用户名: 密码: 验证码:
新型溶胶凝胶法制备SiCN(O)陶瓷前驱体及相应陶瓷材料的高温热行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用新型无氧溶胶凝胶法制备的硅碳氮基前驱体陶瓷材料具有优异的力学和高温抗氧化、抗腐蚀性以及其他的功能特性,在高温材料和功能材料方面有着重要的应用前景。为了更深一步认识此类硅基前驱体陶瓷的结构与性能之间的关系,通过分子设计制备了含有不同功能基团的硅基前驱体陶瓷,研究了材料的高温热行为以及相应的结构转变。
     通过六氯硅氧烷与双(三甲基硅基)碳化二亚酰胺(BTSC)反应合成了硅碳氧氮陶瓷前驱体,将氧定量可控地引入到硅碳氮三维网络结构中。研究了催化剂吡啶对前驱体交联度的影响,得到Cl_3Si-O-SiCl_3(pyridine)_2晶体。量子化学计算证实Cl_3Si-O-SiCl_3(pyridine)_2是存在于反应过程中的中间体,可以加速前驱体的交联进程。还研究了前驱体交联度受交联温度和时间的影响。此前驱体在1000°C热解后的陶瓷产率为50%,SiCON陶瓷化的基体呈现无定形态,分析认为主要是Si_2N_2O的无定形相。进一步在1400~1500°C热处理后,无定形态的Si2N2O相的量逐渐减少而Si_3N_4相的量逐渐增加,在1500°C时两相均以晶体形态从陶瓷基体中析出。分析认为1000°C热解后陶瓷基体中的C在高温热处理过程中与Si_2N_2O相反应而消耗掉,因此1500°C热处理后的陶瓷体中主要是Si_3N_4晶相以及少量的Si_2N_2O相,而没有发现碳化硅相。
     为了提高陶瓷产率,将具有高交联活性的乙烯基引入。通过乙烯基三氯硅烷与BTSC反应合成了聚乙烯基硅基碳氮亚酰胺聚合物。在1000°C热解此前驱体聚合物获得了产率高达70%的陶瓷,由Si-C-N相组成,陶瓷体呈现无定形纳米多孔结构,孔的大小为十几到几十纳米。进一步研究此硅碳氮前驱体陶瓷在1000~1500°C的高温热行为发现,随着温度的升高陶瓷体中的气孔尺寸减小,并有结晶Si_3N_4相从无定形SiCN基体中析出。
     为了制备无模板添加的多孔陶瓷材料,通过乙烯基三氯硅烷、甲基二氯硅烷共同与BTSC反应合成了一种聚双功能基硅基碳氮亚酰胺聚合物,这种聚合物同时具有三维和二维的结构单元。此硅碳氮前驱体聚合物在1000°C热解后,获得无定形微米多孔结构的陶瓷体,气孔率为85%,孔尺寸平均约为10μm。尽管随着温度的升高孔径会有所减小,但这种多孔结构会一直保持到1500°C。在1500°C热处理后,结晶化的Si_3N_4相从无定形SiCN基体中析出。
     为了研究前驱体陶瓷中不同碳含量对陶瓷的结构和性能的影响,通过三种含有不同功能基团的氯硅烷与BTSC恒温回流反应合成了聚硅基碳氮亚酰胺陶瓷前驱体。在1000°C氮气气氛下热解后得到产率不同的陶瓷材料。三种前驱体陶瓷材料均呈现出无定形微米多孔结构。在1400°C热处理后,前驱体陶瓷出现析晶趋势。但具体的析晶温度依赖于陶瓷基体内的碳含量。碳含量高的材料在较高的温度从无定形SiCN基体中析出Si_3N_4晶相,表明其具有较高的热力学稳定性。
The silicon carbonitride based ceramics, which are fabricated via the novel sol-gelprocess, possess excellent mechanical properties, oxidation and corrosion resistance athigh temperature and other functional properties, and they are promising materials forthe application as high-temperature structural and functional materials. In order toknow further the relationship between their structure and properties of this kind ofsilicon based precursor derived ceramics, different functional groups-containingpolysilylcarbodiimides precursor ceramics were fabricated by the design at amolecular level. The thermolysis behavior and relevant structure transformation ofthis precursor derived ceramics were investigated.
