in a multitubular fixed-bed reactor equipped with disk and doughnut baffles under different operating conditions. The two-step K-L expansion, which uses the first three eigenvectors in the first step, and the first eigenvectors in the second step, can reconstruct the bed temperature well. The catalyst bed temperature distribution in both axial and radial directions can be represented by three coefficients related to a particular operating condition. Thus the bed temperature distribution can be reduced to a state point in a coefficient space. The deviation of a particular operating variable makes the state point move along a specific trajectory. Two model parameters (θ and г) are established to recognize the deviated operating variable and quantify the deviated extent.
引文
[1]Zaidi H A, Pant K K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catalysis today.2004,96(3):155-160
    [2]Aguayo A T, Gayubo A G, Castilla M, et al. MTG process in a fixed-bed reactor. Operation and simulation of a pseudoadiabatic experimental unit. Industrial & Engineering Chemistry Research.2001,40(26):6087-6098
    [3]Yurchak S, Voltz S E, Warner J P. Process aging studies in the conversion of methanol to gasoline in a fixed bed reactor. Industrial & Engineering Chemistry Process Design and Development.1979,18(3):527-534
    [4]Yurchak S. Development of Mobil's Fixed-Bed Methanul-to-Gasoline (MTG) Process. Studies in Surface Science and Catalysis.1988,36:251-272
    [5]Gayubo A G, Aguayo A T, Castilla M, et al. Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor. Chemical Engineering Science. 2001,56(17):5059-5071
    [6]Schipper P H, Krambeck F J. A reactor design simulation with reversible and irreversible catalyst deactivation. Chemical Engineering Science.1986,41(4): 1013-1019
    [7]Hartig F, Keil F J. Large-scale spherical fixed bed reactors:modeling and optimization. Industrial & Engineering Chemistry Research.1993,32(3):424-437
    [8]Marsh S K, Owen H, Wright B S. Conversion of methanol to gasoline.1988, U.S. Patent 4,788,369.1988-11-29
    [9]Gayubo A G, Benito P L, Aguayo A T, et al. Kinetic model of the MTG process taking into account the catalyst deactivation. Reactor simulation. Chemical Engineering Science.1996,51(11):3001-3006
    [10]Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications.2009,10(12): 1582-1585
    [11]Koempel H, Liebner W. Lurgi's methanol to propylene (MTP) report on a successful commercialisation. Studies in Surface Science and Catalysis.2007,167:261-267
    [12]Guo W, Wu W, Luo M, et al. Modeling of diffusion and reaction in monolithic catalysts for the methanol to propylene process. Fuel Processing Technology.2013,108:133-138
    [13]Wu W, Guo W, Xiao W, et al. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. Chemical Engineering Science.2011,66(20): 4722-4732
    [14]Bach H, Brehm L, Jensen S. Device for producing Propene from Methanol.2004. WIPO patent 2004018089.2004-3-5
    [15]Birke G, Koempel H, Liebner W, et al. Method and Device for Producing Lower Olefins from Oxygenates.2011, U. S. Patent 7,923,591 B2.2011-4-12
    [16]Rothaemel M, Finck U, Renner T, et al. Method and system for producing increased yields of C2-C4 olefins from methanol and/or dimethyl ether.2012, EU Patent EP 1902005.2012-8-8
    [17]Jiao Y, Jiang C, Yang Z, et al. Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application. Microporous and Mesoporous Materials.2012,162: 152-158
    [18]Liu J, Zhang C, Shen Z, et al. Methanol to propylene:effect of phosphorus on a high silica HZSM-5 catalyst. Catalysis Communications.2009,10(11):1506-1509
    [19]Sharma R K, Cresswell D L, Newson E J. Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride. AIChE journal.1991,37(1):39-47
    [20]Burnett J C, Keppet R A, Robinson W D. Commercial production of maleic anhydride by catalytic processes using fixed bed reactors. Catalysis Today.1987,1(5):537-586
    [21]Nikolov V A, Anastasov A I. Influence of the inlet temperature on the performance of a fixed-bed reactor for oxidation of o-xylene into phthalic anhydride. Chemical engineering science.1992,47(5):1291-1298
