用户名: 密码: 验证码:
TiO_2/C纳米复合气凝胶的制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2是一种性能优异的材料,在诸如颜料助剂、传感器、光电池等领域都得到了广泛应用,尤其作为光催化剂应用更为广泛。它的光催化活性主要由其形态、晶型、结晶程度及比表面积决定。如何获得一种理想的光催化剂并使这些性能最优化日益成为科研工作者的研究热点。迄今为止,合成方法有溶胶凝胶法、微胶囊法、水热法、气相沉积法及电化学方法等。而溶胶凝胶法由于成本低、操作简单、环境友好等特性而被广泛用于制备TiO_2基的复合材料。
     本文使用一步溶胶-凝胶法制备了TiO_2/C复合气凝胶,并采用XRD、SEM、TEM、UV-Vis、拉曼光谱、N_2吸附等温线、XPS、原位红外、压汞实验等测试手段对样品微观形貌、晶型、微介孔全孔结构分布、样品表面元素价态等物理性能进行全面表征,将该材料应用于光催化降解亚甲基蓝,并探讨了其光催化降解机理。本课题主要从钛源前驱体、TiO_2设计质量、络合剂含量、稀土元素Ce的掺杂等几个方面展开了相关研究。
     一、钛源前驱体对TiO_2/C复合气凝胶性能的影响研究
     以钛酸四丁酯和四氯化钛为钛源前驱体制备不同样品,考察不同钛源对TiO_2/C复合气凝胶性能的影响。结果表明:相比于钛酸四丁酯,以四氯化钛为钛源前驱体制备的样品具有更大的比表面积、更高的吸附容量、TiO_2纳米粒子在无定型炭中的分布更加均匀、锐钛矿型TiO_2晶化程度高等特性;光催化降解实验结果表明后者具有更高的紫外光和可见光催化降解亚甲基蓝的效率。
     二、TiO_2设计质量对TiO_2/C复合气凝胶性能的影响研究
     研究了以四氯化钛为钛源前驱体,以TiO_2计的质量分别为2.65、3.03、3.80、4.91、5.31g制备五组样品,对比研究了样品对亚甲基蓝的紫外光和可见光催化降解亚甲基蓝的活性。结果表明:通过N_2吸附脱附等温线可知,TiO_2设计质量为3.80g时制备的样品具有最优的物理和化学性能,其比表面积为204.0m~2/g,孔容为0.34cm~3/g;通过透射电子显微镜及光电子能谱可知,样品中TiO_2纳米粒子镶嵌在无定型炭中,样品主要由C、Ti、O三种元素组成;通过XPS表征得知,样品中Ti主要以Ti~(4+)存在,结合XRD表征可知其以TiO_2形式存在;通过UV-vis分析可知,样品在可见光波段有较强的吸收;样品对亚甲基蓝溶液紫外和可见光催化降解实验可知,TiO_2设计质量为3.80g时制备的样品在紫外光下具有最佳的光催化活性,而TiO_2设计质量为5.31g时制备的样品在可见光下具有最佳的光催化活性。
     三、络合剂含量对TiO_2/C复合气凝胶性能的影响
     以TiO_2设计质量为3.80g,乙酰乙酸乙酯与钛的摩尔比分别为0.1、0.3、0.5、0.7和0.9制备五组样品,进行全面表征和光催化活性研究。结果表明:随着乙酰乙酸乙酯与钛的摩尔比的增加,样品中TiO_2的晶粒生长得到抑制;N_2吸附脱附结果表明,当乙酰乙酸乙酯与钛的摩尔比为0.5时其相对压力较高段的吸附容量最大,其比表面积达到298.9m~2/g,介孔孔容为0.87cm~3/g;拉曼光谱分析可知样品中的炭以无定型形式存在;UV-vis测试结果表明样品相对于P25而言其吸收带有不同程度的红移,表明其在可见光波段有较好的吸收;通过研究样品的投加量不同对亚甲基蓝紫外光催化降解,表明样品投加量增多对亚甲基蓝的紫外光催化降解效率没有显著提高。
     四、稀土元素Ce的掺杂对TiO_2/C复合气凝胶性能的影响研究
     研究了稀土元素Ce的掺杂及掺杂量对TiO_2/C复合气凝胶性能的影响。结果表明:当硝酸铈占TiO_2的质量百分比为3时,样品的比表面积为348.7m~2/g,总孔体积为1.43ml/g,平均孔直径为16.4nm;UV-vis测试表明,掺铈的样品在紫外光波段和可见光波段的吸收强度均高于未掺铈的样品;TEM和EDS测试表明样品由C、Ti、O、Ce四种元素组成,Ce元素的原子百分比为0.14-0.24;考察不同样品添加量对不同浓度亚甲基蓝的紫外光催化降解表明随着铈投加量的增加,其紫外光催化降解效率也增大,其中硝酸铈掺入量占TiO_2百分比为3%时的样品紫外光催化降解性能最好。
     五、TiO_2/C复合气凝胶光催化降解亚甲基蓝机理研究
     对TiO_2/C复合气凝胶对亚甲基蓝的紫外和可见光催化降解亚甲基蓝的机理进行了全面探讨,结果表明具有光催化活性的TiO_2纳米粒子和具有丰富孔结构的无定型炭的协同作用,可显著提高TiO_2/C复合气凝胶对亚甲基蓝的光催化性能,同时具有导电性能的碳可及时将光生电子传输,阻碍了光生电子和空穴的复合,因而有效提高了其光催化性能。
Titanium dioxide (TiO_2) is one of the most materials, and plays an important rolein many applications such as paints, pigment, additive, gas sensors, photovoltaic cell,and especially acting as photocatalyst. Its photocatalytic activity generally depends onits morphology, crystal composition, crystallinity, and surface area. How to optimizethem is a long-term topic of obtaining an ideal catalyst. Up to now, many variousmethods, including sol-gel, micelle, hydrothermal, vapor deposition methods, as wellas electrochemical approaches, have been introduced to solve these issues. Inparticular, sol-gel, with its low cost, simple operation, friendly environment, has beenextensively used to prepare TiO_2-based nanomaterials.
     In this paper, TiO_2/C nano-composite aerogels were prepared by one-pot sol-gelapproach. The crystalline phase and micromechanism of the samples weresystematically characterized by XRD, SEM, TEM, UV-Vis, Raman spectrum,nitrogen adsorption, XPS, IR spectroscopy, etc. The mechanisms of degradation tomethylene blue chloride with the TiO_2/C nano-composite aerogels were discussed. Inthis work, effect of the precursor of TiO_2, content of TiO_2, content of complexingagent, content of Ce on their catalytic activity were investigated.
