用户名: 密码: 验证码:
二氧化碳的吸附分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的发展和人口的激增,人类活动所排放的大量二氧化碳已引起全球气候变暖,其中绝大部分的二氧化碳是由化石燃料燃烧所产生。由于未来几十年内化石燃料将会继续主导生产,因此从烟道气中捕集和回收利用二氧化碳对降低温室气体的排放具有重要意义。除此之外,在其它的化工工艺或特定场合中(发酵厂、天然气净化、沼气净化、无菌病房、密闭空间),二氧化碳的脱除或分离也具有很重要的现实意义。因此研究如何有效的捕集和回收二氧化碳具有重要的现实意义。
     烟道气的主要成分为氮气和二氧化碳,因此二氧化碳和氮气的有效分离是捕集和回收烟道气中二氧化碳的关键。烟道气中的二氧化碳含量较低(8%~15%),采用物理吸收法(选择性低)、化学吸收法(高腐蚀、胺损耗)、低温法(投资多、占地广、能耗高)、膜分离法(产品气浓度低)来捕集烟道气中二氧化碳或多或少存在一些缺点,而吸附法因设备简单、能耗低、温度压力操作范围宽而成为捕集二氧化碳最为优势的方法。
     吸附剂的吸附性能是变压吸附分离效果的关键和决定因素。因此,本文首先详细地考察了12种吸附剂对CO_2/N_2的分离性能,分析了温度、吸附剂表面极性、比表面积及孔径大小对分离性能的影响,从而为高效专有吸附剂的研发奠定了理论基础。
     其次,由于常温下二氧化碳可以在吸附剂上发生多分子层吸附甚至毛细孔凝聚,而氮气只能发生单分子吸附,因此首次考察了二氧化碳吸附机理的改变对CO_2/N_2分离效果的具体影响。
     为了进一步增强吸附剂对CO_2/N_2的分离性能,本文采用不同胺(TEA、MDEA、DEA)改性吸附剂,研究了温度、胺负载率对吸附吸附分离CO_2/N_2的影响,并考察了胺改性后吸附剂的再生性和稳定性。结果表明,微孔吸附剂不适宜负载改性,而胺改性后的介孔吸附剂对CO_2/N_2具有较好的分离效果。其中当TEA、MDEA、DEA负载率分别为0.951、0.886、0.699时分离因子最大,分别为3.86、9.83、20.08。虽然DEA改性吸附剂的分离效果最好,但吸附剂在常温下难以再生。
     最后,由于烟道气中含有一定量的水蒸气,因此考察了水含量对胺改性吸附吸附分离CO_2/N_2的影响。结果表明,分离因子随水负载率的增大而增大,水的存在有利于CO_2/N_2的分离。其中RTEA=0.713的改性吸附剂在RW=0.349时的分离因子最大为24.50。RMDEA=0.644的改性吸附剂在RW=0.397时的分离因子高达29.69。RDEA=0.699的吸附剂在RW=0.347时分离因子高达40.09。而且无论有无水存在,TEA、MDEA改性吸附剂在常温下都具有很好的再生性和稳定性。
With the development of economy, enrichment of atmospheric greenhouse gases,mainly carbon dioxide, resulted from human activities has increased global meantemperature. Because most of the carbon dioxide is emitted from coal-fired power plantsand about80%of global energy supply will still rely on fossil fuels in the future, the studieson CO_2capture from the flue gas are very important.
     The main components in the flue gas are CO_2and N_2, so the separation between CO_2and N_2is the key. The methods so far presented for the capture of flue gas CO_2includesbsoption, adsorption, membrane separation and the separation at low temperature. Thechemical absorption of CO_2with aqueous solutions of amines is presently the mosteconomical one, but there are some problems with equipment corrosion, amine lost andhigh-energy cost. The adsorption method bearing advantange in simple equipment,low-energy cost, wide range of pressure and temperature has been the most potentialmethod for the CO_2capture.
     The adsorbent is the core of adsorption, which determines the separation performance.So the paper studied the separation coefficients of twelve adsorbents, and the influences oftemperature, surface polarity, specific surface area and pore size on the separationperformance are presented, firstly.
     Because CO_2could be adsorbed with the occurrence of multi-layer adsorption andcapillary condensation, while N_2adsorbed with the single molecular adsorption undernormal temperature, so the researches on whether the change of adsorption mechanismcould enhance the separation performance of CO_2and N_2under high pressures areobservated.
     Secondly, in order to enhance the separation performances of adsorbent, adsorbentsSG-A and SG-B are modified with different amines. The effects of amine-loading andtemperature on the separation between CO_2and N_2are investigated, and the regenerationand stability are also researched at normal temperature. The results show thatamine-modified adsorbents could enhance the separation performances. And the modifiedadsorbents with TEA or MDEA have a good regeneration at normal temperature, but withDEA couldn’t.
     At last, the effects of water on the separation coefficient between CO_2and N_2withloading different amines are presented. The results show that the presence of water could enhance the separation of CO2and N_2, and the modified adorbents with TEA or MDEA alsocould be regenerated in the presence of water.
引文
[1]葛全胜,方修琦.中国碳排放的历史与现状,北京:气象出版社,2011
    [2] Solomon S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignorand H. L. Miller(eds.), Contribution of Working Group I to the Fourth AssessmentReport of the Intergovernmental Panel on Climate Change,2007. CambridgeUniversity Press, Cambridge, United Kingdom and New Youk, NY, USA.
    [3] Petit J. R., Jouzel J., Raynaud D., et al., Climate and atmospheric history of thepast420,000years from the Vostok ice core, Antarctica. Nature,1999,399(6735):429-436
    [4] Working Group of the Intergovernmental Panel on Climate Change, IPCC SpecialReport on Carbon dioxide Capture and Storage, Cambridge University Press,Cambridge, UK,2005
    [5] WDCGG (World Data Centre for Greenhouse Gases). CO2concentration in theatmosphere.Tokyo: Japan Meteorological Agency,2009(2009-03-18).http://gaw.kishou.go.jp/wdcgg/
    [6]马一太等.温室气体减排与CO2资源化宏观研究与探讨.大连理工大学学,2001,41(z1):9-14.