    [22]Froment G F. Fixed bed catalytic reactors-current design status. Industrial & Engineering Chemistry.1967,59(2):18-27
    [23]Chou Y S, Wu C H. Passivity-based control of the phthalic anhydride fixed-bed reactor. Chemical engineering science.2007,62(5):1282-1297
    [24]Kechagiopoulos P N, Voutetakis S S, Lemonidou A A, et al. Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor. Energy & fuels. 2006,20(5):2155-2163
    [25]Wu C, Huang Q, Sui M, et al. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Fuel processing technology. 2008,89(12):1306-1316
    [26]Li Z, Cai N. Modeling of multiple cycles for sorption-enhanced steam methane reforming and sorbent regeneration in fixed bed reactor. Energy & Fuels.2007,21(5): 2909-2918
    [27]Vanden Bussche K M, Neophytides S N, Zolotarskii I A, et al. Modelling and simulation of the reversed flow operation of a fixed-bed reactor for methanol synthesis. Chemical engineering science.1993.48(19):3335-3345
    [28]Zhou X G, Yuan W K. Optimization of the fixed-bed reactor for ethylene epoxidation. Chemical Engineering and Processing:Process Intensification.2005,44(10):1098-1107
    [29]Jayhooni S M H, Mirvakili A, Rahimpour M R. Nanofluid concept for enhancement of hydrogen utilization and gasoline production in fixed bed reactor Fischer-Tropsch synthesis of GTL (gas to liquid) technology. Journal of Natural Gas Science and Engineering.2012,9:172-183
    [30]Eliason S A, Bartholomew C H. Reaction and deactivation kinetics for Fischer-Tropsch synthesis on unpromoted and potassium-promoted iron catalysts. Applied Catalysis A: General.1999,186(1):229-243
    [31]Sharma A, Philippe R, Luck F, et al. A simple and realistic fixed bed model for investigating Fischer-Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions. Chemical Engineering Science.2011,66(24):6358-6366
    [32]Wang Y N, Xu Y Y, Li Y W, et al. Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis:Reactor model and its applications. Chemical Engineering Science.2003,58(3):867-875
    [33]Guettel R, Turek T. Comparison of different reactor types for low temperature Fischer-Tropsch synthesis:A simulation study. Chemical Engineering Science.2009, 64(5):955-964
    [34]Knochen J, Giittel R, Knobloch C, et al. Fischer-Tropsch synthesis in milli-structured fixed-bed reactors:Experimental study and scale-up considerations. Chemical Engineering and Processing:Process Intensification.2010,49(9):958-964
    [35]Jess A, Kern C. Modeling of multi-tubular reactors for Fischer-Tropsch synthesis. Chemical Engineering & Technology.2009,32(8):1164-1175
    [36]Philippe R, Lacroix M, Dreibine L, et al. Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catalysis Today.2009,147:S305-S312
    [37]Wu J, Zhang H, Ying W, et al. Simulation and analysis of a tubular fixed-bed Fischer-Tropsch synthesis reactor with Co-based catalyst. Chemical Engineering & Technology.2010,33(7):1083-1092
    [38]Rafiq M H, Jakobsen H A, Schmid R, et al. Experimental studies and modeling of a fixed bed reactor for Fischer-Tropsch synthesis using biosyngas. Fuel processing technology,2011,92(5):893-907.
    [39]Everson R C, Mulder H, Keyser M J. The Fischer-Tropsch reaction with supported ruthenium catalysts:Modelling and evaluation of the reaction rate equation for a fixed bed reactor. Applied Catalysis A:General.1996,142(2):223-241
    [40]Zamaniyan A, Mortazavi Y, Khodadadi A A, et al. Tube fitted bulk monolithic catalyst as novel structured reactor for gas-solid reactions. Applied Catalysis A:General.2010, 385(1):214-223
    [41]Ovchinnikova E V, Vernikovskaya N V, Andrushkevich T V, et al. Mathematical modeling of β-picoline oxidation to nicotinic acid in multitubular reactor:Effect of the gas recycle. Chemical Engineering Journal.2011,176:114-123
    [42]Jara J A, Garea A, Irabien J A. Simulation of o-xylene oxidation into phthalic anhydride: Rigorous multitubular catalytic reactor modeling and exportation into the process flowsheet. Computer Aided Chemical Engineering.2005,20:253-258
    [43]Guettel R, Turek T. Assessment of micro-structured fixed-bed reactors for highly exothermic gas-phase reactions. Chemical Engineering Science,2010,65(5): 1644-1654.