     1. The effect of the precursor of TiO_2on structure and performance asphotocatalysts
     Different samples were prepared by using tetrabutyl titanate and titaniumtetrachloride as the titanium precursor. The performance from different precursors ofTiO_2was studied. Results showed that the samples from titanium tetrachloride hadlarger specific surface area, higher adsorption capacity, more uniform distribution ofTiO_2nanoparticles in the amorphous carbon structure and sharper characteristic peakof anatase TiO_2grain than that with tetrabutyl titanate as the titanium source. Theresults also showed that the samples from titanium tetrachloride had higher efficiencyphotocatalytic degradation on methylene blue than that of tetrabutyl titanate.
     2. The effect of the content of TiO_2on their structure and photocatalyticperformance
     The samples were prepared from titanium tetrachloride as titanium source, inwhich the amounts of TiO_2converted from the precursor were2.65,3.03,3.80,4.91,5.31g respectively. The experimental photocatalytic degradation on methylene wasdone, and it was showed that the sample had the optimal physical and chemical performance through N_2adsorption when the TiO_2amount was3.80g, and its surfacearea was204m~2/g, and pore volume was0.34cm~3/g. The results from thetransmission electron microscopy and photoelectron spectroscopy showed that TiO_2nanoparticles embedded in the amorphous carbon in the samples which mainlyconsisted of three elements of C, Ti, O, in which element Ti existed as Ti~(4+)throughXPS analysis. It was showed that the samples had strong absorption in the visibleband through UV-vis analysis, which indicated that they had excellent visible lightcatalytic activity. The sample when the amount of TiO_2was3.80g had the bestphotocatalytic activity under UV light, and that when the amount of TiO_2was5.31gTiO_2had the best photocatalytic activity under visible light.
     3. The effect of the content of complexing agent on their structure andphotocatalytic performance
     The samples were prepared from different contents of complexing agent, inwhich mole fraction of ethyl acetoacetate to Ti was0.1to0.9. The results showed thatthe growth of TiO_2was restrained with the molar ration of ethyl acetoacetate to Tiincreasing. The sample of the ratio0.5had the largest adsorption capacity in the highrelative pressure through N_2adsorption, with surface area of298.9m~2/g and mesporevolume of0.87cm~3/g. The carbon of the samples existed as amorphous form byRaman spectroscopy. They had diverse redshift compared to P25by UV-vis diffusereflection, which manifested its good absorption in the visible region. It was showedthat the degradation ability did not increase with the increasing amount of complexingagent.