    [7]魏一鸣等.中国能源报告:碳排放研究.北京:科学出版社,2008.
    [8]林伯强.中国能源发展报告.北京:中国财政经济出版社,2008
    [9]高广生.气候变化的本质与应对策略.今日国土,2002,5(z2):24-27
    [10]白冰,李小春,刘延峰等.中国CO2集中排放源调查及其分布特征.岩石力学与工程学报,2006,25(1):2918-2923
    [11]韦保仁.中国能源需求与二氧化碳排放的情景分析.北京:中国环境科学出版社,2007.
    [12]汪丽莉等.全球能源消费碳排放分析.资源与产业,2009,11(4):1-3
    [13]王伟,郭炜煜.低碳时代的中国能源发展政策研究.北京:中国经济出版社,2011.
    [14]朗一环.全面建设小康社会的能源合理利用与CO2减排.资源科学,2004,26(6):118-124
    [15]郭庆杰.温室气体二氧化碳捕集和利用技术进展.北京:化学工业出版社,2010.
    [16] International Energy Agency (IEA). World Energy Outlook2009
    [17]潘家华,魏后凯.中国城市发展报告.北京:社会科学文献出版社,2010
    [18]倪维斗.我国的能源现状与战略对策.科技日报,2007-01-26.
    [19] International Energy Agency (IEA). World Energy Outlook2007:China andIndia Insights
    [20]刘露,段振红,贺高红.天然气脱除CO2方法的比较与进展.化工进展,2009,28(增刊):290-292
    [21]陈根年.密闭环境中二氧化碳的控制.http://wenku.baidu.com/view/c4a851c45fbfc77da269b14f.html
    [22]潘永刚.发酵气体中二氧化碳的回收与工艺选择.酿酒,1998,4(总127):63-66
    [23] F.M.T. Luna, I.J. Silva Jr., D.C.S. de Azevedo, et al., Carbon dioxide-nitrogenseparation through adsorption on activated carbon in a fixed bed, ChemicalEngineering Journal,2011,169(1-3):11-19
    [24] S. Wong, R. Bioletti, Carbon dioxide Separation Technologies, Carbon&EnergyManagement, Alberta Research Council, Edmonton, Alberta, Canadá,2002
    [25] Rochelle G. T., et al., Research results for CO2capture from flow gas by aqueousabsorption/stripping. The Process dings of Laurence Reid Gas ConditioningConference,2002.
    [26]师春元,黄黎明,陈赓良.机遇与挑战二氧化碳资源开发与利用.北京:石油工业出版社,2006.
    [27]绿色煤电有限公司.挑战全球气候变化二氧化碳捕集与封存.北京:中国水利水电出版社,2008.
    [28]于欢. CCS技术开启化石能源低碳元年.中国能源报,2005-05-04
    [29] Feron P. H. M., Progress in post-combustion CO2capture. First Regional CarbonManagement Symposium, Dhahran, Saudi Arabia.
    [30] Final report from working group: power plant and carbon dioxide capture.www.zero-emissionplatform.eu/website/library/index.html#etpzeppublications.
    [31]张卫东,张栋,田克忠.碳捕集与封存技术的现状与未来.中外能源,2009,11(14):7-14
    [32] Castle W. F., Air separation and liquefaction: recent development and prospectsfor the beginning of the new millennium. International Journal of Refrigeral ofRefrigeration,2002,25(1):158-172
    [33] Smith A R, Klosek J. A review of air separation technologies and their integrationwith energy conversion processes. Fuel Processing Technology,2001,70(2):115-134.
    [34]焦树建.整体煤气化燃气蒸汽联合循环(IGCC).北京:中国电力出版社,1996.
    [35]朱跃钊,廖传华等.二氧化碳的减排与资源化利用.北京:化学工业出版社,2011
    [36]张诩人,低温甲醇洗工艺的发展和改进,氮肥设计,1993,31(1):3-9
    [37]梁秀钧,小氮肥厂脱碳方法的选择,化工设计通讯,1993,19(1):2-6
    [38]张诩人,石家庄化肥厂合成氨节能改造规划,炼油设计,1991,21(6)28-37
    [39]谭东,二氧化碳的分离提纯方法,广西化工,1995,24(2):22~26
    [40]夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用闭,现代化工,1999,19(5):56~48
    [41]李玉龙,张宝真,姚树人,大气中二氧化碳分离技术的研究与现状,海军工程学院学报,1995,(1):87~91
    [42] Michael Caplow. Kinetics of carbamate formation and breakdown. J. Am. Chem.Soc.,1968,90(24):6795-6803
    [43] P. V. Danckwerts. The reaction of CO2with ethanolamines. Chem. Engng. Sci.,1979,34(4):443-446
    [44] P. M. M. Blauwhoff, G. F. Versteeg, W. P. M. Van Swaaij. A study on the reactionbetween CO2and alkanolamines in aqueous solutions. Chem. Engng. Sci.,1983,38(9):1411-1429
    [45] Laddha S. S., Danckwerts P. V.. Reaction of CO2with ethanolamines: kineticsfrom gas-aborption. Chem. Engng. Sci.,1981,36(3):479-482
    [46] Dr. Jose L. Sotelo, Dr. F. Javier Benitez, et al. Kinetics of carbon dioxideabsorption in aqueous solutions of diisopropanolamine. Chem. Eng. Technol.,1992,15(3):114-118
    [47] M. H. Oyevaar, R. W. J. Morssinkhof, K. R. Westerterp. The kinetics of thereaction between CO2and diethanolamine in aqueous ethyleneglycol at298K: aviscous gas-liquid reaction system for the determination of interfacial areas ingas-liquid contactors. Chem. Engng. Sci.,1990,45(11):3283-3298
    [48] Noman Haimour, Ali Bidarian, Orville C. Sandall. Kinetics of the reactionbetween carbon dioxide and methyldiethanolamine. Chem. Engng. Sci.,1987,42(6):1393-1398
    [49]王挹薇,张成芳,钦淑均. MDEA溶液吸收CO2动力学研究.化工学报,1991,4:466-474
    [50] Noman Haimour, Orville C. Sandall. Absorption of carbon dioxide into aqueousmethyldiethanolamine. Chem. Engng. Sci.,1984,39(12):1791-1796
    [51] D. Barth, C. Tondre, G. Lappai, J. J. Delpuech, Kinetic study of carbon dioxidereaction with tertiary amines in aqueous solutions. J. Phy. Chem.,1981,85(4):3660-3667
    [52] D. Barth, C. Tondre, J. Delpuech. Kinetics and mechanisms of the reactions ofcarbon dioxide with alkanolamines: a discussion concerning the cases of MDEA andDEA. Chem. Engng. Sci.,1984,39(12):1753-1757
    [53] Raymond A. Tomcej, Fred D. Otto. Absorption of CO2and N2O into aqueoussolutions of methyldiethanolamine. AIChE Journal,1989,35(5):861-864
