用户名: 密码: 验证码:
染料敏化太阳能电池光阳极TiO_2薄膜的制备及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是取之不尽、用之不竭的可再生清洁能源,利用太阳能的主要方式之一是太阳能光伏电池发电。当今太阳能光伏发电及其应用日渐广泛,现已逐步在油气田开发工程方面有所应用,为油气田提供服务。作为第三代太阳能发电装置的染料敏化太阳能电池(DSSC)具有制作工艺简单、转化效率较高、成本低廉等优点,是一种未来极具发展潜力的新型光伏电池,近年来已受到了各国研究者越来越多的关注和投入。迄今为止,针对DSSC,国内外许多学者己开展了大量的研究工作,并取得了一定的研究成果,但其应用仍然存在较多问题。例如,TiO2因其较宽的禁带宽度而只能吸收紫外区光线,致使对入射光的利用率不足,严重影响了DSSC的光电转化效率。纳米TiO2薄膜作为DSSC重要组成部分,是影响电池光电转换效率的关键因素之一。因此,围绕TiO2薄膜多样化制备技术的研究,如何调整纳米TiO2的禁带宽度,拓展其光谱响应范围,进而提高其太阳光利用率,是近期和今后DSSC的研究重点,具有很重要的应用价值和理论价值。
     本文以纳晶TiO2薄膜为研究对象,分别采用了阴极电沉积法、阳极氧化法、低热固相法、溶胶-凝胶法和水热法五种方法制备TiO2粉体及薄膜,并将其应用到DSSC中。利用了AFM、SEM、XRD、XRF、TG-DSC等手段对TiO2薄膜的表面形貌、物相结构、组分、热性能等进行表征分析,探讨了制备工艺参数对产物形貌和性能的影响及其部分产物的形成机理,研究了多种TiO2薄膜材料的光电流-光电压曲线(I-V曲线)和交流阻抗图谱(EIS图谱)特性,评定了其电池的光电性能。主要研究结论如下:
     (1)采用“阴极电沉积法”制备了TiO2纳米晶薄膜。用单因素方法研究了pH、电压、沉积时间等因素对电沉积的影响,获得了以Ti(SO4)2为钛源制备TiO2薄膜的最佳配方及工艺条件为10.0mL Ti(SO4)2,3.0mLH2O2,2.0mL HNO3,8.0mL NH3·H2O,20.0mL H2O,pH为1.5,电压为3.5V,沉积时间为20min。该TiO2纳米薄膜分布较均匀,其晶型为锐钛矿型,平均晶粒尺寸为10nm,其电池的光电转换效率为1.26%。浸渍掺铁将该TiO2薄膜的电池光电转换效率提高了21.4%,其电池光电转换效率达1.53%。
     (2)采用“阳极氧化法”制备了TiO2纳米管薄膜。以含有F-离子的水溶液作为电解质,研究阳极氧化参数对TiO2纳米管形貌的影响。当电压小于15V时,不利于TiO2纳米管生长:在15-30V电压范围,随着电压的增加,TiO2纳米管的管径也随之增大;当电压达到30V时,纳米管状结构被破坏,形成一种海绵状的无规则多孔结构。因此,适当增大电压有利于大孔径TiO2纳米管的形成。在20V电压、30min氧化条件下所制备的TiO2纳米管晶型为锐钛矿型,管径为100nm左右,其电池的光电转换效率为1.42%;对该电池进行TiCl4处理后,其电池光电转换效率达1.98%,比未进行TiCl4处理的效率提高了39.4%,交流阻抗实验结果验证了该结论。
     (3)采用“低热固相法+丝网印刷技术”制备Ni掺杂TiO2薄膜。以钛酸丁酯与六水合氯化镍直接固相反应,制备了纳米Ni-TiO2粉体及薄膜。所制备纳米Ni-TiO2薄膜呈海绵状多孔结构,分布较均匀,其薄膜晶型为锐钛矿型,平均晶粒尺寸约为20nm。与未掺杂TiO2相比,掺镍后促进了晶粒细化,其光电转换效率为2.13%,电池效率提高了约37.4%。以TiCl4处理Ni-TiO2薄膜,电池效率进一步提高,其电池光电转换效率达2.45%。
     (4)采用“溶胶-凝胶法+浸渍提拉技术”制备了TiO2纳米晶薄膜。通过正交试验法获得了制备TiO2薄膜的最佳配方:钛酸丁酯10.0mL,无水乙醇50.0mL,硝酸2.0mL,水1.OmL,聚乙二醇(20000)0.4g。在该条件下,其配方所制备的薄膜较为均匀,无裂纹,平均晶粒尺寸为12nnm左右,在100mW/cm2模拟太阳光照射下,其光电转换效率达3.72%。同时,在该配方的基础上制备了掺杂La-TiO2薄膜,经XRD测试,其结果表明:所制备的La-TiO2薄膜的晶型为锐态矿相结构。并且发现在掺镧TiO2纳晶薄膜中,随着掺杂摩尔比的增大,其衍射峰强度降低并宽化,表明镧掺杂有助于TiO2晶粒细化,抑制了晶粒生长。另外发现,随着掺杂摩尔比(0-1.5mol%)的增加,其光电转换效率也随之增加;当镧掺杂摩尔比为1.5mol%时,其光电转化率达到4.35%,比未掺杂电池提高了16.9%。对镧掺杂TiO2薄膜的机理分析表明,其光电转化率明显提高的主要原因在于,晶粒细化和形成杂质能级所致。
     (5)采用“水热法+丝网印刷技术”制备了锐钛矿型TiO2薄膜。水热法制备TiO2粉体配方为钛酸丁酯10.0mL、无水乙醇40.0mL、盐酸2.0mL、水1.0mL、三乙醇胺1.0mL。通过正交试验获得最佳制备条件为:水热温度为220℃、水热反应时间为24h、印刷层数为5层、热处理温度为550℃。此最佳工艺条件下电池的光电转换效率达5.53%。同时,在该配方的基础上制备了铒、镱掺杂TiO2薄膜。结果表明:铒、镱掺杂TiO2薄膜呈海绵状多孔薄膜,分布较均匀,铒、镱掺杂细化了TiO2晶粒。当0.5mol%Er+0.5mol%Yb共掺杂Ti02薄膜时,其组装电池的光电转换效率高达6.15%,比未掺杂时提高了11.2%,交流阻抗实验结果验证了该结论。
     (6)光阳极Ti02薄膜是DSSC的关键部件,它对DSSC的光电性能有重要的影响。据多样化制备及改性TiO2薄膜的研究可得出:采用“阴极电沉积法”制备的Ti02薄膜较均匀,方法有一定的特点,但其电池的光电转换效率偏低;“阳极氧化法”则通过调节阳极氧化电压、电解液浓度、pH、反应时间等因素可制备所需的TiO2纳米管阵列,预测其电池的光电转换效率可能会有很大的提升空间;“低热固相法”具有制备工艺简单、成本低、污染小、可大批量生产等优点,所制备Ti02薄膜呈海绵状多孔结构,其电池的光电转换效率还较低,继续研究仍有提升的空间,该方法适应性强,是制备Ti02粉体及薄膜方法中非常有发展前景的制备方法之一;“溶胶-凝胶法”具有设备简单、操作易控制、易工业化生产等优点,采用该法制备的Ti02薄膜较为均匀,其电池的光电转换效率还较低,仍需继续深入研究提高其光电转换效率;“水热法+丝网印刷技术”制备的Ti02薄膜呈海绵状多孔结构,其电池的光电转换效率较高,具有良好的工业化生产前景。此外,上述几种方法所制备的TiO2薄膜经改性处理后,其电池的光电转换效率都有不同程度的提高,可见,改性处理Ti02薄膜是提高其电池光电转换效率的一种有效方法。
Solar energy is a renewable energy which will not be exhausted,and also it is a clean energy which will not produce any pollution.One of the main methods of solar energy utilization is solar photovoltaic power generation. With increasingly wide range of today's solar power generation and its application,it has been gradually applied in the oil and gas development projects and provids services for the oil and gas fields.Dye sensitized solar cell (DSSC),the third generation of solar cell,has received more and more attention in recent years for its many advantages such as simple preparation procedure,high conversion efficiency and low cost, which make it become a promising new photovoltaic cells.Up to now, many scholars at home and abroad have carried out a lot of research work,and have made some achievements,but many problems still exist in its application for DSSC.For example,due to the wide band gap, TiO2can only absorb light of the ultraviolet region, which results in insufficient utilization of the incident light and seriously affects the photon-to-electron conversion efficiency of the DSSC.Nano-TiO2thin film as an important part of DSSC is one of the key factors for limiting photon-to-electron conversion efficiency of solar cell. Therefore, in the future, around the research on diversification of preparation technology of TiO2thin film, it is important to adjust the band gap of nano-TiO2,and expand its spectral response range to improve its sunlight utilization in the field of DSSC study.These researches have very important applicational and theoretical values.