     4. The effect of Ce content on their structure and photocatalytic performance
     The doping of rare earth element Ce and its content were studied to investigateits effect on the properties of TiO_2/C composite aerogels. The results showed that thesample of Ce%-3had348.7m~2/g of surface area,1.43cm~3/g of pore volume and16.4nm of average pore diameter. The samples doped with Ce had a higher lightadsorption than that without Ce though UV-vis. The samples were consisted of C, Ti,O and Ce, in which the atomic percentage of Ce was0.14-0.24through TEM andEDS. The sample of Ce%-3had best UV and visible light catalytic degradationefficiency.
     5. The degradation mechanism of the TiO_2/C composite aerogels
     The degradation mechanism to methylene blue of TiO_2/C composite aerogelsunder UV and visible light was systematically discussed in this paper. It was showedthat the best photocatalytic performance of the materials was ascribed to the activity of TiO_2and abundant pore structure and amorphous carbon, which could facilitateelectron transfer and prevent recombination of e/h pair.
引文
[1] Zhu Jian, Wang Shao-Hua, Bian Zhen-Feng, Cai Chen-Ling, Li He-Xing. A facilesynthesis of hierarchical flower-like TiO2with enhanced photocatalytic activity [J]. Res ChemIntermed,2009,35:769–777.
    [2] D. P. Macwan, Pragnesh N. Dave, Shalini Chaturvedi. A review on nano-TiO2sol-gel typesyntheses and its applications [J]. J Mater. Sci.2011,46:3669–3686.
    [3] K. Koci, V. Matejka, P. Kovar, Z. Nancy, L. Obalova. Comparison of the pure TiO2andkaoliniteTiO2composite as catalyst for CO2photocatalytic reduction [J]. Catalysis Today,2011,161:105-109.
    [4] Sutapa Ghosal, Theodore F. Baumann, Jeffrey S. King, et al. Controlling Atomic LayerDeposition of TiO2in Aerogels through Surface Functionalization [J]. Chem. Mater.2009,21:1989-1992.
    [5] Kong Wei, Chen Chao, Mai Kaiguang, Shi Xinchao, Hu Rong, and Wang Zhiyu.Large-Scale Synthesis and Self-Assembly of Monodisperse Spherical TiO2Nanocrystals[J].Journal Nanomaterials,2011,10(4):1-4.
    [6] Sawanta S. Mali, Pravin S. Shinde, C. A. Betty, et al. Large-Scale Synthesis andSelf-Assembly of Monodisperse Spherical TiO2Nanocrystals [J]. Applied Surface Science,2011,257:9737-9746.
    [7] F. Garbassi, L. Balducci. Preparation and characterization of spherical TiO2-SiO2particles[J]. Microporous and Mesoporous Meterials,2011,47:51-59.
    [8]雷斌,薛建军,秦亮. Pt-TiO2纳米管电极的制备及电催化性能[J].材料科学与工程学报,2007,25(6):950-953.
    [9] J. Brasseur-Tilmant, C. Pommier, K. Chhor. Synthesis of supported TiO2membranes usingsupercritical alcohol [J]. Materials Chemistry and Physics,2006,64:156-165.
    [10] A. Setyan,a J.-J. Sauvaina and M. J. Rossi. The use of heterogeneous chemistry for thecharacterization of functional groups at the gas/particle interface of soot and TiO2nanoparticles [J].Physic Chemistry Chemical Physics,2009,11:6205-6217.
    [11]黄艳娥. TiO2光催化剂固定化技术[J].河北理工学院学报,2001,23(2):74-77,89.
    [12]郭孟师,杨靖华,周心艳. TiO2纳米管的研究进展[J].材料导报,2006,20(VII):108-110.
    [13]邵颖,薛宽宏,何春建,陈巧玲,陶菲菲,沈伟,冯玉英. TiO2纳米管对十二烷基苯磺酸钠的光催化降解[J].化学世界,2003,4:174-178,180.
    [14]马士才,季惠明,张晨. TiO2纳米管气敏材料的研究与应用[J].材料导报,2006,20(VII):111-114.
    [15]田西林,陶杰,陶海军,包祖国,李转利,张焱焱,汤育欣.淬火处理对TiO2纳米管阵列电极性能影响[J].物理化学学报,2009,25(6):1111-1116.
    [16]鲁娜,赵慧敏,全燮,于洪涛,陈硕.氮掺杂TiO2纳米管电极制备及可见光电催化活性[J].功能材料与器件学报,2008,14(1):65-69.