    [54] Abanades J C, Rubin E S, Anthony E J, Sorbent cost and performance in CO2capture systems,Industrial and Engineering Chemistry Research,2004,43(13):3462-3466
    [55] Aboudheir A, Tontiwachwuthikul P, Idem R, Rigorous model for predicting thebehavior of CO2absorption into AMP in packed-bed absorption columns. Industrialand Engineering Chemistry Research,2006,45(8):2553-2557
    [56] Al-Juaied M, Rochelle G T, Absorption of CO2in aqueous diglycolamine.Industrial and Engineering Chemistry Research,2006,45(8):2473-2482
    [57] Bello A, Idem R O, Comprehensive study of the kinetics of the oxidativedegradation of CO2loaded and concentrated aqueous monoethanolamine (MEA) withand without sodium metavanadate during CO2absorption from flue gases. Industrialand Engineering Chemistry Research,2006,45(8):2569-2579
    [58] Goff G S, Rochelle G T, Oxidation inhibitors for copper and iron catalyzeddegradation of monoethanolamine in CO2capture processes. Industrial andEngineering Chemistry Research,2006,45(8):2513-2521
    [59] Idem R, Wilson M, Tontiwachwuthikul P et al..Pilot plant studies of the CO2capture performance of aqueous MEA and mixed MEA/MDEA solvents at theuniversity of regina CO2capture technology development plant and the boundary damCO2capture demonstration plant. Industrial and Engineering Chemistry Research,2006,45(8):2414-2420
    [60] Jassim M S, Rochelle G T, Innovative absorber/stripper configurations for CO2capture by aqueous monoethanolamine. Industrial and Engineering ChemistryResearch,2006,45(8):2465-2472
    [61] Lawal A O, Idem R O, Kinetics of the oxidative degradation of CO2loaded andconcentrated aqueous MEA-MDEA blends during CO2absorption from flue gasstreams. Industrial and Engineering Chemistry Research,2006,45(8):2601-2607
    [62] Ma’mun S, Jakobsen J P, Svendsen H F et al., Experimental and modeling studyof the solubility of carbon dioxide in aqueous30mass%2-((2-aminoethyl)amino)ethanol solution. Industrial and Engineering Chemistry Research,2006,45(8):2505-2512
    [63] Oyenekan B A, Rochelle G T, Energy performance of stripper configurations forCO2capture by aqueous amines. Industrial and Engineering Chemistry Research,2006,45(8):2457-2464
    [64] Ramachandran N, Aboudheir A, Idem R et al., Kinetics of the absorption of CO2into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine.Industrial and Engineering Chemistry Research,2006,45(8):2608-2616
    [65] Rao A B, Rubin E S, Identifying cost-effective CO2control levels foramine-based CO2capture systems. Industrial and Engineering Chemistry Research,2006,45(8):2421-2429
    [66] Silva E F, Svendsen H F, Study of the carbamate stability of amines using abinitio methods and free-energy perturbations.Industrial and Engineering ChemistryResearch,2006,45(8):2497-2504
    [67] Supap T, Idem R, Tontiwachwuthikul P et al., Analysis of monoethanolamine andits oxidative degradation products during CO2absorption from flue gases: Acomparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques andpossible optimum combinations. Industrial and Engineering Chemistry Research,2006,45(8):2437-2451
    [68] anthapanichakoon W, Veawab A, McGarvey B, Electrochemical investigation onthe effect of heat-stable salts on corrosion in CO2capture plants using aqueoussolution of MEA. Industrial and Engineering Chemistry Research,2006,45(8):2586-2593
    [69] Tobiesen F A, Svendsen H F, Study of a modified amine-based regeneration unit.Industrial and Engineering Chemistry Research,2006,45(8):2489-2496
    [70]刘华兵,徐国文,张成芳等,活化MDEA水溶液中二氧化碳溶解度,华东理工大学学报,1999,25(3),242-246
    [71] Seung-Wook Rho, Ki-Pung Yoo, Jong Sup Lee, Sung Chan Nam, Jae Ek Son,and Byoung-Moo Min. Solubility of CO2in Aqueous Methyldiethanolamine Solutions,J. Chem. Eng. Data,1997,42(6),1161-1164
    [72] Hai A. AI-Ghawas, Daniel P. Hagewiesche, Gabriel Ruiz-lbanez, Orville C.Sandall. Physicochemical Properties Important for Carbon Dioxide Absorption inAqueous Methyldiethanolamine, J. Chem. Eng. Data,1989,34(4),385-391
    [73] Richard L.Rowley, Michael E.Adams, Tonya L.Marshall. et al.. Measurement ofDiffusion Coefficients Important in Modeling the Absorption rate of CarbonDioxide into Aqueous N-Methyldiethanolamine, J.Chem. Eng. Data,1997,42(2),310-317
    [74] Guido Sartori, David W. Savage. Sterically hindered amines for carbon dioxideremoval from gase, Industrial&Engineering Chemistry Fundamentals,1983,22(2):239-249
    [75]黎四芳,任铮伟,李盘生,路琼华,MDEA-MEA混合有机胺水溶液吸收CO2,化工学报,1994,45(6),698-703
    [76] David A. Glasscock, James E. Critchfield, Gary T. Rochelle, CO2Absorption/Desorption in mixture of Methyldiethanolamine with Monoethanolamineor Diethanolamine, Chem. Eng. Sci.,1991,46(11),2829-2845