     Based on nano-TiO2thin films as the research object,five kinds of methods such as cathodic electrodeposition method,anodic oxidation method,low thermal solid-state method,sol-gel and hydrothermal method had succeeded in preparing nano-TiO2powders and thin films,respectively.Then the nano-TiO2thin films were applied to DSSC.We used AFM,SEM,XRD,TG-DSC and XRF to characterize the morphologies, phase structure,composition and thermal properties of the nano-TiO2thin films.and analysed the effects of preparation process parameters on the morphologies and thermal properties of product.More over,its formation mechanisms of the part of the product are concluded.In addition,the characteristics of current-voltage curves (I-V curves) and AC impedance spectroscopy (EIS spectra) were studied for a variety of TiO2thin film materials,and the photoelectric properties of its cell were evaluated.The main research conclusions are shown as follows:
     (1) Nano-TiO2thin films were prepared by the cathodic electrodeposition method.The changes of process conditions such as voltage,pH and time during the preparation of TiO2thin films are discussed through single factor analysis method. Then the best formula and process conditions were achieved when Ti(SO4)2was used as titanium source,which included10.0mL of Ti(SO4)2,3.0mL of H2O2,2.0mL of HNO3,8.0mL of NH3·H2O,20.0mL of H2O,pH of1.5,the voltage of3.5V, depositing time of20min.Under this condition.a layer of uniform TiO2thin film formed and its TiO2crystal is anatase type, its size is10nm. The photon-to-electron conversion efficiency is up to1.26%. Fe-doped TiO2thin films are prepared by wet impregnation methods, its conversion efficiency can reach1.53%,increasing by21.4%.
     (2) TiO2nanotube thin films were prepared by the anodic oxidation method.Effects of anodic oxidation parameters on the morphology of TiO2nanotubes were studied in a aqueous solution containing F" ions as the electrolyte.When the voltage is less than15V, it does not favor the growth of TiO2nano tubes.When the voltage range is15-30V, the diameter of TiO2nanotubes also increases with the voltage increases.When the voltage reaches30V, the nanotube structures are destroyed and form a spongy-like porous structure with no rules. Therefore, it is conducive to the formation of large aperture TiO2nanotubes while the voltage is appropriately increased.Under the condition of voltage20V and oxidation time30min, the crystal of TiO2nanotubes is anatase phase, the diameter of TiO2nanotubes is around100nm, the photon-to-electron conversion efficiency of its cell was up to1.42%. After TiO2nanotubes are treated by using TiO2solution, the photon-to-electron conversion efficiency of its cell reaches1.98%, increasing by39.4%. AC impedance experiment results validated the conclusion.
     (3) Ni-doped TiO2thin films were prepared by the low thermal solid-state method plus screen printing technique.Ni-doped TiO2powders and thin films were prepared by direct solid phase reaction of butyl titanate and nickel chloride hexahydrate.The determination of Ni content is1.66wt.%.Ni-doped TiO2thin films prepared are not only spongy porous structure but also uniform film,its crystal is anatase type,and the average grain size is around20nm.Compared with undoped TiO2thin films, Ni-doped TiO2thin films promote the grain refinement.The photon-to-electron conversion efficiency is up to2.13%, increasing by about37.4%.The photon-to-electron conversion efficiency is further improved after TiO2solution treatment, its conversion efficiency is2.45%.
     (4) TiO2nanocrystalline thin films were prepared by the sol-gel method plus dip-coating technique.The best formula of reagents for the preparation of TiO2thin films was obtained by the orthogonal test method,which consists of10.OmL butyl titanate,50.0mL anhydrous ethanol and2.0mL nitric acid,1.0mL water,0.4g polyethylene glycol (20000).In this condition, uniform surface structure with no cracks is obtained in TiO2film.The average grain size is around12nm, and the film supplies photon-to-electron conversion efficiency of3.72%under100mW/cm2simulated sunlight irradiation.At the same time,La-doped TiO2thin films was prepared on the basis of the best formula.The results showed that Crystal phase of La-doped TiO2films prepared at450℃is anatase by XRD test.In La-doped TiO2crystal film,diffraction peaks become broader and their relative intensity decreases with the increase of doping molar content of La/Ti.Morever,it contributes to causing grain refinement and suppressing the grain growth, and photon-to-electron conversion efficiency also increases with the increase of doping molar content of La/Ti (0-1.5mol%).When La-doped molar ratio was1.5mol%, the photon-to-electron conversion efficiency reaches4.35%,and it increases as much as16.9%compared with no La in DSSC.In addition,mechanism analysis of La-doped TiO2thin film shows grain refinement and impurity energy level cause mainly the increase of photon-to-electron conversion efficiency.