     Silicon oxycarbonitride (SiCON) ceramic precursors were fabricated by thereaction of hexachlorodisiloxane and bis(trimethylsilyl)carbodiimide (BTSC). Theoxygen was controllably introduced into Si-[NCN] network. The influence of pyridineas a catalyst for the cross-linking reaction was studied. The crystal structure ofCl_3Si-O-SiCl_3(pyridine)_2is presented. The result of quantum chemical calculations isin support of this adduct being a potential intermediate in the pyridine catalyzedsol-gel process. The degree of cross-linking is accelerated by the addition of pyridineand also depends on the aging time and temperature. The ceramic yield after pyrolysisat1000°C reaches up to50%. The ceramic reveals a porous SiCON matrixcomprised of Si_2N_2O phases. Further heat-treatment up to1500°C caused thetransformation of Si_2N_2O phase to crystalline Si_3N_4phase. The carbon in theSiCON ceramic matrix was consumed by Si_2N_2O with the increasing temperature.Thus, the final materials contain majority of Si_3N_4and minor Si_2N_2O crystallinephases, and no SiC phase was observed.
     In order to enhance the ceramic yield of the silicon carbonitride precursors, activevinyl-containing polysilylcarbodiimides were synthesized by the reaction ofvinylchlorosilane and BTSC. The high ceramic yield of70%was obtained after thepyrolysis of the SiCN precursor. The SiCN ceramic exhibits an amorphousnano-porous structure with pore size of tens of nanometer. The thermolysis behaviorof the SiCN ceramics between1000and1500°C indicates that the pore size decreasesas the temperature rises and the separation of crystalline Si_3N_4phase from the amorphous SiCN ceramic matrix is observed.
     In order to fabricate porous silicon carbonitride ceramics without any templates, anovel double functional groups-containing polysilylcarbodiimides were synthesizedby the reaction of a mixture of vinyltrichlorosilane and methyldichlorosilane withBTSC. The poly(R1R2silylcarbodiimide) precursor possesses three-andtwo-dimension structure units. The polymeric precursor was converted into anamorphous porous SiCN ceramic with85%porosity and about10micrometer poresby pyrolysis at1000°C in nitrogen. The porous structure keeps up to1500°C andpore size decreases slightly as the temperature rises. The separation of crystallineSi_3N_4from the amorphous SiCN ceramic matrix is observed at1500°C.
     In order to study the influence of the content of carbon on the structure andproperties of polymer derived ceramics, polysilylcarbodiimides were synthesized bydifferent chlorosilanes (ethyltri-, hexyl-and benzyl-trichlorosilane) in reaction withBTSC. The ceramic yields of the three samples after pyrolysis at1000°C differ fromeach other due to various functional groups in the polysilylcarbodiimides. The SiCNceramics exhibit an amorphous porous structure at this temperature. All three SiCNmaterials convert from amorphous station to crystalline structure above1400°C.However, the temperature of crystallization depends on the content of carbon in theceramic matrix. In the sample with higher content of carbon the separation of Si_3N_4from the amorphous SiCN matrix is observed at higher temperature, demonstratingthe higher thermal stability against crystallization.
引文
1. Yajima, S.; Hayashi, J.; Omori, M., Continuous silicon carbide fiber of hightensile strength. Chem. Lett.1975,4(9),931-934.
    2. Yajima, S.; Hayashi, J.; Omori, M.; Okamura, K., Development of a siliconcarbide fibre with high tensile strength. Nature1976,261,683-685.
    3. Yajima, S.; Hasegawa, Y.; Okamura, K.; Matsuzawa, T., Development ofhigh tensile strength silicon carbide fibre using an organosilicon polymer precursor.Nature1978,273,525-527.
    4. Kroll, P.; Hoffmann, R., Theoretical tracing of a novel route from molecularprecursors through polymers to dense, hard C3N4solids. Mater. Chem. Phys.1997,47,109.
    5. Riedel, R.; Passing, G.; Sch nfelder, H.; Brook, R. J., Synthesis of densesilicon-based ceramics at low temperatures. Nature1992,355,714-717.
    6. Riedel, R.; Seher, M.; Mayer, J.; Szabó, D., Polymer-derived Si-based bulkceramics, part I: Preparation, processing and properties. J. Eur. Ceram. Soc.1995,15(8),703-715.