    [77] H.Bosch. G.F.Versteeg and W.P.M. Van Swaa,Gas-Liquid Mass Transfer withParallel Reversible Reactions-III. Absorption of CO2into Solutions of Blends ofAmines, Chem. Eng. Sci.,1989,44(10),2745-2750
    [78] Edward B. Rinker, Sami S. Ashour, and Orville C.Sandall. Absorption of CarbonDioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine. Ind. Eng.Chem. Res.,2000,39(11),4346~4356
    [79] Austgen D. M., Rochelle G. T., Chau-Chyun Chen. Model of vapor-liquidequilibria of H2S and CO2solubility in aqueous mixtures of MDEA with MEA orDEA. Ind. Chem. Res.,1991,30(3),:543-555
    [80] A. Chakma. An Energy Efficient Mixed Solvent for The Separation of CO2,Energy Convers. Mgmt,1995,36(6-9),427-430
    [81] Norio Arashi, Naoki Oda, Mutsuo Yamada, et al.. Evaluation of Test Results of1000m3/h Pilot Plant for CO2Absorption Using An Amine-Based Solution, EnergyConvers. Mgmt,1997,38(supplement):S63-S68
    [82] Dubois L, Thomas D. CO2absorption into aqueous solutions ofmonoethanolamine, methyl-diethanolamine, piperazine and their blends. Chem EngTechnol,2009,32(5):710-718.
    [83] Bishnoi S, Rochelle T. Absorption of carbon dioxide in queouspiperazine/methyldiethanol-amine. AIChE Journal,2002,48(12):2788-2799.
    [84] Freeman S A, Dugas R, Wagener D, et al.. Carbon dioxide capture withconcentrated, aqueous piperazine. Energy Procedia,2009,1(1):1489-1496
    [85] Shao Wei, Zhang Luzheng, Li Liangxiong, et al.. Adsorption of CO2and N2onsynthesized NaY zeolite at high temperatures. Adsorption,2009,15(5-6):497-505
    [86] Delgado J. A., Uguina M. A., Sotelo J. L., et al., Separation of carbondioxide/methane mixtures by adsorption on a basic resin. Adsorption,2007,13(3-4):373-383
    [87] Kato M, Imada T, Essaki K. Carbon dioxide gas absorbent and method ofmanufacturing the same. US7538068.2009-5-26
    [88] Aronua U E, Svendsena H F, Hoffb K A, et al. Solvent selection for carbondioxide absorption. Energy Procedia,2009,1(1):1052-1057
    [89] Aronua U E, Svendsena H F, Hoffb K A, et al. A new aqueous solvent based on ablend of N-methyldiethanolamine and triethylene tetramine for CO2recovery inpost-combustion: kinetics study. Energy Procedia,2009,1(1):902-908
    [90] Liu J, Wang S, Zhao B, et al. Absorption of carbon dioxide in aqueous ammonia.Energy Procedia,2009,1(1):933-940
    [91] Fauth D J, Frommell E A, Hoffman J S, et al. Eutectic salt promoted lithiumzirconate: novel high temperature sorbent for CO2capture. Fuel Proc Technol,2005,86(8):1503-1521
    [92]毛松柏,朱道平,叶宁. NCMA法脱碳新技术及应用.气体净化,2004,4(4):25-28
    [93] Houping Huang, Shih-Ger Chang, Thomas Dorchak. Method to regenerateammonia for the capture of carbon dioxide. Energy Fuels,2002,16(4):904-910
    [94]韩永嘉,王树立等.二氧化碳分离捕集技术的研究现状与进展.二氧化碳减排控制技术与资源化利用研讨会
    [95]时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001
    [96]周家贤. CO2-21世纪的新探源.化工进展,2001,1(20):1-3
    [97]张阿玲.温室气体CO2的控制和回收利用.北京:中国环境出版社,1996
    [98] Cecille L, Toussaint J C. Future industrial prospects of membrane process. NewYork: Elsevier,1989
    [99] J. E. Hogsett, W. H. Mazur, Estimate membrane system area, HydrocarbonProcess,1983,62(8):52-54
    [100] W. J. Schell, C. D. Houston, Process gas with selective membranes,Hydrocarbon Process.1982,61(9):249-252
    [101] F. G. Russell, A. B. Coady, Gas-permeation process economically recovers CO2from heavily concentrated streams, Oil Gas J.1982,28:128-134
    [102] S. Weller, W. A. Steiner, Separation of Gases by Fractional Permeation throughMembranes, J. Appl. Phys.1950,21(4):279
    [103] Powell C E, Qiao G G, Polymeric CO2/N2gas separation membranes for thecapture of carbon dioxide from power plant flue gases. Journal of Membrane Science,2006,279:1-49
    [104] Stern S A, Polymers for gas separations: The next decade. Journal of MembraneScience,1994,94:1-65
    [105] Illing G, Hellgardt K, Wakeman R J, et al. Preparation and characterization ofpolyaniline based membranes for gas separation. Journal of Membrane Science,2001,184:69-78
    [106] Xu Z K, Dannenberg C, Springer J, et al. Novel poly(arylene ether) asmembranes for gas separation. Journal of Membrane Science,2002,205:23-31
    [107] Pixton M R, Paul D R, Gas transport properties of polyarylates. Part I:Connector and pendant group effects. Journal of Polymer Science Part B: PolymerPhysics,1995,33(7):1135-1149
    [108] Aguilar-Vega M, Paul D R, Gas transport properties of polycarbonates andpolysulfones with aromatic substitutions on the bisphenol connector group. Journal ofPolymer Science Part B: Polymer Physics,1993,31(11):1599-1610