    [44]Lopez E, Heracleous E, Lemonidou A A, et al. Study of a multitubular fixed-bed reactor for ethylene production via ethane oxidative dehydrogenation. Chemical Engineering Journal.2008,145(2):308-315
    [45]朱炳辰.化学反应工程.北京:北京化学工业出版社,2012
    [46]朱开宏,袁渭康.化学反应工程分析.北京:高等教育出版社,2002
    [47]张濂,许志美,袁向前.化学反应工程原理.上海:华东理工大学,2000
    [48]李淼.列管式固定床反应器的模拟与设计.上海:华东理工大学硕士学位论文,2012
    [49]曹晓丽.列管式固定床反应器管间流体流动特性的研究.上海:华东理工大学硕士学位论文,2008
    [50]王宇林,沈文伟.平行流列管式固定床反应器分布板的开孔规律.合成橡胶工业,1995,18(5):286-289
    [51]Cybulski A, Eigenberger G, Stankiewicz A. Operational and structural nonidealities in modeling and design of multitubular catalytic reactors. Industrial & Engineering Chemistry Research.1997,36(8):3140-3148
    [52]Etzkorn W G. Acrolein and derivatives. Kirk-Othmer Encyclopedia of Chemical Technology,2001
    [53]Dykstra M J, Reuss L E. Biological Electron Microscopy Theory:Techiques and Troublesh. New York:Springer,2003
    [54]Contractor R M, Andersen M W, Campos D, et al. Vapor phase oxidation of propylene to acrolein:U.S. Patent 6,437,193.2002-8-20
    [55]GB151-1999.管壳式换热器.
    [56]GB151-2012.热交换器.
    [57]吴杨.列管式固定床反应器内部流场模拟.天津:天津大学硕士学位论文,2010
    [58]Lalot S, Florent P, Lang S K, et al. Flow maldistribution in heat exchangers. Applied Thermal Engineering.1999,19(8):847-863
    [59]焦安军.换热器入口物流分配特性研究及结构优化.西安:西安交通大学博士学位论文,2002
    [60]张哲.板翅式换热器物流分配特性及换热的研究.西安:西安交通大学博士学位论文,2004
    [61]陈春生.用Navier-Stokes运动方程求解环形通道中的变质量流动.化学工程.1985,(2):7-11
    [62]吕志敏,李春忠,丛德滋,等.环形流道变质量流动的静压分布模型.华东理工大学学报(自然科学版).2001,27(6):623-625
    [63]李瑞江,陈允华,朱子彬.列管反应器中环形分布器内流体均布的探讨.化学工程,2009,37(3):20-26.
    [64]联合化学反应工程研究所华东大学分所.金陵石化公司设备研究院.列管式固定床反应器流动与传热研究.苯酐通讯.1997,(2):40-48
    [65]陈春生.列管式固定床反应器壳程熔盐均布结构的设计及应用.化工设计,1991,1(1):8-13
    [66]陈春生,杨万红.列管式固定床反应器壳程流体均布的研究——流体的穿缝阻力及其在半环形流道中的变质量流动.化学工程.1985,(3)
    [67]陈春生,杨万红.大型列管式固定床反应器冷模试验——环形缝隙在侧流条件下的阻力系数的测定.化学工程.1986,(1)
    [68]曹晓丽,沈荣春,黄发瑞.平行流列管式固定床反应器管外流体的模拟.化学反应工程与工艺.2008,24(4):301-304
    [69]百璐,张敏华,耿中峰.环形分布器内变质量流动的CFD模拟研究.化学工程.2012,40(2):51-55
    [70]赵增慧.列管式固定床反应器壳程结构的设计.石油化工设备技术.2002,23(3):5-9
    [71]赵增慧,夏丽.列管式固定床反应器的设计探讨.北京石油化工学院学报.2000,8(2):56-60
    [72]Stankiewicz A, Adamska-Rutkowska D, Cybulski A, et al. Hydraulic design of multitubular reactors with a heat carrier flowing in parallel to the tubes. Chemical Engineering and Processing:Process Intensification.1986,20(2):79-84
    [73]吴亚峰,王宇林,束忠明,等.平行流型列管式固定床反应器的流体力学设计.金陵石油化工.1993,11(3):2-8
    [74]吴亚峰,吴民权.平等流型列管式固定床反应器的流体力学设计.化工设计.1993,3(5):21-26
    [75]王宇林,周文成,沈文伟,等.用动量方程进行平行流列管式固定床反应器的设计.化学工程.1996,(1)
    [76]吴亚峰,吴民权.平等流型列管式固定床反应器的流体力学设计.化工设计.1993, 3(5):21-26
    [77]Patankar S V, Spalding D B. Heat exchanger design theory source book. New York: McGraw-Hill,1974:155-176
    [78]Sha W T, Yang C I, Kao T T, et al. Multidimensional numerical modeling of heat exchangers. NASA STI/Recon Technical Report N,1982,83:34258
    [79]Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I:Foundation and fluid mechanics. Numerical Heat Transfer, Part A Applications.1998,33(8):799-816
    [80]Prithiviraj M, Andrews M J. Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part Ⅱ:Heat transfer. Numerical Heat Transfer, Part A Applications. 1998,33(8):817-828
    [81]邓斌,李欣,陶文铨.多孔介质模型在管壳式换热器数值模拟中的应用.工程热物理学报.2004,25(增刊):167-169
    [82]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究.西安交通大学学报.2003,37(9):889-893
    [83]邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟.化工学报.2004,55(7)
    [84]邓斌,吴扬,陶文铨.螺旋折流板换热器壳侧流动的数值模拟.西安交通大学学报.2004,38(11):1106-1109
    [85]李欣,邓斌,陶文铨.翅片管束式管壳式换热器三维数值模拟研究.工程热物理学报.2005,26(2):316-318
    [86]彭波涛,罗来勤,王秋旺,等.多股流板翅式换热器的微分与优化数值研究.化工学报.2004,5(6):876-881