    7. Riedel, R.; Greiner, A.; Miehe, G.; Dressler, W.; Fuess, H.; Bill, J.; Aldinger,F., The first crystalline solids in the ternary SiCN system. Angew. Chem. Int. Ed.1997,36(6),603-606.
    8. Ziegler, G.; Kleebe, H. J.; Motz, G.; Muller, H.; Trassl, S.; Weibelzahl, W.,Synthesis, microstructure and properties of SiCN ceramics prepared from tailoredpolymers. Mater. Chem. Phys.1999,61(1),55-63.
    9. Iwamoto, Y.; V lger, W.; Kroke, E.; Riedel, R., Crystallization behavior ofamorphous Si–C–N ceramics derived from organometallic precursors. J. Am. Ceram.Soc2001,84(10),2170–2178.
    10. Kleebe, H.; Suttor, D.; Müller, H.; Ziegler, G., Decomposition-crystallizationof polymer-derived SiCN ceramics. J. Am. Ceram. Soc1998,81(11),2971-2977.
    11. Weibelzahl, W.; Motz, G.; Suttor, D.; Ziegler, G., Corrosion stability andmechanical properties of polysilazane-derived SiCN-ceramics. The Science ofEngineering Ceramics II1998,111-113.
    12. Weinmann, M.; Haug, R.; Bill, J.; De Guire, M.; Aldinger, F.,Boron-modified polysilylcarbodi-imides as precursors for Si-B-C-N ceramics:synthesis, plastic-forming and high-temperature behavior. Appl. Organomet. Chem.1998,12(10-11),725-734.
    13. Weinmann, M.; Kamphowe, T.; Schuhmacher, J.; Muller, K.; Aldinger, F.,Design of polymeric Si-B-C-N ceramic precursors for application in fiber-reinforcedcomposite materials. Chem. Mater.2000,12(8),2112-2122.
    14. Weinmann, M.; Schuhmacher, J.; Kummer, H.; Prinz, S.; Peng, J.; Seifert, H.J.; Christ, M.; Muller, K.; Bill, J.; Aldinger, F., Synthesis and thermal behavior ofnovel Si-B-C-N ceramic precursors. Chem. Mater.2000,12(3),623-632.
    15. Bill, J.; Kamphowe, T. W.; Muller, A.; Wichmann, T.; Zern, A.; Jalowieki, A.;Mayer, J.; Weinmann, M.; Schuhmacher, J.; Muller, K., Precursor-derived Si-(B-)CNceramics: thermolysis, amorphous state and crystallization. Appl. Organomet. Chem.2001,15(10),777-793.
    16. Muller, A.; Gerstel, P.; Weinmann, M.; Bill, J.; Aldinger, F., Si-B-C-Nceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane:1.precursor synthesis. Chem. Mater.2002,14(8),3398-3405.
    17. Muller, A.; Peng, J.; Seifert, H.; Bill, J.; Aldinger, F., Si-B-C-N ceramicprecursors derived from dichlorodivinylsilane and chlorotrivinylsilane:2.ceramization of polymers and high-temperature behavior of ceramic materials. Chem.Mater.2002,14(8),3406-3412.
    18. Peng, J., Thermochemistry and constitution of precursor-derived Si-(B-)-C-Nceramics. PH.D Thesis, Stuttgart University2002.
    19. Schiavon, M. A.; Soraru, G. D.; Yoshida, I. V. P., Poly(borosilazanes) asprecursors of Si-B-C-N glasses: synthesis and high temperatures properties. J.Non-Cryst. Solids2004,348,156-161.
    20. Kroke, E.; Li, Y. L.; Konetschny, C.; Lecomte, E.; Fasel, C.; Riedel, R.,Silazane derived ceramics and related materials. Mater. Sci. Eng., R2000,26(4-6),97-199.
    21. Kleebe, H. J.; Stormer, H.; Trassl, S.; Ziegler, G., Thermal stability of SiCNceramics studied by spectroscopy and electron microscopy. Appl. Organomet. Chem.2001,15(10),858-866.
    22. Liew, L. A.; Zhang, W.; Bright, V. M.; An, L.; Dunn, M. L.; Raj, R.,Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique.Sensors and Actuators: A. Physical2001,89(1-2),64-70.