    [17]卫应亮,邵晨,韩华峰,张路平,李超,刘宝军.纳米TiO2-碳纳米管复合膜修饰电极伏安法测定水中α-萘酚和β-萘酚[J].环境监测管理与技术,2009,21(4):36-39.
    [18]褚道葆,李晓华,冯德香,顾家山,沈广霞.葡萄糖在碳纳米管/纳米TiO2膜载Pt复合电极上的电催化氧化[J].化学导报,2004,62(24):2403-2406.
    [19]王保玉,郭新勇,张治军,赵彦保,金振声.热处理对TiO2纳米管结构相变的影响[J].高等学校化学学报,2003,24(10):1838-1841.
    [20]张凤,陶杰,陶海军,董祥.柔性TiO2纳米管薄膜电极的制备及其光电性能[J].影响科学与光化学,2008,26(3):224-232.
    [21]孙岚,李静,王成林,林昌健,杜荣归,陈鸿博.钛基TiO2纳米管阵列电极的光电催化性能[J].无机化学学报,2009,25(2):334-338.
    [22]田西林,陶杰,陶海军,包祖国,汤育欣.钛基材上制备TiO2纳米管阵列电极的电化学性能[J].中国有色金属学报,2009,19(5):904-909.
    [23]李达钱,陈金媛.碳纳米管/TiO2电极光电催化测定耐兰方法探讨[J].浙江工业大学学报,2006,34(4):369-372.
    [24]张金花,张莉艳.碳纳米管/纳米TiO2复合膜电极与纳米TiO2电极电化学性能比较[J].池州学院学报,2008,22(5):55-57.
    [25]张金花,褚道葆.碳纳米管-纳米TiO2复合膜修饰电极的制备及其对马来酸的电催化还原[J].合成化学,2008,16(4):410-413.
    [26]汤育欣,陶杰,陶海军,吴涛,王玲,张焱焱,李转利,田西林.透明TiO2纳米管/FTO电极制备及表征[J].物理化学学报,2008,24(6):1120-1126.
    [27] D.Koutsolikolas, S. Kaldis, G. P. Sakellaropoulos. A low-temperature CVI method for poremodification of sol-gel silica membranes[J]. Journal of Membrane Science,2009(342):131-137.
    [28] Brady J. Clapsaddle, David W. Sprehn, Alexanda E. Gash, Joe H. Satcher. Jr, Randon L.Simpson. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites thatcontain metal oxides as the major phase[J]. Journal of Non-Crystalline Solids,2004(350):173-181.
    [29] M. L. Rojas-Cvervantes, L. Alonso, J. Dias-Teran, A. J. Lopes-Peinado. Basicmetal–carbons catalysts prepared by sol–gel method [J]. Carbon,2004(42):1575-1582.
    [30] Tsuru Tsuru*, Yuka Tkata, Hiroyasu Kondo, Fumi Hirano, Tomohisa Yoshioka, MasashiAsaeda. Characterization of sol-gel derived membranes and zeolite membranes bynanopermporometry [J]. Separation and Purification Technology,2003(32):23-27.
    [31] E. S. Kikkinides, K. A. Stoitsas, V. T. Zaspalis. Correlation of structural and permeationproperties in sol-gel-made nanoporous membranes [J]. Journal of Colloid and Interface Science,2003(259):322-330.
    [32] Christian G. Guizard,*Anne C. Julbe and Andre Ayral. Design of nanosized structures insol-gel derived porous solids. Applications in catalyst and inorganic membrane preparation [J].Journal of Materials Chemistry,1999,6:55-65.
    [33] Ann M. Anderson, Smitesh D. Bakrania, Jan Konecny, Ben M. Cauthier, Marry K. Caroll.Detecting sol-gel transition using light transmission [J]. Journal of CrystallineSolids,2004,350:259-265.
    [34] Takuji Yamamoto, Takashi Yoshida, Tetsuo Suzuki, Shin R. Mukai, and Hajime Tamon.Dynamic and Static Light Scattering Study on the Sol-Gel Transition of Resorcinol-FormaldehydeAqueous Solution[J]. Journal of Collode and Science,2002,245:391-396.
    [35] Gua Yunfeng, Katsuki Kusakabeb, Shigeharu Morookab. Effect of chelating agent15-diaminopentane on the microstructures of sol-gel derived zirconia membranes [J]. SeparationScience and Technology,2010,36(16):3689-3700.