    [87]解衡,高祖瑛.管壳式换热器流场三维数值模拟.核科学与工程.2002,22(3):240-243
    [88]严良文.壳程纵流换热器的强化传热研究.上海:华东理工大学博士学位论文,2004
    [89]Stevanovic Z, Ilic G, Radojkovic N, et al. Design of shell-and-tube heat exchangers by using CFD technique, Part one:Thermo-hydraulic calculation. Facta universitatis-series: Mechanical Engineering.2001,1(8):1091-1105
    [90]Yan L, Pan L, Kan S.3D numerical simulation and structural optimization of the rod baffle heat exchanger. Journal of Shanghai University (English Edition).2009,13(2): 164-168.
    [91]严良文,王志文.折流杆换热器壳程流场和温度场的数值模拟及场协同分析.石油化工设备.2006,35(5):12-15
    [92]严良文,潘雷,阚树林.折流杆换热器的数值模拟及相关结构参数选择.化工机械. 2009,36(2):123-127
    [93]严良文,潘雷,阚树林.折流杆换热器数值模拟及性能分析.石油化工设备.2009,38(3):39-43
    [94]严良文,吴金星,王志文.波形折流杆与弓形折流板换热器的综合性能比较.压力容器.2004,21(4):10-12
    [95]Stankiewicz A, Eigenberger G G Dynamic modelling of multitubular catalytic reactors. Chemical Engineering & Technology.1991,14(6):414-420
    [96]Stanchiewics J W, Short B. Intern. Dev. Heat Transfer, Proc.1961-62 Heat Transfer Conf., Boulder, CO, New York,1963:959-972
    [97]Tinker T. Shell side characteristics of shell and tube heat exchangers. Part Ⅰ-Ⅲ. The Institution of Mechanical Engineers.1951:89-116
    [98]Kakac S, Bergles A E, Mayinger (Eds.) F. Heat exchanger:thermal hydraulic fundamental and design. Washington DC:Hemisphere/McGraw-Hill,1982:581
    [99]Sullivan F W. Thesis, Univ. Delaware,1952
    [100]Sullivan F W, Bergelin O P. Chem. Eng. Prog. Symp. Ser.,1955,52(18):85
    [101]Gupta R K. Thesis, Univ. Michigan,1957
    [102]Pal en J W, Taborek J. Solution of shell side flow pressure drop and heat transfer by stream analysis method. Chem. Eng. Prog. Symp. Ser. (6th ed.)1969,65(92):53-63
    [103]Brambilla A, Nardini G. Dynamic behavior of shell and tube heat exchanger. Quad. Ing. Chim. Ital.1972,8(1):8-13
    [104]Gaddis E S, Vogelpohl A. On the effectiveness and the mean temperature difference of shell and tube Heat exchangers with segmental baffles and two tube passes. Chemical Engineering and Processing:Process Intensification.1984,18(5):269-273
    [105]Adderley C I. Ph.D. Dissertation, Univ. Leeds,1973
    [106]Dunbobbin B R. Ph.D. Dissertation, Univ. Leeds.1976
    [107]McGreavy C, Foumeny E A, Javed K. H. Characterization of transport properties for fixed bed in terms of local bed structure and flow distribution. Chemical Engineering Science.1986,41(4):787-797
    [108]Eigenberger G, Rupple W. Problems of mathematical modelling of industrial fixed-bed reactors. Ger. Chem. Eng.1986,9:74-83
    [109]Stankiewics A. Advances in modeling and design of multitubular fixed-bed reactors. Ⅱ. A mathematical model of the cocurrent mutitubular reactor system. Chemical Engineering Technology.1989,12 (1):170-175
    [110]Stankiewics A. Advances in modeling and design of multitubular fixed-bed reactors. Ⅰ. Description of interaction between reactants and coolant. Chemical Engineering Technology.1989,12 (1):113-130
    [111]Baptista C M S G, Sousa J G V F, Castro J A A M. Modelling multitubular catalytic reactors:the influence of shell side flow. Chemical Engineering Science.1992,47(9): 2565-2570
    [112]Baptista C G, Castro J A. Cell models for the shell-side flow in multitubular reactors. Industrial & Engineering Chemistry Research.1993,32(6):1093-1101
    [113]Stankiewics A, Leszczynski Z. Improvements in the Design of Mutitubular Reactors for Highly Exothermic Process.//Proc. World Congr. Ⅲ of Chem. Eng. Tokyo 1986, section 4:243-246
    [114]Maciel Filho R, McGreavy C. Computer aided design for large scale multitubular reactors[J]. Computers & Chemical Engineering,1998,22:S711-S714.