    23. Liew, L. A.; Liu, Y. P.; Luo, R. L.; Cross, T.; An, L. N.; Bright, V. M.; Dunn,M. L.; Daily, J. W.; Raj, R., Fabrication of SiCN MEMS by photopolymerization ofpre-ceramic polymer. Sensors and Actuators: A. Physical2002,95(2-3),120-134.
    24. Liu, Y.; Liew, L. A.; Luo, R.; An, L.; Dunn, M. L.; Bright, V. M.; Daily, J. W.;Raj, R., Application of microforging to SiCN MEMS fabrication. Sensors andActuators: A. Physical2002,95(2-3),143-151.
    25. Chung, G. S., Characteristics of SiCN microstructures for harsh environmentand high-power MEMS applications. Microelectron. J.2007,38(8-9),888-893.
    26. Gregori, G.; Kleebe, H. J.; Brequel, H.; Enzo, S.; Ziegler, G., Microstructureevolution of precursors-derived SiCN ceramics upon thermal treatment between1000and1400oC. J. Non-Cryst. Solids2005,351(16-17),1393-1402.
    27. Golczewski, J. A., Thermodynamic analysis of structural transformationsinduced by annealing of amorphous Si-C-N ceramics derived from polymerprecursors. Int. J. Mater. Res.2006,97(6),729-736.
    28. Golczewski, J. A., Thermodynamic analysis of isothermal crystallization ofamorphous SiCN ceramics derived from polymer precursors. J. Ceram. Soc. Jpn.2006,114(1335),950-957.
    29. Saha, A.; Raj, R.; Williamson, D. L.; Kleebe, H., Characterisation ofnanodomains in polymer-derived SiCN ceramics employing multiple techniques. J.Am. Ceram. Soc2005,88(1),232-234.
    30. Lange, F., Effect of microstructure on strength of Si3N4-SiC compositesystem. J. Am. Ceram. Soc2006,56(9),445-450.
    31. Ramakrishnan, P. A.; Wang, Y. T.; Balzar, D.; An, L.; Haluschka, C.; Riedel,R.; Hermann, A. M., Silicoboron-carbonitride ceramics: a class of high-temperature,dopable electronic materials. Appl. Phys. Lett.2001,78,3076.
    32. Liew, L. A.; Saravanan, R. A.; Bright, V. M.; Dunn, M. L.; Daily, J. W.; Raj,R., Processing and characterization of silicon carbon-nitride ceramics: application ofelectrical properties towards MEMS thermal actuators. Sensors and Actuators: A.Physical2003,103(1-2),171-181.
    33. Fa, L.; Mei, Z. D.; Hua, Z.; Wancheng, Z., Dielectric and mechanicalproperties of hot-pressed SiCN/Si3N4composites. J. Electroceram.2006,17(1),83-86.
    34. Zhou, W.; Yan, L.; Wang, Y.; Zhang, Y., SiC nanowires: a photocatalyticnanomaterial. Appl. Phys. Lett.2006,89,1-3.
    35. Liebau-Kunzmann, V.; Fasel, C.; Kolb, R.; Riedel, R., Lithium containingsilazanes as precursors for SiCN: Li ceramics—a potential material forelectrochemical applications. J. Eur. Ceram. Soc.2006,26(16),3897-3901.
    36. Feng, Y., Electrochemical properties of heat-treated polymer-derived SiCNanode for lithium ion batteries. Electrochim. Acta2010,55,5860-5866.
    37. Graczyk-Zajac, M.; Mera, G.; Kaspar, J.; Riedel, R., Electrochemical studiesof carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ionbatteries. J. Eur. Ceram. Soc.2010,30,3235-3243.
    38. Kaspar, J.; Mera, G.; Nowak, A.; Graczyk-Zajac, M.; Riedel, R.,Electrochemical study of lithium insertion into carbon-rich polymer-derived siliconcarbonitride ceramics. Electrochim. Acta2010.
    39. Kolb, R.; Fasel, C.; Liebau-Kunzmann, V.; Riedel, R., SiCN/C-ceramiccomposite as anode material for lithium ion batteries. J. Eur. Ceram. Soc.2006,26(16),3903-3908.
    40. Riedel, R.; Mera, G.; Hauser, R.; Klonczynski, A., Silicon-basedpolymer-derived ceramics: synthesis properties and applications. J. Ceram. Soc. Jpn.2006,114(1330),425-444.