    [109] Li Y, Ding M, Xu J, Gas separation properties of aromatic polyetherimides from1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride and3,5-diaminobenzic acid or itsesters. Journal of Applied Polymer Science,1997,63(1):1-7
    [110] Lin H, Freeman B D, Gas solubility, diffusivity and permeability inpoly(ethylene oxide). Journal of Membrane Science,2004,239:105-117
    [111] Stern S A, Mi Y, Yamamoto H, Clair A K, Structure/permeability relationshipsof polyimide membranes. Applications to the separation of gas mixtures. Journal ofPolymer Science Part B: Polymer Physics,1989,27(9):1887-1909
    [112] Aguilar-Vega M, Paul D R, Gas transport properties of polyphenylene ethers.Journal of Polymer Science Part B: Polymer Physics.1993,31(11):1577-1589
    [113] Zimmerman C. M., Koros W. J., Entropic selectivity analysis of a series ofpolypyrolones for gas separation membranes. Macromolecules,1999,32(10):3341-3350
    [114] Aitken C L, Koros W J, Paul D R, Effect of structural symmetry on gastransport properties of polysulfones. Macromolecules,1992,25(13):3424-3434
    [115]郝继华,王志,王世昌. CO2/CH4醋酸纤维素分离膜的制备.高分子材料科学与工程,1997,13(4):64-68
    [116] Colin A. Scholes, Sandra E. Kentish and Geoff W. Stevens. Carbon dioxideseparation through polymeric membrane systems for flue gas application. RecentPatents on Chemical Engineering,2008,1(1):52-66
    [117]黄肖容,李雪辉. γ-氧化铝膜的表面酸碱性.分子催化,2001,15(1):6-10
    [118]黄肖容,隋贤栋,张学斌.用梯度硅藻土膜分离CO2/N2混合器.天然气化工,2002,27(1):9-13
    [119] Namba Takemi. EP0674939.2001-04-28
    [120]郑彤,李邦民,王金渠.多孔陶瓷载体上Y型分子筛膜的气体渗透性能.化工装备技术,2003,24(4):14-16
    [121]赵基钢,刘继昌,孙辉等.无机膜的制备及应用,化工科技,2005,13(5)68-72
    [122] A. B. Fuertes, D. M. Nevskaia and T. A. Ceteno. Carbon composite membranesfrom Matrimid and Kapton polyimides for gas separation Microporous andMesoporous Materials,1999,33(1-3):115-125
    [122] Shehawat D, Luebke D R, Pennline H W. A review of carbon dioxide selectivemembranes-A topical report. National Energy Technology Laboratory, United StatesDpartment of Energy2003
    [124] Bauer J M, Elyassini, Moncorge G. et al. New developments and applications ofcarbon membranes, Key Eng. Mater,1991,61(62):207-212
    [125] Liang G H, Sha G Y, Guo S C. Carbon membranes for gas separation derivedfrom coal tar pitch. Carbon,1999,37(9):1391-1397
    [126]刘茉娥等.膜分离技术.北京:化学工业出版社,1998
    [127]吕丽春,李琳.陶瓷膜气体在分离中的应用.膜科学与技术,1995,15(2):12-20
    [128]唐莉,王宝林,陈健.应用变压吸附法分离回收CO2,低温与特气,1998,2:47-52
    [129]许阳,毛如玉.能源洁净利用与CO2排放控制技术,能源工程,2002,4:11-15
    [130]李兰廷,解强.温室气体CO2的分离技术.低温与特气,2005,4(23):1-5
    [131]黄文强等.吸附分离材料.北京:化学工业出版社,2005
    [132]大矢晴彦著.分离的科学与技术.张瑾译.北京:中国轻工业出版社,1999
    [133]梁国仑.吸附技术在特种气体制造中的应用.化工科技动态,1992,11:14-18
    [134] Humphrey, J. L. and Keller, G. E., II.(1997) Separation Process Technology.McGraw-Hill, New York, NY
    [135] Hsing C. Cheng, Frank B. Hill. Recovery and Purification of Light Gases byPressure Swing Adsorption. Industrial Gas Separations, Chapter10:195-211
    [136] E. Buss, Gravimetric Measurement of Binary Gas Adsorption Equilibria ofMethane-Carbon dioxide Mixtures on Activated Carbons, Gas. Sep. Purif.1995,19(3):189-197
    [137] F. Foeth, M. Andersson, H. Bosch, G. Aly and T. Reith. Separation of DiluteCO2-CH4Mixtures by Adsorption on Activated Carbon, Separation Science andTechnology,1994,29(1):93-118
    [138]梁肃臣,常用吸附剂的基础性研究及应用,低温与特气,1995,4:55-60
    [139] Na Byung Ki, Lee Hwanug, Koo Kee Kahb, et al. Effect of rinse and recyclemethods on the pressure swing adsorption process to recover CO2from power plantflue gas using activated carbon. Ind. Eng. Chem. Res.2002,41(1):5498-5503
    [140] Ranjani V.siriwardane, Shen Ming Shing et al. Adsorption of CO2on molecularsieves and activated carbon, Energy&Fuels,2001,15(1):279-284
    [141] Vincent G. gomcs, Kevin W.K. Yee. Pressure swing adsorption for carbondioxide sequestration from exhaust gases, Separation and Purification Technology,2002,28(1):161-171
    [142] Xiaochun Xu, Chunshan Song, John M. Andresen, et al. Preparation andcharacterization of novel CO2molecular basket adsorbents based onpolymer-modified mesoporous molecular sieve MCM-41. Microporous andMesoporous Materials,2003,62(1-2):29-45
    [143] Z. Feng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, et al.Ethylenediamine-Modified SBA-15as Regenerable CO2Sorbent. Ind. Eng. Chem.Res.2005,44:3099-3105
    [144] Xiuwu Liu, Li Zhou, Xin Fu, et al. Adsorption and regeneration study of themesoporous adsorbent SBA-15adapted to the capture/separation of CO2and CH4,Chemical Engineering Science,2007,62(4):1101-1110
    [145] Nakagawa K., Ohashi T. A novel method of CO2capture from high temperaturegases. J. Electrochem. Soc.,1998,145(4):1344-1346