     (5) Anatase TiO2nanocrystalline thin films were prepared by the hydrothermal method plus screen printing technique.Preperation formulations of TiO2powder was the mixture of10.0mL of tetrabutyl titanate,1.0mL water,and2.0mL of hydrochloric acid (37wt.%HCl) in40.0mL of anhydrous ethanol by the hydrothermal method.The optimum process condition of the preparation of TiO2thin films was obtained by the orthogonal test method.It included hydrothermal temperature of220℃, hydrothermal time of24h, printing layers of5layers, and heat treatment temperature of550℃.The TiO2thin films prepared in the optimum process conditions,as a photoanode,can supply a photon-to-electron conversion efficiency of5.53%.At the same time, rare-earth (Er,Yb) doped TiO2thin film was prepared on the basis of this formula.The results show that rare-earth (Er,Yb) doped TiO2thin film is spongy porous thin film with uniform distribution, and shows grain refinement compared with undoped TiO2thin film.When Er/Yb co-doped molar ratio is0.5mol%Er and0.5mol%Yb respectively,the photon-to-electron conversion efficiency is up to6.15%,increasing by11.2%than undoped TiO2thin film, which is consistent with AC impedance experiment result.
     (6) Photoanode TiO2film is a key component of DSSC,and it is the key of the improvement of the cell photon-to-electron conversion efficiency.It has an important influences on photovoltaic performance of solar cells.According to the study on diversification preparation and Modification of TiO2thin film,its results were shown as follows:TiO2film with uniformity was prepared by the cathodic electrodeposition method, and this methods have certain characteristics.but photon-to-electron conversion efficiency of the cells was lower;as for anodic oxidation methods,TiO2nanotube arrays were prepared by adjusting the factors such as oxidation voltage,electrolyte concentration, pH and oxidation time,and we predicted it might have a lot of improvement room for photon-to-electron conversion efficiency of the cell;TiO2thin films with spongy porous structure were prepared by low thermal solid-phase method with the advantages of a simple preparation process,less pollution,cheap and mass production.Photon-to-electron conversion efficiency of its cell is still lower,there is improvement room for its photon-to-electron conversion efficiency after continuing to be studied.This method is adaptable,and it is one of very promising preparation methods;there are the advantages of simple equipment, easy to control and easy to industrial production for sol-gel method.TiO2thin film prepared by using this method is more uniform,and photon-to-electron conversion efficiency of its cells is still lower.thus,it needs further research to improve photon-to-electron conversion efficiency;TiO2thin films with spongy porous structure were prepared by the hydrothermal method plus screen-printing technology.Its cell has higher photon-to-electron conversion efficiency, and there are good prospects for industrial production.In addition,after the processing of the modified TiO2thin film prepared by the aforementioned methods,photon-to-electron conversion efficiency of its cell can be increased to some extent.Therefore,it is a very effective method for TiO2film modified to improve photon-to-electron conversion efficiency of its cell.
引文
[1]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2005:1-3.
    [2]王革华,艾德生.新能源概论[M].北京:化学工业出版社,2006:6-12.
    [3]杨德仁.太阳电池材料[M].北京:化学工业出版社,2006:1-10.
    [4]尹纪欣,朱长.太阳能的利用及发展趋势[J].新乡学院学报(自然科学版),2009,26(1):28-29.
    [5]赵玉文.21世纪我国太阳能利用发展趋势[J].中国电力,2000,33(9):73-77.
    [6]许伟民,何湘鄂,赵红兵.太阳能电池的原理及种类[J].发电设备,2011,25(2):137-140.
    [7]赵书利,叶烽,朱刚.太阳能电池技术应用与发展[J].船电技术,2010,30(4):47-50.
    [8]梁宗存,沈辉,等.太阳能电池及材料研究[J].材料导报.2000,14(8):38-40.
    [9]Satyen K Deb. Dye-sensitized TiO2 Thin-fllm Solar Cell Researeh at the National Renewable Energy Laboratory(NREL)[J]. Sol. Energy Mater. Sol. Cells,2005,88:1-10.
    [10]Michael Gratzel. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells[J]. J.Photochem.Photobiol., A:chem.,2004, (6):3-14.
    [11]O Regan B, Gratzel M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature,1991,353(6346):737-740.
    [12]刘业翔.能源转换与储能装置的若干关键电极材料[J].电池,2005,35(3):196-198.
    [13]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of Light to Electricity by cis-X2Bis(2,2'-bipyridy1-4,4'-dicarboxylate)ruthenium(Ⅱ)Charge-Transfer Sensitizers (X= Cl-, Br-, I-, CN-, andSCN-) on Nanocrystalline TiO2 Electrodes [J]. J. Am. Chem. Soc. 1993,115(14):6382-6390.
    [14]Lee Byunghong, Buchholz D B, Guo Peijun, et al. Optimizing the Performance of a Plastic Dye-Sensitized Solar Cell [J]. J. Phys. Chem. C,2011,115(19):9787-9796.
    [15]Tetreault Nicolas, Arsenault Eric, Heinige r Leo-Philipp, et al. High Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode[J]. Nano Lett.,2011,11(11): 4579-4584.
    [16]Gratzel M. The Advent of Mesoscopic Injection Solar Cells[J]. Prog. Photovolt: Res. Appl.,2006,14(5):429-442.
    [17]梅翠玉,王小平,王丽,等.染料敏化太阳能电池的研究进展[J].材料导报A:综述篇,2011,25(7):148-152.
    [18]Gratzel M. Dye-sensitized Solid-state Heteroj unction Solar Cells[J]. Mrs. Bull., 2005,30 (1):23-27.
    [19]高建华,钱伟君,吴伟,等.染料敏化太阳能电池TiO2薄膜的制备方法[J].理化检验-物理分册,2008,44(8):431-442.
    [20]马芳,马洪芳,王艺涵,等.溶胶-凝胶法制备太阳能薄膜的研究及展望[J].材料导报,2011,25(12):5-8.
    [21]潘建平,彭开萍,陈文哲.溶胶-凝胶法制备薄膜涂层的技术与应用[J].腐蚀与防护,2001,28(8):339-342.