    41. Terauds, K.; Sanchez-Jimenez, P.; Raj, R.; Vakifahmetoglu, C.; Colombo, P.,Giant piezoresistivity of polymer-derived ceramics at high temperatures. J. Eur.Ceram. Soc.2010,30,2203-2207.
    42. An, L.; Wang, Y.; Bharadwaj, L.; Zhang, L.; Fan, Y. I.; Jiang, D.; Sohn, Y. H.;Desai, V. H.; Kapat, J.; Chow, L. C., Silicoaluminum carbonitride with anomalouslyhigh resistance to oxidation and hot corrosion. Adv. Eng. Mater.2004,6(5),337-340.
    43. Berger, F.; Weinmann, M.; Aldinger, F.; Müller, K., Solid-state NMR studiesof the preparation of Si–Al–C–N ceramics from aluminummodified polysilazanes andpolysilylcarbodiimides. Chem. Mater.2004,16,919-929.
    44. Dhamne, A.; Xu, W.; Fookes, B. G.; Fan, Y.; Zhang, L.; Burton, S.; Hu, J.;Ford, J.; An, L., Polymer-ceramic conversion of liquid polyaluminasilazanes forSiAlCN ceramics. J. Am. Ceram. Soc2005,88(9),2415-2419.
    45. Wang, Y.; Fan, Y.; Zhang, L.; Zhang, W.; An, L., Polymer-derived SiAlCNceramics resist oxidation at1400oC. Scripta Mater.2006,55(4),295-297.
    46. Toyoda, R.; Kitaoka, S.; Sugahara, Y., Modification of perhydropolysilazanewith aluminum hydride: preparation of poly (aluminasilazane) s and their conversioninto Si-Al-N-C ceramics. J. Eur. Ceram. Soc.2008,28(1),271-277.
    47. Saha, A.; Shah, S. R.; Raj, R.; Russek, S. E., Polymer-derived SiCNcomposites with magnetic properties. J. Mater. Res.2003,18(11),2549-2551.
    48. Dumitru, A.; Stamatin, I.; Morozan, A.; Mirea, C.; Ciupina, V., Si-C-N-Fenanostuctured ceramics from inorganic polymer precursors obtained by plasmapolymerization. Mater. Sci. Eng., C2007,27(5-8),1331-1337.
    49. Liu, Y.; Zhang, X.; Chen, C.; Zhang, G.; Xu, P.; Chen, D.; Dong, L., Thephotoluminescence of SiCN thin films prepared by C+implantation into α-SiNx:H.Thin Solid Films2010,518,4363-4366.
    50. Riedel, R.; Kroke, E.; Greiner, A.; Gabriel, A. O.; Ruwisch, L.; Nicolich, J.;Kroll, P., Inorganic solid-state chemistry with main group element carbodiimides.Chem. Mater.1998,10(10),2964-2979.
    51. Kienzle, A.; Bill, J.; Aldinger, F.; Riedel, R., Nanosized SiCN-powder bypyrolysis of highly crosslinked silylcarbodiimide. Nanostruct. Mater.1995,6(1-4),349-352.
    52. Kroll, P.; Riedel, R.; Hoffmann, R., Silylated carbodiimides in molecular andextended structures. Phys. Rev. B1999,60(5),3126-3139.
    53. Gabriel, A. O.; Riedel, R., Preparation of non-oxidic silicon ceramics by ananhydrous sol-gel process. Angew. Chem. Int. Ed.1997,36(4),384-386.
    54. Gabriel, A. O.; Riedel, R.; Dressler, W.; Reichert, S.; Gervais, C.; Maquet, J.;Babonneau, F., Thermal decomposition of poly(methylsilsesquicarbodiimide) toamorphous Si-C-N ceramics. Chem. Mater.1999,11(2),412-420.
    55. Riedel, R.; Gabriel, A. O., Synthesis of polycrystalline silicon carbide by aliquid-phase process. Adv. Mater.1999,11(3),207-209.
    56. Kim, D. S.; Kroke, E.; Riedel, R.; Gabriel, A. O.; Shim, S. C., An anhydroussol-gel system derived from methyldichlorosilane. Appl. Organomet. Chem.1999,13(7),495-499.
    57. Li, Y. L.; Kroke, E.; Klonczynski, A.; Riedel, R., Synthesis of monodispersespherical silicon dicarbodiimide particles. Adv. Mater.2000,12(13),956-961.