    [115]McGreavy C. The influence of configuration on controller design of multitubular reactors. Computers & Chemical Engineering.1993,17(5):569-583
    [116]王定标,胡祥报,郭茶秀,等.大型纵流壳程换热器三维流动与传热数值模拟.郑州大学学报(工学版).2002,23(3):13-18
    [117]王定标,向飒,董其武,等.纵流壳程换热器的三维流场.化工学报.2004,55(5):699-703
    [118]周俊杰,刘利武,魏新利,等.圆管平板-波纹翅片管换热器空气侧流动换热特性的数值模拟.化工进展.2005,25:456-456
    [119]Kim W, Yun C, Jung K T, et al. Computer-aided scale-up of a packed-bed tubular reactor. Computers & Chemical Engineering.2012,39:96-104
    [120]周文成,王宇林.错流列管式固定床反应器的设计计算模型.石油化工设备.1994,23(6):13-18
    [121]吴亚峰.大型列管式固定床反应器结构与制造.化工设计.1992,2(1):27-32
    [122]吴亚峰.大型列管式固定床反应器的结构形式与制造方法.金陵石油化工.1992,10(3):52-63
    [123]Karhunen, K. Uber Lineare Methoden in der Wahrscheinlichkeitsrechung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys.1947,37:1-79
    [124]Loeve, M. Probability theory II,4th ed. Graduate Texts in Mathematics 46. New York: Springer-Verlag,1978
    [125]Ray W H. Advanced process control. New York:McGraw-Hill,1981
    [126]Abdi H, Williams L J. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics.2010,2(4):433-459.
    [127]Jackson J E. A user's guide to principal components. Wiley-Interscience,2005.
    [128]Fukunaga K. Introduction to statistical pattern recognition. Boston:Academic Press, 1990
    [129]Jolliffe I T. Principal component analysis. New York:Springer-Verlag,2002.
    [130]Kemsley E K. Discriminant analysis of high-dimensional data:a comparison of principal components analysis and partial least squares data reduction methods. Chemometrics and Intelligent Laboratory Systems.1996,33(1):47-61
    [131]Aguado D, Montoya T, Borras L, et al. Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Engineering Applications of Artificial Intelligence.2008,21(6):919-930
    [132]Park S, Lee J J, Yun C B, et al. Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms. Journal of Intelligent Material Systems and Structures.2008,19(4):509-520
    [133]Nagasaka Y, Iwata A. Data compression of long time ECG recording using BP and PCA neural networks. IEICE TRANSACTIONS on Information and Systems.1993,76(12): 1434-1442
    [134]Kambhatla N, Leen T K. Dimension reduction by local principal component analysis. Neural Computation.1997,9(7):1493-1516
    [135]Wang Z, Leung C S, Zhu Y S, et al. Data compression on the illumination adjustable images by PCA and ICA. Signal Processing:Image Communication.2004,19(10): 939-954
    [136]Costa S, Fiori S. Image compression using principal component neural networks. Image and Vision Computing.2001,19(9):649-668
    [137]Holmin S, Spangeus P, Krantz-Riilcker C, et al. Compression of electronic tongue data based on voltammetry-a comparative study. Sensors and Actuators B:Chemical.2001, 76(1):455-464
    [138]Ho P M, Wong T T, Leung C S. Compressing the illumination-adjustable images with principal component analysis. Circuits and Systems for Video Technology, IEEE Transactions on.2005,15(3):355-364
    [139]Luukka P. PCA for fuzzy data and similarity classifier in building recognition system for post-operative patient data. Expert Systems with Applications.2009,36(2): 1222-1228
    [140]You X, Guillen M, Bernal B, et al. fMRI activation pattern recognition:A novel application of PCA in language network of pediatric localization related epilepsy. //Engineering in Medicine and Biology Society,2009. EMBC 2009. Annual International Conference of the IEEE. IEEE.2009:5397-5400
    [141]Bishop C M. Pattern recognition and machine learning. New York:springer,2006.