    [146] Abanades J Carlos. Capture of CO2from combustion gases in a fluidized bed ofCaO, AICHE,2004,50(7):1614-1622
    [147] Barker R. The reversibility of the reaction CaCO3=CaO+CO2. J. Appl.Chembiotechnol.,1973,23:733-742
    [148] Karstrom C W. Method and apparatus for fractionating gaseous mixtures byadsorption, US,2944627,1960
    [149] Montgareuil and G. D. Pierre. Process for separating a binary gaseous mixtureby adsorption,US,3155468,1964
    [150] D. M. Ruthven, S. Farooq, and K. S. Knaebel. Pressure Swing Adsorption. NewYork, VCH Publishers.1994:67-70
    [151]郜豫川,陈健.变压吸附技术在我国的应用现状及发展.低温与特气,1993,3:1-9
    [152]徐龙君,鲜学福,杨明莉.煤矿区煤层气浓缩净化方面的基础研究,中国煤层气,2005,2(4):11-17
    [153]陈洪舫.基本有机化工分离工程.北京:化学工业出版社,1981
    [154]钟丽梅,变压吸附脱除气体中微量硫化氢的研究,博士学位论文,天津:天津大学,2006
    [155] Yang, R. T. Gas Separation by Adsorption Process. Butterworth, Boston, MA.1987
    [156] Marsh W D., Pramuk F S., Hoke R C., Skarstrom C W. US Patent3142547(1964), to Esso Research and Engineering Company.
    [157] Berlin N H. US Patent3280536(1966), to Esso Research and EngineeringCompany
    [158] Wagner J L. US Patent3430418(1969), to Union Carbide Corporation.
    [159]费维杨,艾宁,陈健.温室气体的捕集和分离-分离技术面临的挑战和机遇.化工进展,2005,24(1):1-4
    [160] Takamura Y S, Narita J, Aoki S. Evaluation of dual-bed pressure swingadsorption for CO2recovery from boiler exhaust gas. Separation and purificationtechnology,2001,24(3):519-528
    [161] Yoshida M, Ritter J A, Kodama A. Enriching reflux and parallel equalizationPSA process for concentrating trace components in air. Indust Eng Chem Research,2003,42:1795-1805
    [162] Chengtung C, Lee K C, Chaoyuh C. Concentration and recovery of carbondioxide from flue gas by vacuum swing adsorption. J Chin Institute Chem Eng,2003,34(1):135-142
    [163] Ebner A D, Ritter J A. Equilibrium theory analysis of dual reflux PSA forseparation of a binary mixture. J Chin Institute Chem Eng,2004,50(1):2418-2429
    [164] David T K, Paul A W. Modeling and evaluation of dual-reflux pressure swingadsorption cycles. Chem Eng Sci,2006,61(22):7223-7233
    [165] Steven P R, Amal M, Armin D E. Heavy reflux PSA cycles for CO2recoveryfrom flue gas: part1performance evaluation. Adsorption,2008,14(2-3):399-413
    [166] Salil U. Rege, Ralph T. Yang, Kangyi Qian,et.al, Air-prepurification by pressureswing adsorption using single/layered beds, Chemical Engineering Science,2001,56(8):2745-2759
    [167]刘应书,郑新港等.烟道气低浓度二氧化碳的变压吸附法富集研究.现代化工,2009,29(7):76-79
    [168] Vyas S N, Patwardhan S R, Gupta indu, et al. Bulk separation and purificationof CH4/CO2mixture on4A/13X molecular sieves by using pressure swing adsorption.Sep. Sci. Technol,1991,26(10-11):1419-1431
    [169] Foeth S F, Andersson M, Bosch H, et al. Separation of Dilute CO2-CH4Mixtureby Adsorption on Activated Carbon. Separation Science and Technology,1994,29(1):93-118
    [170] Gelacio A. A., Maria E. P., Roberto L. R., Adsorption Kinetic Behaviour of PureCO2、N2and CH4in Natural Clinoptilolite at Different Temperatures, AdsorptionScience&Technology,2003,21(1):81-91
    [171] Delgado J A, Uguina M A, and Gomez J M.. Adsorption equilibrium of carbondioxide, methane and nitrogen onto Na-and H-mordenite at high pressures,Separation and Purification Technology,2006,48(3):223-228
    [172] J. Zhou and W. Wang. Adsorption and Diffusion of Supercritical CarbonDioxide in Slit Pores, Langmuir,2000,16(21):8063-8070
    [173] X. Hu, S. Qiao, and D. D.Do. Multicomponent Adsorption Kinetics of Gases inActivated Carbon: Effect of Pore Size Distribution, Langmuir,1999,15(19):6428-6437
    [174] E. D. Akten, R. Siriwardane, and D. S. Sholl. Monte Carlo Simulation of Singleand Binary-Component Adsorption of CO2, N2and H2in Zeolite Na-4A, EnergyFuels,2003,17(4):977-983
    [175] X. Peng, D. Cao, and J. Zhao. Grand canonical Monte Carlo simulation ofmethane-carbon dioxide mixtures on ordered mesoporous carbon CMK-1. Separationand Purification Technology,2009,68(1):50-60
    [176] Q. Yang, B. Liu, C. Zhong. Molecular Simulation of CO2/H2MixtureSeparation in Metal-organic Frameworks: Effect of Catenation and ElectrostaticInteractions, Chinese Journal of Chemical Engineering,2009,17(5):781-790
    [177] H. Kayser, Wied. Ann.1881,14:451
    [178] IUPAC Mannual of Symbols and Terminology, Appendix2, Pt.1, Colloid andSurface Chemistry Pure Appl. Chem.1972,31:578
    [179] Tan Ziming and Gubbins,K.E., Adsorption in carbon micropores at supercriticaltemperature. J. Phys. Chem.,1990,94(15):6061-6069