    58. Hering, N.; Schreiber, K.; Riedel, R.; Lichtenberger, O.; Woltersdorf, J.,Synthesis of polymeric precursors for the formation of nanocrystallineTi-CN/amorphous Si-CN composites. Appl. Organomet. Chem.2001,15(10),879-886.
    59. Lichtenberger, O.; Pippel, E.; Woltersdorf, J.; Riedel, R., Formation ofnanocrystalline titanium carbonitride by pyrolysis of poly (titanylcarbodiimide).Mater. Chem. Phys.2003,81(1),195-201.
    60. Kroke, E.; Volger, K. W.; Klonczynski, A.; Riedel, R., A sol-gel route to B4C.Angew. Chem. Int. Ed.2001,40(9),1698-1699.
    61. Voelger, K. W.; Kroke, E.; Gervais, C.; Saito, T.; Babonneau, F.; Riedel, R.;Iwamoto, Y.; Hirayama, T., B/C/N materials and B4C synthesized by a non-oxidesol-gel process. Chem. Mater.2003,15,755-764.
    62.Voelger, K. W.; Hauser, R.; Kroke, E.; Riedel, R.; Ikuhara, Y. H.; Iwamoto, Y.,Synthesis and characterization of novel non-oxide sol-gel derived mesoporousamorphous Si-C-N membranes. J. Ceram. Soc. Jpn.2006,114(1330),567-570.
    63.Lippe, K.; Wagler, J.; Kroke, E.; Herkenhoff, S.; Ischenko, V.; Woltersdorf, J.,Cyclic silylcarbodiimides as precursors for porous Si/C/N materials: formation,structures, and stabilities. Chem. Mater.2009,21(17),3941-3949.
    64. Mera, G.; Riedel, R.; Poli, F.; Müller, K., Carbon-rich SiCN ceramics derivedfrom phenyl-containing poly (silylcarbodiimides). J. Eur. Ceram. Soc.2009,29(13),2873-2883.
    65. Mera, G.; Tamayo, A.; Nguyen, H.; Sen, S.; Riedel, R., Nanodomain structureof carbon-rich silicon carbonitride polymer-derived ceramics. J. Am. Ceram. Soc2010,93(4),1169-1175.
    66. Vakifahmetoglu, C.; Menapace, I.; Hirsch, A.; Biasetto, L.; Hauser, R.;Riedel, R.; Colombo, P., Highly porous macro-and micro-cellular ceramics from apolysilazane precursor. Ceram. Int.2009,35(8),3281-3290.
    67. Xiao, Z.; Wang, A.; Kim, D.,3D macroporous SiCN ceramic patterns tailoredby thermally-induced deformation of template. J. Mater. Chem.2010,20(14),2853-2857.
    68. Wang, H.; Li, X. D.; Kim, T. S.; Kim, D. P., Inorganic polymer-derivedtubular SiC arrays from sacrificial alumina templates. Appl. Phys. Lett.2005,86,173104.
    69. Wang, H.; Zheng, S.; Li, X.; Kim, D., Preparation of three-dimensionalordered macroporous SiCN ceramic using sacrificing template method. MicroporousMesoporous Mater.2005,80(1-3),357-362.
    70. Sung, I.; Christian, I.; Mitchell, M.; Kim, D.; Kenis, P., Tailored macroporousSiCN and SiC structures for high-temperature fuel reforming. Adv. Funct. Mater.2005,15(8),1336-1342.
    71. Yan, J.; Wang, A.; Kim, D. P., Preparation of ordered mesoporous SiC frompreceramic polymer templated by nanoporous silica. J. Phys. Chem. B2006,110(11),5429-5433.
    72. Yan, J.; Wang, A.; Kim, D. P., Preparation of ordered mesoporous SiCNceramics with large surface area and high thermal stability. Microporous MesoporousMater.2007,100(1-3),128-133.
    73. Nghiem, Q. D.; Kim, D.; Kim, D. P., Synthesis of inorganic-organic diblockcopolymers as a precursor of ordered mesoporous SiCN ceramic. Adv. Mater.2007,19,2351-2354.
    74. Wan, J.; Alizadeh, A.; Taylor, S. T.; Malenfant, P. R. L.; Manoharan, M.;Loureiro, S. M., Nanostructured non-oxide ceramics templated via block copolymerself-assembly. Chem. Mater.2005,17(23),5613-5617.