    [142]Baldi P, Hornik K. Neural networks and principal component analysis:Learning from examples without local minima. Neural Networks.1989,2(1):53-58
    [143]Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal.1991,37(2):233-243
    [144]Ogallo L J. The spatial and temporal patterns of the East African seasonal rainfall derived from principal component analysis. International Journal of Climatology.1989, 9(2):145-467
    [145]Johnson K J, Synovec R E. Pattern recognition of jet fuels:comprehensive GCXGC with ANOVA-based feature selection and principal component analysis. Chemometrics and Intelligent Laboratory Systems.2002,60(1):225-237
    [146]Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2006,28(12):2037-2041
    [147]Potts B, Deese A J, Stevens G J, et al. NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse. Journal of Pharmaceutical and Biomedical Analysis.2001,26(3): 463-476
    [148]Li J Z, Absher D M, Tang H, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science.2008,319(5866):1100-1104
    [149]Draper B A, Baek K, Bartlett M S, et al. Recognizing faces with PCA and ICA. Computer Vision and Image Understanding.2003,91(1):115-137
    [150]Clausen C, Wechsler H. Color image compression using PCA and backpropagation learning. Pattern Recognition.2000,33(9):1555-1560
    [151]Swets D L, Weng J J. Using discriminant eigenfeatures for image retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1996,18(8):831-836
    [152]Nixon M, Aguado A S. Feature extraction & image processing. London:Academic Press, 2008
    [153]Nixon M, Aguado A S. Feature extraction & image processing for computer vision. London:Academic Press,2012
    [154]Li W, Yue H H, Valle-Cervantes S, et al. Recursive PCA for adaptive process monitoring. Journal of Process Control.2000,10(5):471-486
    [155]Berthiaux H, Mosorov V, Tomczak L, et al. Principal component analysis for characterising homogeneity in powder mixing using image processing techniques. Chemical Engineering and Processing:Process Intensification.2006,45(5):397-403
    [156]Reed T B, Hussong D. Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. Journal of Geophysical Research: Solid Earth (1978-2012).1989,94(B6):7469-7490
    [157]Krischer K, Rico-Martinez R, Kevrekidis I G et al. Model identification of a spatiotemporally varying catalytic reaction. AIChE Journal.1993,39(1):89-98
    [158]Chen C C, Wolf E E, Chang H C. Low-dimensional spatio-temporal thermal dynamics on nonuniform catalytic surfaces. The Journal of Physical Chemistry.1993,97(5): 1055-1064
    [159]Graham M D, Lane S L, Luss D. Proper orthogonal decomposition analysis of spatiotemporal temperature patterns. The Journal of Physical Chemistry.1993,97(4): 889-894
    [160]Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics.1993,25(1):539-575
    [161]Park H, Sirovich L. Turbulent thermal convection in a finite domain:Part II. Numerical results. Physics of Fluids A:Fluid Dynamics.1990,2(9):1659-1668
    [162]Sirovich L, Park H. Turbulent thermal convection in a finite domain:Part I. Theory. Physics of Fluids A:Fluid Dynamics.1990,2(9):1649-1658
    [163]Zhou X, Sirovich L. Coherence and chaos in a model of turbulent boundary layer. Physics of Fluids A:Fluid Dynamics.1992,4(12):2855-2874
    [164]Deane A E, Kevrekidis I G, Karniadakis G E, et al. Low-dimensional models for complex geometry flows:Application to grooved channels and circular cylinders. Physics of Fluids A:Fluid Dynamics.1991,3(10):2337-2354
    [165]Lu Z, Zhang D. Accurate, efficient quantification of uncertainty for flow in heterogeneous reservoirs using the KLME approach. SPE Journal.2006,11(2):239-247
    [166]Lu Z, Zhang D. Conditional simulations of flow in randomly heterogeneous porous media using a KL-based moment-equation approach. Advances in Water Resources. 2004,27(9):859-874
    [167]Lu Z, Zhang D. Stochastic simulations for flow in nonstationary randomly heterogeneous porous media using a KL-based moment-equation approach. Multiscale Modeling & Simulation.2007,6(1):228-245
    [168]Liu G, Lu Z, Zhang D. Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loeve-based moment equation approach. Water Resources Research.2007,43(7).