    [22]Feng Shouhua, Xu Ruren. New Materials in Hydrothermal Synthesis [J]. Acc. Chem. Res.,2001,34(3):239-247.
    [23]李丽,张贵友,陈人杰,等.染料敏化太阳能电池及Ti02薄膜材料研究进展[J].功能材料,2008,39(11):1765-1768.
    [24]Tian Sha, Yang Heqing, Cui Meng, et al. Monodisperse Rutile TiO2 nanorod-based Microspheres with Various Diameters:Hydrothermal synthesis, Formation Mechanism and Diameter and Crystallinity-dependent Photocatalytic Properties[J]. Appl. Phys. A,2011, 104(11):149-158.
    [25]葛增娴,魏爱香,刘俊,等.单晶Ti02纳米线束阵列的合成及光电转换性能研究[J].无机材料学报,2010,25(10):1105-1109.
    [26]Atsushi Nakahira, Takashi Kubo, Chiya Numako. Formation Mechanism of TiO2-Derived Titanate Nanotubes Prepared by the Hydrothermal Process[J]. Inorg. Chem., 2010,49(13):5845-5852.
    [27]张秀坤,吴季怀,李树全,等.P25水热法制备纳晶多孔Ti02薄膜电极[J].影像科学与光化学,2008,26(6):499-506.
    [28]Cheng Wei-Yun, Deka Juti Rani, Chiang Yi-Chun, et al. One-Step, Surfactant-Free Hydrothermal Method for Syntheses of Mesoporous TiO2 Nanoparticle Aggregates and Their Applications in High Efficiency Dye-Sensitized Solar Cells[J]. Chem. Mater.,2012,24 (16): 3255-3262.
    [29]崔晓莉,江志裕.纳米Ti02薄膜的制备方法[J].科学通报,2002,14(5):325-331.
    [30]叶海峰,范乐庆,吴季怀,等.多次水热法制备纳米TiO2胶体在染料敏化太阳能电池中的应用[J].化工新型材料,2010,38(10):61-64.
    [31]Seigo Ito, Peter Chen, Pascal Comte, et al. Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells [J]. Prog. Photovolt:Res. Appl.,2007, 15:603-612.
    [32]张继远,田汉民,田志鹏,等.Ti02纳米晶溶胶水热的合成及其染料敏化光电性能[J].无机材料学报,2009,24(6):1110-1114.
    [33]徐炜炜,戴松元,方霞琴,等.沉积处理与染料敏化纳米薄膜太阳电池的优化[J].物理学报,2005,54(12):5943-5949.
    [34]Lee Yong Gun, Park Suil, Cho Woohyung. Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents To Improve the Performance of Dye-Sensitized Solar Cells[J]. J. Phys. Chem. C,2012,116 (11):6770-6777.
    [35]尹艳红,薛载坤,杨宝宁,等.染料敏化太阳能电池纳晶TiO2多孔薄膜研究进展[J].河南师范大学学报(自然科学版),2011,39(1):119-122.
    [36]Zeng L Y, Dai S Y, Wang K J, et al. Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Tetrachloride [J]. Chinese Physics Letters,2004,21(9):1835-1837.
    [37]Lee Sang-Wha, Ahn Kwang-Soon. Effects of TiO2 Treatment of Nanoporous TiO2 Films on Morphology, Light Harvesting, and Charge-Carrier Dynamics in Dye-Sensitized Solar Cells[J]. J. Phys. Chem. C,2012,116(40):21285-21290.
    [38]张东社,刘尧.纳晶多孔TiO2薄膜电极的化学处理[J].科学通报,2000,45(9):929-932.
    [39]Wang Z S, LiEY, Huang C H. Photocurrent Enhancement of Hemicyanine Dyes Containing RSO3- Group through Treating TiO2 Films with Hydrochloric Acid [J]. J. Phys. Chem. B.,2001,105(38):9210-9217.
    [40]Wang Zhongsheng, Yamaguchi T, Sugihara H, et al. Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films [J]. Langrnuir,2005,21(10):4272-4276.
    [41]Marcin Ziolek, Cristina Martin, Boiko Cohen, et al. Virtues and Vices of an Organic Dye and Ti-Doped MCM-41 Based Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2011, 115(47):23642-23650.
    [42]Cristina Martin, Marcin Ziolek, Maria Marchena, et al. Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials [J]. J. Phys. Chem. C,2011,115(46):23183-23191.
    [43]Tingli Ma, Morito Akiyama, Eiichi Abe, et al. High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode[J]. Nano Lett.,2005,5 (12):2543-2547.
    [44]Iseul Lim, Seog Joon Yoon, Wonjoo Lee et al. Interfacially Treated Dye-Sensitized Solar Cell with in Situ Photopolymerized Iodine Doped Polythiophene [J]. Appl. Mater. Interfaces,2012,4(2):838-841.
    [45]Kitiyanan A, Yoshikawa S. The use of ZrO2 Mixed TiO2 Nanostructures as Efficient Dye-sensitized Solar Cells Electrodes [J]. Mater. Lett.,2005,59(29/30):4038-4040.
    [46]Ngamsinlapasathian S, Pavasupree S, Yoshikawa S. The Preparation and Characterization of Nanostructured TiO2-ZrO2 Mixed Oxide Electrode for Efficient Dye-sensitized Solar Cells[J]. J. Solid State Chem.,2005,178(4):1044-1048.
    [47]Kitiyanan A, Kato T, Suzuki Y, et al. The Use of Binary TiO2-GeO2 Oxide Electrodes to Enhanced Efficiency of Dye-sensitized Solar Cells [J]. J. Photochem. Photobiol. A:Chemistry,2006,179(1-2):130-134.
    [48]Noh Jun Hong, Han Hyun Soo, Lee Sangwook. A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices[J]. J. Phys. Chem. C,2010,114 (32):13867-13871.
    [49]Kyung H K, Young C L, Young J J, et al. Enhanced Efficiency of Dye-sensitized TiO2 Solar Cells(DSSC) by Doping of Metal Ions[J]. J. Colloid Interface Sci.,2005,283(2): 482-487.
    [50]Rudresh Ghosh, Yukihiro Hara, Leila Alibabaei. Increasing Photocurrents in Dye Sensitized Solar Cells with Tantalum-Doped Titanium Oxide Photoanodes Obtained by Laser Ablation[J]. Appl. Mater. Interfaces,2012,4(9):4566-4570.
    [51]于仙仙,胡志强,高岩,等.染料敏化太阳能电池阳极改性技术研究进展[J].材料导报,2007,21(3):25-28.
    [52]Hart J N, Menzies D, Cheng Y B, et al. TiO2 Sol-gel Blocking Layers for Dye-sensitized Solar Cells [J]. C.R.Chim.,2006,9(5-6):622-626.