    75. Roh, C.; Lee, S. H.; Francois, V., Novel precursor-derived Si-C-N ceramicmaterial for purification application. J. Chromatogr. A2008,1179(2),145-151.
    76. Dressler, W.; Riedel, R., Progress in silicon-based non-oxide structuralceramics. Int. J. Refract. Met. Hard Mater.1997,15(1),13-47.
    77. Yajima, S.; Okamura, K.; Matsuzawa, T.; Hasegawa, Y.; Shishido, T.,Anomalous characteristics of the microcrystalline state of SiC fibres. Nature1979,279,706-707.
    78. Gabriel, A. O.; Riedel, R.; Storck, S.; Maier, W. F.; Forschungsgemeinschaft,D.; Bonn, G., Synthesis and thermally induced ceramization of a non-oxidic poly(methylsilsesquicarbodi-imide) gel. Appl. Organomet. Chem.1997,11(10-11),833-841.
    79. Harshe, R. R., Synthesis and processing of amorphous Si(Al)OC bulkceramics: high temperature properties and applications. PH.D Thesis, DarmstadtUniversity of Technology2004.
    80. Mukherjee, R., Synthesis of SiCNO nanowires through heat-treatment ofpolymer-functionalized single-walled carbon nanotubes. Adv. Mater.2004,16,13.
    81. Schiavon, M. A.; Ciuffi, K. J.; Yoshida, I. V. P., Glasses in the Si-O-C-Nsystem produced by pyrolysis of polycyclic silazane/siloxane networks. J. Non-Cryst.Solids2007,353(22-23),2280-2288.
    82. Shriver, D. F.; Drezdzon, M. A., The manipulation of air-sensitivecompounds (2nd ed.). Wiley, New York.1986.
    83. Mai, K.; Patil, G., An expedient synthesis of bis(trimethylsilyl)carbodiimide.J. Organomet. Chem.1987,52,275-276.
    84. Greiner, A., Keramiken aus silylcarbodiimiden. PH.D Thesis, TechnischeUniversitaet Darmstadt1997.
    85. Gabriel, A., Darstellung und Keramisierung sauerstofffreierPolysilylcarbodiimid-Gele. PH.D Thesis, Technische Universitaet Darmstadt1998.
    86. Fester, G. W.; Wagler, J.; Brendler, E.; Bo hme, U.; Gerlach, D.; Kroke, E.,Octahedral HSiCl3and HSiCl2Me adducts with pyridines. J. Am. Chem. Soc2009,131(19),6855-6864.
    87. Padhi, B.; Patnaik, C., Development of Si2N2O, Si3N4and SiC ceramicmaterials using rice husk. Ceram. Int.1995,21(3),213-220.
    88. Rocabois, P.; Chatillon, C.; Bernard, C., Thermodynamics of the SiONsystem: II, stability of Si2N2O (s) by high-temperature mass spectrometricvaporization. J. Am. Ceram. Soc1996,79(5),1361-1365.
    89. Schuhmacher, J.; Weinmann, M.; Bill, J.; Aldinger, F.; Muller, K., Solid-stateNMR studies of the preparation of Si-C-N ceramics from polysilylcarbodiimidepolymers. Chem. Mater.1998,10(12),3913-3922.
    90. Gérardin, C.; Taulelle, F.; Bahloul, D., Pyrolysis chemistry of polysilazaneprecursors to silicon carbonitride Part2.—solid-state NMR of the pyrolytic residues. J.Mater. Chem.1997,7(1),117-126.
    91. Kleebe, H. J.; Pezzotti, G.; Ziegler, G., Microstructure and fracture toughnessof Si3N4ceramics: combined roles of grain morphology and secondary phasechemistry. J. Am. Ceram. Soc1999,82(7),1857-1867.
    92. Gao, F.; Yang, W.; Fan, Y.; An, L., Aligned ultra-long single-crystallinealpha-Si3N4nanowires. Nanotechnol.2008,19,105602.
    93. Brosset, C.; Idrestedt, I., Crystal structure of silicon oxynitride, Si2N2O.Nature1964,201,1211.
    94. Ching, W.; Shang-Di Mo, Y., Calculation of XANES/ELNES spectra of alledges in Si3N4and Si2N2O. J. Am. Ceram. Soc2004,85(1),11-15.