    [169]Lin G, Tartakovsky A M. An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Advances in Water Resources.2009,32(5):712-722
    [170]Muller F, Jenny P, Meyer D W. Probabilistic collocation and lagrangian sampling for advective tracer transport in randomly heterogeneous porous media. Advances in Water Resources.2011,34(12):1527-1538
    [171]Gay D H, Ray W H. Identification and control of distributed parameter systems by means of the singular value decomposition. Chemical Engineering Science.1995, 50(10):1519-1539
    [172]Mahadevan N, Hoo K A. Wavelet-based model reduction of distributed parameter systems. Chemical Engineering Science.2000,55(19):4271-4290
    [173]Zheng D, Hoo K A. Low-order model identification for implementable control solutions of distributed parameter systems. Computers & Chemical Engineering.2002,26(7): 1049-1076
    [174]Hoo K A, Zheng D. Low-order control-relevant models for a class of distributed parameter systems. Chemical Engineering Science.2001,56(23):6683-6710
    [175]Qi C, Li H X. A Karhunen-Loeve decomposition-based Wiener modeling approach for nonlinear distributed parameter processes. Industrial & Engineering Chemistry Research.2008,47(12):4184-4192
    [176]Park H M, Cho D H. The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems. Chemical Engineering Science.1996,51(1):81-98
    [177]Adhikari S, Friswell M I. Distributed parameter model updating using the Karhunen-Loeve expansion. Mechanical Systems and Signal Processing.2010,24(2): 326-339
    [178]Rigopoulos A, Arkun Y, Kayihan F. Identification of full profile disturbance models for sheet forming processes. AIChE Journal.1997,43(3):727-739
    [179]Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal.1994,40(8):1361-1375
    [180]Villez K, Ruiz M, Sin G, et al. Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes. Water Science and Technology.2008,57(10):1659-1666
    [181]Lee D S, Vanrolleghem P A. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering.2003, 82(4):489-497
    [182]Yoo C K, Villez K, Lee I B, et al. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor. Biotechnology and Bioengineering.2007,96(4): 687-701
    [183]Rannar S, MacGregor J F, Wold S. Adaptive batch monitoring using hierarchical PCA. Chemometrics and Intelligent Laboratory Systems.1998,41(1):73-81
    [184]Garcia-Munoz S, Kourti T, MacGregor J F. Model predictive monitoring for batch processes. Industrial & Engineering Chemistry Research.2004,43(18):5929-5941
    [185]Golshan M. MacGregor J F, Bruwer M J, et al. Latent Variable Model Predictive Control (LV-MPC) for trajectory tracking in batch processes. Journal of Process Control. 2010.20(4):538-550
    [186]Golshan M, MacGregor J F, Mhaskar P. Latent variable model predictive control for trajectory tracking in batch processes:Alternative modeling approaches. Journal of Process Control.2011,21(9):1345-1358
    [187]Flores-Cerrillo J, MacGregor J F. Multivariate monitoring of batch processes using batch-to-batch information. AIChE Journal.2004,50(6):1219-1228
    [188]Flores-Cerrillo J, MacGregor J F. Control of batch product quality by trajectory manipulation using latent variable models. Journal of Process Control.2004,14(5): 539-553
    [189]Yoon S, MacGregor J F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE Journal,2004,50(11):2891-2903
    [190]Lee D S, Park J M, Vanrolleghem P A. Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. Journal of Biotechnology. 2005,116:195-210
    [191]Dong D, McAvoy T J. Batch tracking via nonlinear principal component analysis. AIChE Journal.1996,42(8):2199-2208
    [192]Li N, Hua C, Wang H, et al. Time-Space Decomposition-Based Generalized Predictive Control of a Transport-Reaction Process. Industrial & Engineering Chemistry Research. 2011,50(20):11628-11635