    [53]Hiroshi Imahori, Shinya Hayashi, Tomokazu Umeyama, et al. Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes [J]. Langmuir,2006,22(26): 11405-11411.
    [54]Xia Jiangbin, Masaki Naruhiko, Jiang Kejian et al. Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B, 2006,110(50):25222-25228.
    [55]Wang Zhong Sheng, Huang Chun Hui, Huang Yan Yi, A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous electrode [J]. Chem. Mater.,2001,13(2):678-682.
    [56]于仙仙,胡志强,王一等.MgO/TiO2复合薄膜太阳能电池的性能[J].电子元件与材料,2007,26(4):5-7.
    [57]韩鹏,吴季怀,郝三存,等.ZnO/SnO2复合膜敏化太阳电池的研究[J].化学工程与装备,2007,21(2):27-30.
    [58]Chappel Shlomit, Chen Si-Guang, Zaban Arie. TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells[J]. Langmuir,2002,18(8):3336-3342.
    [59]Min-Hye Kim. Young-Uk Kwon. Semiconducting Divalent Metal Oxides as Blocking Layer Material for SnO2-Based Dye-Sensitized Solar Cells[J]. J. Phys. Chem. C, 2011,115(46):23120-23125.
    [60]黄春晖,李富友,黄岩谊.光电功能超薄膜[M].第二版.北京:北京大学出版社,2004,400.
    [61]Kumara G R A, Okuyaa M, MurakamiK, et al. Dye-sensitized Solid-state Solar Cells Made from Magnesium Oxide-coated Nanocrystalline Titanium Dioxide Films: Enhancement of the Efficiency[J]. J.Photochem. Photobiol., A:Chem.,2004,164(1-3): 183-185.
    [62]Xia J B, Masaki N, Yanagida S, et al. Fabrication and Characterization of Thin Nb2O5 Blocking Layers for Ionic Liquid-based Dye-sensitized Solar Cells[J]. J. Photochem. Photobiol., A:Chem.,2007,188(1):120-127.
    [63]Goes Marcio Sousa, Joanni Ednan, Muniz Elaine C, et al. Impedance Spectroscopy Analysis of the Effect of TiO2 Blocking Layers on the Efficiency of Dye Sensitized Solar Cells[J]. J. Phys. Chem. C,2012,116(23):12415-12421.
    [64]Gregg Brian A, Chen Siguang, Ferrere Suzanne. Enhanced dye-sensitized Photoconversion Efficiency via Reversible Production of UV-induced Surface States in Nanoporous TiO2[J]. J. Phys. Chem. B,2003,107(13):3019-3029.
    [65]Larry N Lewis, James L Spivack Shellie Gasaway, et al. A Novel UV-Mediated Low-Temperature Sintering of TiO2 for Dye-sensitized Solar Cells[J]. Sol. Energy Mater.Sol. Cells,2006,90(7-8):1041-1051.
    [66]Mishra A, Fischer MK R, Bauerle P. Metal-free Organic Dyes for Dye-sensitized Solar Cells:from Structure-property Relationships to Design Rules [J]. Angew. Chem. Int. Ed.,2009,48(14):2474-2499.
    [67]周迪,佘希林,宋国君.金属有机类光敏剂在染料敏化太阳能电池中的应用[J].贵金属,2010,31(1):37-42.
    [68]Wu KuanLin, Li Cheng-Hsuan, Chi Yun, et al. Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(Ⅱ) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc.,2012,134(17):7488-7496.
    [69]Clifford John N, Palomares Emilio, Nazeeruddin Md K, et al. Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells:Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate[J]. J. Phys. Chem. C,2007, 111 (17):6561-6567
    [70]Eduardo Schott, Ximena Zarate, Ramiro Arratia-Perez. Substituents Effects on Two Related Families of Dyes for Dye Sensitized Solar Cells:[Ru(4,4'-R, R-2,2'-bpy)3]2+ and [Ru(4,4'-COOH-2,2'-bpy) (4,4'-R, R-2,2'-bpy)2]2+[J]. J. Phys. Chem. A,2012, 116(27):7436-7442.
    [71]Shi Yongbo, Liang Mao, Wang Lina et al. New Ruthenium Sensitizers Featuring Bulky Ancillary Ligands Combined with a Dual Functioned Coadsorbent for High Efficiency Dye-Sensitized Solar Cells[J]. Appl. Mater. Interfaces,2013,5(1):144-153.
    [72]Banerjee Tanmay, Kaniyankandy Sreejith, Das Amitava, et al. Newly Designed Resorcinolate Binding for Ru(Ⅱ)- and Re(Ⅰ)-Polypyridyl Complexes on Oleic Acid Capped TiO2 in Nonaqueous Solvent:Prolonged Charge Separation and Substantial Thermalized 3MLCT Injection[J]. J. Phys. Chem. C,2013,117(6):3084-3092.
    [73]LiXH, Gui J, Yang H, et al. A new Carbazole-Based Phenanthrenyl Ruthenium Complex as Sensitizer for a Dye-Sensitized Solar Cell[J]. Inorg. Chim.Acta,2008, 361(9-10):2835-2840.
    [74]Kuang D B, Ito S, Wenger B, et al. High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells [J]. J.Am.Chem.Soc.,2006, 128(12):4146-4154.
    [75]Wadman S H, Kroon J M, Bakker K, et al. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells[J]. Chem. Commun.,2007, (19):1907-1909.
    [76]Fan S H, Zhang A G, Ju C C, et al. A Triphenylamine-Grafted Imidazo [4,5-f][1, 10] phenanthroline Ruthenium(Ⅱ) Complex:Acid-Base and Photoelectric Properties [J]. Inorg. Chem.,2010,49(8):3752-3763.
    [77]Willinger K, Fischer K, Kisselev R, Thelakkat M J. Synthesis, Spectral, Electrochemical and Photovoltaic Properties of Novel Heteroleptic Polypyridyl Ruthenium(Ⅱ) Donor-antenna Dyes[J]. Mater. Chem.2009,19(30):5364-5376.
    [78]张莉,高恩勤,王艳芹,等.Ru(bpy)2(NCS)2染料敏化PbS/Zn2+-Ti02复合半导体纳米多孔膜电极的光电化学[J].化工冶金,2000,21(2):113-117.
    [79]Gao Feifei, Wang Yuan, Shi Dong, et al. Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizer for High Performance Dye-sensitized Solar Cells[J]. J. Am. Chem. Soc.,2008,130: 10720-10728.