    95. Bahloul, D.; Pereira, M.; Goursat, P., Preparation of silicon carbonitridesfrom an organosilicon polymer: II, thermal behavior at high temperatures under argon.J. Am. Ceram. Soc1993,76(5),1163-1168.
    96. Martin, H. P.; Muller, E.; Irmer, G.; Babonneau, F., Crystallisation behaviourand polytype transformation of polymer-derived silicon carbide. J. Eur. Ceram. Soc.1997,17(5),659-666.
    97.Greil, P., Polymer derived engineering ceramics. Adv. Eng. Mater.2000,2(6),339-348.
    98. Interrante, L. V.; Moraes, K.; Liu, Q.; Lu, N.; Puerta, A.; Sneddon, L. G.,Silicon-based ceramics from polymer precursors. Pure Appl. Chem.2002,74(11),2111-2118.
    99. Li, H.; Zhang, L.; Cheng, L.; Wang, Y.; Yu, Z.; Huang, M.; Tu, H.; Xia, H.,Polymer-ceramic conversion of a highly branched liquid polycarbosilane forSiC-based ceramics. J. Mater. Sci.2008,43(8),2806-2811.
    100. Cheng, H. J.; Lippe, K.; Kroke, E.; Wagler, J.; Fester, G. W.; Li, Y. L.;Schwarz, M.; Saplinova, T.; Herkenhoff, S., Sol-gel derived Si/C/O/N-materials:molecular model compounds, xerogels and porous ceramics. Appl. Organomet. Chem.2011,25(10),735-747.
    101. Julbe, A.; Farrusseng, D.; Guizard, C., Porous ceramic membranes forcatalytic reactors-overview and new ideas. J. Membr. Sci.2001,181(1),3-20.
    102. Schmidt, H.; Koch, D.; Grathwohl, G.; Colombo, P., Micro-/macroporousceramics from preceramic precursors. J. Am. Ceram. Soc2001,84(10),2252-2255.
    103. Studart, A. R.; Gonzenbach, U. T.; Tervoort, E.; Gauckler, L. J.,Processing routes to macroporous ceramics. J. Am. Ceram. Soc2006,89(6),1771-1789.
    104. Shi, Y.; Wan, Y.; Zhai, Y.; Liu, R.; Meng, Y.; Tu, B.; Zhao, D., Orderedmesoporous SiOC and SiCN ceramics from atmosphere-assisted in situtransformation. Chem. Mater.2007,19(7),1761-1771.
    105. Hirano, T.; Niihara, K., Microstructure and mechanical properties ofSi3N4/SiC composites. Mater. Lett.1995,22(5-6),249-254.
    106. Kleebe, H. J.; Blum, Y. D., SiOC ceramic with high excess free carbon. J.Eur. Ceram. Soc.2008,28(5),1037-1042.
    107. Gregori, G.; Kleebe, H. J.; Blum, Y. D.; Bahonneau, F., Evolution ofC-rich SiOC ceramics part II. characterization by high lateral resolution techniques:electron energy-loss spectroscopy, high-resolution TEM and energy-filtered TEM. Int.J. Mater. Res.2006,97(6),710-720.
    108. Kleebe, H. J.; Gregori, G.; Babonneau, F.; Blum, Y. D.; MacQueen, D. B.;Masse, S., Evolution of C-rich SiOC ceramics-part I. characterization by integralspectroscopic techniques: Solid-state NMR and Raman spectroscopy. Int. J. Mater.Res.2006,97(6),699-709.
    109. Sorarù, G. D.; Suttor, D., High temperature stability of sol-gel-derivedSiOC glasses. J. Sol-Gel Sci. Technol.1999,14(1),69-74.
    110. Saha, A.; Raj, R.; Williamson, D. L., A model for the nanodomains inpolymer-derived SiCO. J. Am. Ceram. Soc2006,89(7),2188-2195.
    111. Cheng, H. J.; Kroke, E.; Li, Y. L., Synthesis of silicon carbodiimideporous ceramics derived from different organo-silicon precursors. J. Rare Earths2011,29,63-66.
    112. Cheng, H. J.; Kroke, E.; Li, Y. L., Thermal stability of siliconcarbodiimide ceramics derived from different organo-silicon precursors. J. RareEarths2011,29,71-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700