    [193]Padhi R, Balakrishnan S N. Proper orthogonal decomposition based optimal neurocontrol synthesis of a chemical reactor process using approximate dynamic programming. Neural Networks.2003,16(5):719-728
    [194]Aggelogiannaki E, Sarimveis H. Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Computers & Chemical Engineering.2008,32(6):1225-1237
    [195]Zhou X G, Liu L H, Yuan W K, et al. A predictive neural network model based on the karhunen-loeave expansion for wall-cooled fixed-bed reactors. The Canadian Journal of Chemical Engineering.1996,74(5):638-646
    [196]Zhou X G, Liu L H, Dai Y C, et al. Modeling of a fixed-bed reactor using the KL expansion and neural networks. Chemical Engineering Science.1996,51(10): 2179-2188
    [197]McNown J S. Mechanics of manifold flow. ASCE Trans.1954,119:1103-1142
    [198]张成芳,朱子彬,徐懋生,等.径向反应器流体均布设计的研究.化工学报,1979,28(1):67-90
    [199]张成芳,朱子彬,徐懋生,等.径向反应器流体均布设计的研究(Ⅰ).化学工程,1980,(1):98-112
    [200]张成芳,朱子彬,徐懋生,等.径向反应器流体均布设计的研究(Ⅱ).化学工程, 1980,(2):82-89
    [201]徐志刚,陈青如,吴勇强,等.径向流动反应器流体力学特性研究进展.化肥设计.2005,43(2):12-16
    [202]Gaddis E S, Vogelpohl A. On the effectiveness and the mean temperature difference of shell and tube heat exchangers with segmental baffles and two tube passes. Chemical Engineering and Processing:Process Intensification.1984,18 (5):269-273
    [203]VDI-Warmeatlas. Berechnungsblatter fur den Warmeubergang VDI-Verlag GmbH. Dusseldorf,1977
    [204]Tan H S, Downie J, Bacon D W. The reaction network for the oxidation of propylene over a bismuth molybdate catalyst. The Canadian Journal of Chemical Engineering. 1989,67(3):412-417
    [205]Arntz D, Knapp K, Prescher G, et al. Catalytic air oxidation of propylene to acrolein: modeling based on data from an industrial fixed-bed reactor.//ACS symp. ser.1982, 196(3)
    [206]Jean Cropley. Personal Communication. Union Carbide Corporation.
    [207]Hung T. Kinetics of selective oxidation of propylene over bismuth molybdate catalyst, Beijing Daxue Xuebao.1982,8(2),43-51
    [208]Monnier J R, Keulks G W. The catalytic oxidation of propylene:IX. The kinetics and mechanism over β-Bi2Mo2O9. Journal of Catalysis.1981,68(1):51-66
    [209]Krenzke L D, Keulks G W. The catalytic oxidation of propylene:VI. Mechanistic studies utilizing isotopic tracers. Journal of Catalysis.1980,61(2):316-325
    [210]Krenzke L D, Keulks G W. The catalytic oxidation of propylene:Ⅷ. An investigation of the kinetics over Bi2Mo3O12, Bi2MoO6, and Bi3FeMo2O12. Journal of Catalysis.1980, 64(2):295-302
    [211]Tan H S. Analysis of the Reaction Network for the Catalytic Oxidation of Propylene. Ph.D. Dissertation. Queen's university, Kinston, Canada.1986
    [212]Tan H S, Downie J, Bacon D W. The kinetics of the oxidation of propylene over a bismuth molybdate catalyst. The Canadian Journal of Chemical Engineering.1988, 66(4):611-618
    [213]胡英,吕瑞东,刘国杰,等.物理化学.北京:高等教育出版社,2007
    [214]Li C H, Finlayson B A. Heat transfer in packed beds-a revaluation. Chemical Engineering Science.1977,32(9):1055-1066
    [215]De Wasch A P, Froment G F. Heat transfer in packed beds. Chemical Engineering Science.1972,27(3):567-576
    [216]Slipcevic, B. Sulzer Tech Rev.1978. (1):28
    [217]Bergelin O P, Brown G A, Colburn A P. Heat transfer and fluid friction during flow across banks of tubes:V. A study of a cylindrical baffled exchanger without internal Leakage. ASME Trans.1954,76 (7):841-850
    [218]Speyer D M. Thesis, Univ. New York,1973
    [219]Weisman, J. Heat transfer to water flowing parallel to tube bundles. Nuclear science and Engineering,1959,6 (1):78-79
    [220]Donohue D A. Heat transfer and pressure drop in heat exchangers. Industrial and Engineering Chemistry.1949,41(11):2499-2511
    [221]张韵华,奚梅成,陈效群.数值计算方法和算法.北京:科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700