    [180] Specovius J and Findenegg G H. Physical Adsorption of Gases at HighPressures: Argon and Methane onto Graphitized Carbon Black, Ber. Bunsenges. Phys.Chem.,1978,82(2):174-180
    [181] Gregg S. J., Sing K. S., Adsorption surface area and porosity,2nd ed. Suffolk:St Edmundsbury Press,1982,25-26
    [182] S. Brunauer, L. S. Deming, W. S. Deming and E. Teller. J. Amer. Chem. Soc.,1940,62:1723
    [183] S. Brunauer, P. H. Emmett and E. Teller. J. Amer. Chem. Soc.,1938,60:309
    [184] S. Brunauer, The adsorption of Gases and Vapours, Oxford University Press,1945
    [185] Menon P G, Adsorption at high pressures. Chem. Rev.,1968,68(3):277-294
    [186] Yang R. T., Gas Separation by Adsorption Processes, Butterworths, London,1987
    [187] Alcaniz Monge J., Dela Casalillo M. A., Cazorla Amoros D., et al., MethaneStorage in Activated Carbon Fibres, Carbon1997,35(2):291-297
    [188] Amankwah K. A. G. and Schwarz J. A., A Modified Approach for EstimatingPseudo-Vapor Pressures in the Application of the Dubinin-Astakhov Equation, Carbon,1995,33(9):1313-1319
    [189] Malbrunot P., Vermesse J., et al., Adsorption Measurements of Argon, Neon,Kryption, Nitrogen and Methane on Activated Carbon up to650MPa. Langmuir,1992,8(2):577-580
    [190] F. Dreisbach, R. Staudt and J. U. Keller, High Pressure Adsorption Data ofMethane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures onActivated Carbon, Adsorption,1999,5(3):215-227
    [191] Agarwal R. K. and Schwarz J. A., Analysis of High Pressures Adsorption ofGases on Activated Carbon by Potential Theory, Carbon,1988,26(6):873-887
    [192] Li Zhou, Yaping Zhou, Linearization of adsorption isotherms for high-pressureapplications, Chemical Engineering Science,1998,53(14):2531-2536
    [193]周理,周亚平.关于氢在活性炭上高压吸附特征的实验研究,中国科学,1996,26(5):473-480
    [194]周亚平,周理.超临界氢在活性炭上的吸附等温线研究,物理化学学报,1997,13(2):119-126
    [195] E. Díaz, E. Mu oz, A. Vega, S. Ordó ez, Enhancement of the CO2retentioncapacity of Y zeolites by Na and Cs treatments: Effects of adsorption temperature andwater treatment, Ind. Eng. Chem. Res.,2008,47(2):412-418
    [196] I. Majchrzak-Kuceba, W. Nowak, A thermogravimetric study of the adsorptionof CO2on zeolites synthesized from fly ash, Thermochimica Acta,2005,437(1-2):67-74
    [197] R.V. Siriwardane, M.S. Shen, E.P. Fisher and J. Losch, Adsorption of CO2onzeolites at moderate temperature, Energy Fuels,2005,19(3):1153-1159
    [198] Kim, J.H., Lee, C.H., Kim, W.S., Lee, J.K., Kim, J.T., Suh, J.K., Lee, J.M.,Adsorption equilibria of water vapor on alumina, zeolite13X, and a zeoliteX/activated carbon composite, J. Chem. Eng. Data,2003,48(1):137-141
    [199] Zhao D. Y., Huo Q. H., Feng J. L., et al., Nonionic Triblock and Star DiblockCopolymer and Oligomeric Surfactant Syntheses of Highly Ordered HydrothermallyStable Mesoporous Silica Structures, J. Am. Chem. Soc.1998,120(24):6024-6036
    [200] Zhao D. Y., Feng J., Huo Q., et al. Triblock Copolymer Syntheses ofMesoporous Silica with Periodic50to300Angstrom Pores, Science.1998,279(5350):548-552
    [201] Beck J. S., Vartuli J. C., Roth W. J., et al., A new family of mesoporousmolecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.1992,114(27):10834-10843
    [202] Kresge C. T., Leonowicz M. E., Roth W. J., et al., Ordered mesoporousmolecular sieves synthesized by a liquid-crystal template mechanism, Nature,1992,359:710-712
    [203]刘秀武,有序介孔材料吸附功能研究,博士学位论文,天津:天津大学,2005
    [204] Sing K. S. W., Adsorption methods for the characterization of porous materials,J. Coll. Int. Sci.,1998,77(1):3-10
    [205] J. Rouquerl, K. S. W. Sing, Adsorption at the gas-solid and liquid-solid interface:Proceedings of an International symposium, America: Elsevier Scientific Pub.,1981:303-350
    [206] L. Diaz, R. Hernandez-Huesca and G.. Aguilar-Armenta. Characterization of themicroporous structure of activated carbons through different approaches. Ind. Eng.Chem. Res.,1999,38(4):1396-1399
    [207] N. Setoyama, T. Suzuki and K. Kaneko. Simulation study on the relationshipbetween a high resolution αs-plot and the pore size distribution for activated carbon.Carbon,1998,36(10):1459-1467
    [208] Aik Chong Lua, Jia Guo. Activated carbon prepared from oil palm stone byone-step CO2activation for gaseous pollutant removal. Carbon,2000,38(7):1089-1097
    [209] A.Marcilla, S.Garcia-Garcia, M. Asensio, J.A.Conesa. Influence of thermaltreatment regime on the density and reactivity of activated carbons from almondshells. Carbon,2000,38(3):429-440
    [210]李梦青,范壮军,周亚平,周理,椰壳炭制备高表面积活性炭活化方法比较,天津大学学报,2000,33(1):44-47
    [211] S. A. Korili and A. Gil. On the application of various methods to evaluate themicroporous properties of activated carbons. Adsorption,2001,7(3):249-264