    [80]Chiba Yasuo, Islam Ashraful, Watanabe Yuki, et al. Dye-ensitized Solar Cells with Conversion Efficiency of 11.1%[J]. Jpn. J. Appl. Phys.,2006,45(25):638-640.
    [81]Cid J J, Yum J H, Jang S R, et al. Molecular Cosensitization for Efficient Panchromatic Dye-sensitized Solar Cells [J]. Angew. Chem. Int. Ed.,2007,46(44): 8358-8362.
    [82]Mori S, Nagata M, Nakahata Y, et al. Enhancement of Incident Photo-to-Current Conversion Efficiency for Phthalocyanine- Sensitized Solar Cells by 3D Molecular Structuralization [J]. J. Am. Chem. Soc.,2010,132(12):4054-4055.
    [83]Srikanth K, Marathe V R, Manoj K. Role of Electronic Structure of Ruthenium PolyPyridyl Dyes in the Photoconversion Efficiency of Dye-sensitized Solar Cells: Semiempirical investigation[J]. Int. J. Quantum Chem,2002,89:535-549.
    [84]方永增,孟庆华.天然染料在太阳能电池中的敏化作用[J].染料与染色,2009,46(2):16-20.
    [85]Gratzel M. Sol-Gel Processed TiO2 Applications[J]. J.Sol-Gel Sci.Technol.,2001, 22:7-13.
    [86]何祖明,夏咏梅,王青.天然染料作为Zn2TiO4太阳能电池敏化剂的研究[J].光电子激子,2011,22(2):219-222.
    [87]Chen Huajie, Huang Hui, Huang Xianwei, et al. High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(p-tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications[J]. J. Phys. Chem. C,2010,114(7):3280-3286.
    [88]Zhao W, Hou Y J, Wang X S, et al. Study on Squarylium Cyanine Dyes for Photoelectric Conversion[J]. Sol. Energy Mater. Sol. Cells,1999,58(2):173-183.
    [89]李洁,孔凡太,戴松元,等.共吸附剂在染料敏化太阳电池中的应用[J].化学通报,2010,73(3):205-211.
    [90]Neale N R, Kopidakis N, van de Lagemaat J, et al. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells:Shielding Versus Band-Edge Movement[J]. J. Phys.Chem.B,2005,109(49):23183-23189.
    [91]Wang Peng, Zakeeruddin Shaik M, Comte Pascal, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2003,125(5):1166-1167.
    [92]Gratzel M. Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight[J]. Lett.2005,34(1):8-13.
    [93]Jiwon Jeon, William A. Goddard, Hyungjun Kim. Inner-Sphere Electron-Transfer Single Iodide Mechanism for Dye Regeneration in Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc.,2013,135(7):2431-2434.
    [94]Paolo Salvatori, Gabriele Marotta, Antonio Cinti, et al. Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte[J]. J. Phys. Chem. C,2013,117(8):3874-3887.
    [95]Papageorgiou N, Thanassov Y A, Armand M. The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications [J]. J. Electrochem. Soc., 1996,143(10):3099-3108.
    [96]Tian Haining, Yu Ze, Hagfeldt Anders, et al. Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2011,133(24):9413-9422.
    [97]Flavio S Freitas, Jilian N de Freitas, Bruno Iito, et al. Electrochemical and Structural Characterization of Polymer Gel Electrolytes Based on a PEO Copolymer and an Imidazolium-Based Ionic Liquid for Dye-Sensitized Solar Cells[J].Appl. Mater. Interfaces, 2009,1(12):2870-2877.
    [98]Yu Qingjiang, Wang Yinghui, Yi Zhihui, et al. High-Efficiency Dye-Sensitized Solar Cells:The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States [J]. Nano,2010,4(10):6032-6038.
    [99]Nazeetuddin M K, Pechy P, Renouard T, et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells[J]. J. Am. Chem. Soc., 2001,123:1613-1624.
    [100]Wang Liang, Zhang Hong, Wang Chaolei, et al. Highly Stable Gel-State Dye-Sensitized Solar Cells Based on High Soluble Polyvinyl Acetate [J]. Sustainable Chem. Eng.,2013,1 (2):205-208.
    [101]Mohmeyer N, Wang P, Schmidt H W, et al. Quasi-solid-state dye-sensitized solar cells with 1,3,2,4-di-Obenzylidene-D-sorbitol derivatives as low molecular weight organic gelators[J]. J. Mater. Chem.,2004,14(12):1905-1909.
    [102]Wang P, Zakeeruddin S M, Exnar L. High efficiency dye-sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte [J]. Chem. Commun.,2002,2(24):2972-2973.
    [103]何向明,蒲薇华,王莉,等.锂离子塑性晶体常温固体电解质[J].化学进展2006,518(1):24-29.
    [104]Meng Q B, Takahashi K, Zhang X T, et al. Fabrication of an Efficient Soild-state Dye-sensitized Solar Cell [J]. Langmuir,2003,19(9):3572-3574.
    [105]Kumara G R A, Kaneko S, Okuya M, et al. Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate asa Cul Crystal Growth Inhibitor[J]. Langmuir, 2002,18:10493-10495.
    [106]O'Regan B, Schwartz DT. Efficient Photo-Hole Injection from Adsorbed Cyanine Dyes into Electrodeposited Copper(I)thiocyanate Thin Films[J]. Chem. Mater.,1995,7(7): 1349-1354.
    [107]O'Regan B, Lenzrmann F, Muis R, et al. A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure Treated P25-TiO2 and CuSCN:Analysis of Pore Filling and IV Characteristics[J]. Chem. Mater.,2002,14(12):5023-5029.
    [108]Xia Jiangbin, Masaki Naruhiko, LiraCantu Monica, et al. Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc.,2008,130(4):1258-1263.
    [109]Huynh W, Dittmer J J, Alivisators A P. Hybrid nanorod-polymer solar Cells [J]. Science,2002,295(5564):2425-2427.
    [110]Erik M J Johansson, Lei Yang, Erik Gabrielsson, et al. Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell[J]. J. Phys. Chem. C,2012,116 (34):18070-18078.
    [111]郑冰,牛海军,白续铎.有机染料敏化纳米晶太阳能电池[J].化学进展,2008,20(6):828-840.
    [112]Cahen D, Hodes Gary, Gratzel M, et al. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2000,104(9):2053-2059.
    [113]Gratzel M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells [J] Inorg. Chem.,2005,44(20):6841-6851.
    [114]Gerald J. Meyer. The 2010 Millennium Technology Grand Prize:Dye-Sensitized Solar Cells[J]. Nano,2010,4(8):4337-4343.