    [212]苏伟,椰壳基微孔活性炭制备与表征研究,博士学位论文,天津:天津大学,2003
    [213] Cazorla-Amoros, J.Alcaniz-Monge, M.A.delaCasa-Lillo and A.Linares-Solano.CO2as an Adsorptive To characterize carbon molecular sieve and activated carbons.Langmuir,1998,14(16):4589-4596
    [214] Z. Ryu, J. Zheng, and M. Wang, Characterization of pore size distributions oncarbonaceous adsorbents by DFT, Carbon,1999,37(8):1257-1264
    [215] X. Shao, X. Zhang, and W. Wang, Comparison of Density Functional Theoryand Molecular Simulation Methods for Pore Size Distribution of MesoporousMaterials, Acta Phys.Chim.Sin.,2003,19(6)::538-542
    [216] Jaroniec M., Kruk M., Olivier J. P., Standard Nitrogen Adsorption Data forCharacterization of Nanoporous Silicas, Langmuir,1999,15(16):5410-5413
    [217] Do D. D., Adsorption analysis: Equilibria and Kinetics, London: ImperialCollege Press,1998:290-300
    [218]薛全民,二氧化碳与氮气或甲烷混合物的吸附分离,博士学位论文,天津:天津大学,2008
    [219]刘聪敏,吸附法浓缩煤层气甲烷研究,博士学位论文,天津:天津大学,2010
    [220] D. M. Ruthven, Principles of Adsorption and Adsorption Processes, New York:Wiley,1984
    [221]熊洪允,曾绍标,毛云英,应用数学基础,天津:天津大学出版社,1994
    [222] A. Malek and S. Farooq, Effect of velocity variation due toadsorption-desorption on equilibrium data from breakthrough experiments, Chem.Eng. Sci.,1995,50(4):737-740
    [223] A. Malek and S. Farooq, Determination of equilibrium isotherms using dynamiccolumn breakthrough and constant flow equilibrium desorption, J. Chem. Eng. Data,1996,41(1):25-32
    [224] A. Malek and S. Farooq, Kinetics of Hydrocarbon Adsorption on ActivatedCarbon and Silica gel, AICHE. J.,1997,43(3):761-776
    [225] Kapoor A., Yang R. T., Roll-up in Fixed-bed, Multicomponent AdsorptionUnder Pore-Diffusion Limitation, AICHE Journal,1987,33(7):1215-1217
    [226] Hu X. J., Do D. D., Effect of Surface Energetic Heterogeneity on the Kinetics ofAdsorption of Gases in Microporous Activated Carbons, Langmuir,1993,9(10):2530-2536
    [227] F. Rouquerol, J. Rouqerol, K. Sing, Adsorption by powders and porous solids,London: Academic Press,1999:440-441
    [228] Harlick, P.J.E., Abdelhamid Sayari, Applications of pore-expanded mesoporoussilicas.3. Triamine silane grafting for enhanced CO2adsorption, Ind. Eng. Chem. Res.,2006,45(9):3248-3255
    [229] H. Norihito, Y. Katsunori, Y. Tatsuaki, Adsorption characteristics of carbondioxide on organically functionalized SBA-15, Mecro. Meso. Mater.,2005,84(1-3):
    [230] N. Hiyoshi, K. Yogo, T. Yashima, Adsorption of carbon dioxide onaminosilane-modified mesoporous silica., Micopor. Mesopor. Mater.2005,84(1):29-36
    [231] Zhou L., Zhong L. M., Yu M., et al., sorption and desorption of a minor amountof H2S on silica gel covered with a film of triethanolamine, Ind. Eng. Chem. Res.2004,43(7):1765-1767
    [232] M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2capture byadsorption with nitrogen enriched carbons, Fuel,2007,86(14):2204-2212
    [233] E. Díaz, E. Mu oz, A. Vega, S. Ordó ez, Enhancement of the CO2retentioncapacity of Y zeolites by Na and Cs treatments: Effects of adsorption temperature andwater treatment, Ind. Eng. Chem. Res.,2008,47(2):412-418
    [234] I. Majchrzak-Kuceba, W. Nowak, A thermogravimetric study of the adsorptionof CO2on zeolites synthesized from fly ash, Thermochimica Acta,2005,437(1-2):67-74
    [235] R.V. Siriwardane, M.S. Shen, E.P. Fisher and J. Losch, Adsorption of CO2onzeolites at moderate temperature, Energy Fuels,2005,19(3):1153-1159
    [236] Kim, J.H., Lee, C.H., Kim, W.S., Lee, J.K., Kim, J.T., Suh, J.K., Lee, J.M.,Adsorption equilibria of water vapor on alumina, zeolite13X, and a zeoliteX/activated carbon composite, J. Chem. Eng. Data,2003,48(1):137-141
    [237] Huang, H.Y., Yang, R.T., Amine-grafted MCM-48and silica xerogel as superiorsorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res.,2003,42(12):2427-2433
    [238] G. P. Knowles, J. V. Graham, S. W. Delaney, et al., Aminopropyl-functionalizedmesoporous silicas as CO2adsorbents, Fuel Process Technol,2005,86(14-15):1435-1448
    [239] N. Hiyoshi, K. Yogo, T. Yashima, Adsorption of Carbon Dioxide on AmineModified SBA-15in the Presence of Water Vapor, Chem. Lett.,2004,33(5):510-511
    [240] Leal, O., Bolivar, C., Ovalles, C., Garcia, J.J., and Espidel, Y., Reversibleadsorption of carbon dioxide on amine surface-bonded silica gel, Inorganica ChimicaActa1995,240(1-2):183-189
    [241] Steven Shimizu, Changsik Song and Michael Strano, Role of Specific AmineSurface Configurations for Grafted Surface: Implications for Nanostructured CO2Adsorbents, Langmuir,2011,27(6):2861-2872

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700