    [115]Green M A, Emery K, Hishikawa Y, et al. Solar Cell Efficiency Tables (version 36)[J]. Prog. Photovolt.,2010,18(5):346-352.
    [116]Nazeeruddin M K, De Angelis, Fantacci S, et al. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium sensitizers[J]. J. Am. Chem. Soc.,2005,127(48):16835-16847.
    [117]Hoshikawa T, Yamada M, Kikuchi R, et al. Impedance Analysis for Dye-sensitized Solar Cells with a Three-Electrodesystem[J]. J.Electroanal. Chem.,2005, 577(2):339-348.
    [118]Hu Linhua, Dai Songyuan, Weng Jian, et al. Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules [J]. J. Phys. Chem. B,2007, 111(2):358-362.
    [119]邢进,姚叙红,朱林泉,等.染料敏化太阳能电池的研究进展[J].中北大学学报(自然科学版),2008,29(5):461-468.
    [120]Xiu Wang, Sneha A. Kulkarni, Bruno Ieiri Ito, et al. Nanoclay Gelation Approach toward Improved Dye-Sensitized Solar Cell Efficiencies:An Investigation of Charge Transport and Shift in the TiO2 Conduction Band[J]. Appl. Mater. Interfaces,2013,5(2): 444-450.
    [121]孙惠成,罗艳红,李冬梅,等.染料敏化太阳能电池基础研究及产业化新进展[J].硅酸盐学报,2011,39(7):1045-1052.
    [122]Kuang Daibin, Brillet Jeremie, Chen, et al. Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells[J]. Nano,2008,2(6):1113-1116.
    [123]Park Kwangsuk, Zhang Qifeng, Myers Daniel, et al. Charge Transport Properties in TiO2 Network with Different Particle Sizes for Dye Sensitized Solar Cells[J]. Appl. Mater. Interfaces,2013,5(3):1044-1052.
    [124]王富民,巩峰,李成亮.染料敏化太阳能电池的内部阻抗分析[J].天津大学学报,2007,40(3):265-268.
    [125]吴玉程,叶敏,解挺,等.电沉积二氧化钛功能薄膜的制备与组织转变研究[J]. 人工晶体学报,2006,35(3):612-616.
    [126]Natarajan C, Nogami G.Cathodic Electrodeposition of Nanocrystalline Ttitanium Dioxide Thin Film [J].Electrochem.Soc.,1996,143(5):1547-1550.
    [127]Subbian Karuppuchamy, Jae Mun Jeong.Super-Hydrophilic Amorphous Titanium Dioxide Thin Film Deposited by Cathodic Electrodeposition[J].Mater. Chem.Phys.,2005, 93(2-3):251-254.
    [128]张林森,桂阳海,王力臻,等.电沉积Ti02纳米晶薄膜及其光电性能研究[J].电镀与精饰,2009,31(6):5-8.
    [129]罗瑾,周静,祖延兵,等.电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究[J].高等学校化学学报,1998,19(9):1484-1487.
    [130]邓晓燕,崔作林,杜芳林,等.纳米二氧化钛的热分析表征.无机材料学报[J].2001,16(6):1090-1093.
    [131]Karvinen S, Hirva P, Pakkanen Tapani A. Ab initio Quantum Chemical Studies of Cluster Models for Doped Anatase and Rutile TiO2[J].J. Mol.Stru.(Theochem.),2003, 626(1-3):271-277.
    [132]肖美群,沈嘉年,李谋成,等.添加Fe3+对二氧化钛薄膜吸收光谱及光催化活性的影响[J].上海金属,2004,26(4):13-16.
    [133]Zwilling V, Darque Ceretti E, Boutry Forveille A, et al.Structure and Physicochemistry of Anodic Oxide films on Titanium and TA6V alloy[J].Surf. Interface Anal.,1999,27(7):629-637.
    [134]Gong D, Grimes C A, Varghese O K, et al.Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation[J] J.Mater.Res.,2001,16(12):3331-3334.
    [135]Allam N K, Grimes C A.Effect of Cathode Materialon the Morphology and Photoelectrochemical Properties of Vertically Oriented TiO2 Nanotube Arrays[J]. Sol. Energy Mater. Sol. Cells,2008,92(11):1468-1475.
    [136]Paulose M, Mor G K, Varghese O K, et al.Visible light Photoelectrochemical and Water-photoelectrolysis Properties of Titania Nanotube Arrays[J].J.Photochem.Photobiol., A:Chem.,2006,178(1):8-15.
    [137]Ghicov A, Tsuchiya H, Macak J M, et al.Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes[J]. Electrochem.Commun.,2005,7(5):505-509.
    [138]Li shiqi, Zhang Gengmin, Guo Dengzhu, et al. Anodization Fabrication of Highly Ordered TiO2 Nanotubes[J]. J. Phys. Chem. C,2009,113(29):12759-12765.
    [139]Luan Xinning, Guan Dongsheng, Wang Ying.Facile Synthesis and Morphology Control of Bamboo-Type TiO2 Nanotube Arrays for High-Efficiency Dye-Sensitized Solar Cells[J].J. Phys.Chem.C,2012,116(27):14257-14263.
    [140]Paulose M, Shankar K, Varghese O K, et al.Backside Illuminaed Dye-sensitized Solar Cells Based on Titania Nanotube Array Electrodes [J].Nanotech.,2006,17(5): 1446-1448.
    [141]Zheng Qing, Kang Hosung, Yun Jongju, et al.Hierarchical Construction of Self-Standing Anodized Titania Nanotube Arrays and Nanoparticles for Efficient and Cost-Effective Front-Illuminated Dye-Sensitized Solar Cells[J].Nano,2011,5(6):5088-5093.
    [142]Zhu K, Neale N R, Miedaner A, et al.Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays.Nano Lett.,2007,7(1):69-74.
    [143]Macak J M, Tsuchiya H, Ghicov A, et al.Dye-sensitized anodic TiO2 nanotubes [J].Electrochem. Commun.,2005,7(11):1133-1137.
    [144]Zheng Lingxia, Cheng Hua, Liang Fengxia, et al.Porous TiO2 Photonic Band Gap Materials by Anodization[J].J.Phys.Chem.C,2012,116(9):5509-5515.
    [145]Mor G K, Varghese O K, Paulose M, et al.Fabrication of Hydrogen Sensors with Transparent Titanium Oxide nanotube-array Thin Films as Sensing Elements [J].Thin Solid Films,2006,496(1):42-48.
    [146]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066.
    [147]罗佳.染料敏化太阳能电池光阳极的制备及其光-电化学性能的研究[C].中南大学硕士学位论文,2010:54-58.
    [148]Hoshikawa T, Kikuchi R, Sasaki K, et al.Impedance Analysis of Eleetronic Transport in Dye-sensitized Solar Cells[J].Electrochemistry,2002,70(9):675-680.
    [149]黄涛,张国亮,张辉,等.高性能纳米二氧化钛制备技术研究进展[J].化工进展,2010,29(3):498-504.
    [150]马军委,张海波,董振波,等.纳米二氧化钛制备方法的研究进展[J].无机盐工业,2006,38(10):5-7.
    [151]周益明,忻新泉.低热固相合成化学[J].无机化学学报,1999,15(3):273-289.
    [152]章金兵,许民,周小英.固相法合成纳米二氧化钛[J].有色金属,2005,(6):42-43,45.
    [153]Gajovic A, Furic K, Tomasic N, et al.Mechanochemical Preparation of Nanocrystalline TiO2 Powders and Their Behavior at High Temperatures [J].J.Alloys Compd.,2005,398(1-2):188-199.
    [154]Yin Xiong, Wang Bin He Meng, et al.Facile Synthesis of ZnO Nanocrystals via a Solid State Reaction for High Performance Plastic Dye-Sensitized Solar Cells[J].Nano Res., 2012,5(1):1-10.
    [155]刘少友,吴林冬,赵钟兴Ni-TiO2介孔材料的低热固相合成及其光降解甲基橙的动力学[J].无机材料学报,2009,24(5):902-908.
    [156]夏天,曹望和,付姚.板钛矿相对TiO2纳米晶相转变的影响研究[J].材料科学与工程学报,2005,23(1):105-108.
    [157]容齐坤,曾凡菊,李玲.金属离子掺杂纳米TiO2薄膜光阳极的性能研究[J].电子元件与材料,2011,30(1):13-16.
    [158]Fuke N, Katoh R, Islam A, et al.Influence of TiCl4 Treatment on Back Contact Dye-sensitized Solar Cells Sensitized with Black Dye[J].Energy Environ.Sci.,2009,2(11): 1205-1209.
    [159]王丽伟,骆泳铭,黄仕华.Ti02薄膜的优化及其对染料敏化太阳能电池性能的影响[J].科学通报,2011,56(17):1354-1359.
    [160]王立群,侯兴刚,吴景波.溶胶-凝胶法制备二氧化钛纳米晶及其在染料敏化太阳电池中的应用[J].天津师范大学学报(自然科学版),2011,31(4):39-43.
    [161]Tomokazu O, Aki N, Yukio S, et al.Preparation and Characterization of Titania Thin Films from Aqueous Solutions[J]. J. Sol-Gel Sci. Technol.,2003,26(1-3):799-802.
    [162]Wang Z S, Kawauchi H, Kashima T, et al.Significant Influence of TiO2 Phtoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J].Coord. Chem. Rev.,2004,248(13-14):1381-1389.
    [163]Rodriguez Talavera R, Vargas S, Arroyo Murillo R, et al.Modification of the Phase Transition Temperatures in Titania Doped with Various Cations [J].J.Mater.Res.,1997,12(3): 439-442.
    [164]孙剑,刘守新.La掺杂TiO2膜的制备及其对甲苯的去除性能[J].无机材料学报,2010,25(9):928-934.
    [165]水淼,岳林海,徐铸德.稀土镧掺杂TiO2的光催化特性[].物理化学学报,2000,16(5):459-461.
    [166]Nian Jun-Nan, Teng Hsisheng. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the precursor[J].J.Phys.Chem.B,2006,110 (9): 4193-4198.
    [167]Cho In Sun, Chen Zhebo, Forman Arnold J, et al.Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production[J].Nano Lett.,2011,11(11):4978-4984.
    [168]Jiang Benpeng, Yin Hengbo, Ji Tingshun, et al.Hydrothermal Synthesis of Rutile TiO2 Nanoparticles Using Hydroxyl and Carboxyl Group-containing Organics as Modifiers [J].Mater.Chem.Phys.,2006,98 (2-3):231-235.
    [169]Li Zhonglai, Wnetrzak Renata, Kwapinski Witold, et al.Synthesis and Characterization of Sulfated TiO2 Nanorods and ZrO2/TiO2 Nanocomposites for the Esterification of Biobased Organic Acid [J].Appl.Mater. Interfaces,2012,4(9):4499-4505.
    [170]Zhang Haimin, Han Yanhe, Liu Xiaolu, et al.Anatase TiO2 Microspheres with Exposed Mirror-like Plane{001} Facets for High Performance Dye-sensitized Solar Cells(DSSCs)[J].Chem.Commun.,2010,46:8395-8397.
    [171]Li Yuxiang, Zhang Mei, Guo Min, et al. Hydrothermal Growth of Well-aligned TiO2 Nanorod Arrays:Dependence of Morphology upon Hydrothermal Reaction Conditions [J].Chem. Commun.,2010,29 (3):286-291.
    [172]Yun Hong, Lin Changjian, Li Jing, et al.Low-temperature Hydrothermal Formation of a net-like Structured TiO2 Film and its Performance of Photogenerated Cathode Protection[J]. Appl. Surf. Sci.,2008,255 (5):2113-2117.
    [173]Aruna S T, Tirosh S, Zaban A.Nanosize Rutile Titania Particle Synthesis via a Hydrothermal Method without Mineralizers[J] J.Mater.Chem.,2000, (10):2388-2391.
    [174]陈增,林原,王正平,等.利用丝网印刷技术制备纳晶多孔TiO2薄膜电极[J].功能材料,2006,7(37):1073-1075.
    [175]陶明文,王丹军,郭莉,等.镧掺杂TiO2光催化剂的合成及其光催化活性研究[J].延安大学学报(自然科学版),2009,28(1):53-56.
    [176]Kalyanasundaram K, Gratzel M.Artificial Photosynthesis:Efficient Dye- sensitized Photoelectrochemical Cells for the Direct Conversion of Sunlight to Electricity [J].Curr.Sci., 1994,66(8):706-715.
    [177]李海清,李进延,蒋作文.铒离子与其它稀土离子共掺杂特性研究[J].光学与光电技术,2004,2(2):32-35.
    [178]卢旭东,姜承志,侯雪.Sm3+和Gd3+共掺杂TiO2粉体的制备和性能表征[J].功能材料,2012,24(43):3393-3397,3401.
    [179]姬少靓.染料敏化太阳能电池光阳极结构的构筑及性能[D].黑龙江大学硕士研究生学位论文,2009:27-29.
    [180]Wang Q, Moser J E, Gratzel M, et al.Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells[J].J.Phys.Chemi.B,2005,109:14945-14953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700