    [36] J. Chandradas, Byunsei Jun, Dong-sik Bae. Effect of different fuels on the alumina-zirconiananopowder synthesized by sol-gel autocombustion method [J]. Journal of Non-Crystalline Solids,2008,254:3085-3087.
    [37] Seung-Joon Yoo, Jung-Woon Lee, Un-Yeon Hwang, Hyung-Sang Park, Dal-Ryung Park,Hee-Dong Jang and Ho-Sung Yoon. H2-CO2separation characteristics of gamma-Al2O3membraneby aging stage in sol-gel process [J]. Korean J. Chem. Eng,2000,17(4):438-443.
    [38] N. Tonanon, W. Tanthapanichakoon, T. Yamamoto, H. Nishahara, S.R. Mukai, H. Tamon.Influence of surfactants on porous properties of carbon cryogels prepared by sol–gelpolycondensation of resorcinol and formaldehyde [J]. Carbon,2004(41);2981-2990.
    [39] B. Topuz, M. ift io lu and F. zkan. Investigation of the Permeability of Pure Gases inSol-Gel Derived Al2O3Membrane [J]. Key Engineering Materials,2004(264-268):399-402.
    [40] Ai Du, Bin Zhou, Jun Shen, Shufang Xiao, Zhihua Zhang, Chunze Liu, Mingxia Zhang.Monolithic copper oxide aerogel via dispersed inorganic sol-gel method [J]. Journal ofNon-Crystalline Solids,2009(35):175-181.
    [41] T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher Jr., J. F.Poco.Nanostructured energetic materials using sol-gel methodologies [J]. Journal ofNon-Crystaline Solids,2001(285):338-345.
    [42] Eamonn F. Murphy, Leo Schmid, Thomas Burgi, Marek Maciejewski, and Alfons Baiker.Nondestructive Sol-Gel Immobilization of Metal (salen) Catalysts in Silica Aerogels andXerogels[J]. Chem. Mater.,2001,13:1296-1304.
    [43] Allen G. Sault, Anthony Martino,Jeffrey S. Kawola, and Elaine Boespflug. NovelSol-Gel-Based Pt Nanocluster Catalysts [J]. Journal of Catalysis,2000(191):474-479.
    [44] M. R. Othman and J. Kim. Permeability and separability of oxygen across perovskite-Alumina membrane prepared from a sol-gel procedure [J]. Ind. Eng. Chem. Res.2008,47:3000-3007.
    [45]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜[J].高分子学报,2002,3:326-330.
    [46] F. Nihan Tuzun, Ersel Arcevic. Pore Modification in Porous Ceramic Membranes WithSol-Gel Process and Determination of Gas Permeability and Selectivity [J]. Mocromo Symp,2010,287:135-142.
    [47] Miki Yushimune, Takaji Yamamoto, Masasu Nakaiwa, Kenji Hayawa. Preparation of highlymesoporous carbon membranes via a sol-gel process [J]. Carbon,2008,46:1031-1036.
    [48] Qin Guotong, Guo Shucai. Preparation of RF organic aerogels and carbon aerogels byalcoholic sol–gel process [J]. Carbon,2001,39:1929-1941.
    [49] Christopher N. Chervin, Brady J. Clapsaddle, Hsiang Wei Chiu, Alexander E. Gash, Joe H.Satcher, and Susan M. Kauzlarich. Role of cyclic ether and solvent in a non-alkoxide sol-gelsynthesis of yttria-stabilized zirconia nanoparticles [J]. Chemistry of Materials,2006,18(20):4865-4874.
    [50] Rahul Pal, Debtosh Kundo. Sol-gel synthesis of porous and dense silica microspheres [J].Journal of Non-Crystalline Solids,2009(355):76-78.
    [51] Emily J. Zanto, Shaheen A. Al-Muhtaseb, and James A. Ritter. Sol-Gel-Derived CarbonAerogels and Xerogels Design of Experiments Approach to Materials Synthesis[J]. Ind. Eng.Chem.,2002,41;3152-3161.
    [52] M. Pakizeh, M.R. Omidkhah, A. Zarringhalam. Study of mass transfer through new templatedsilica membranes prepared by sol-gel method [J]. International Journal of Hydrogen Energy,2007(32):2032-2042.
    [53] Erin Gamponeschi, Jeremy Walker, et. Surfactant effects on the particle size of iron III oxidesformed by sol-gel synthesis [J]. Journal of Non-Crystalline Solids,2008,354:4063-4069.
    [54] Kang Dongjun, Byeong Soo Bae. Synthesis and Characterization of sol–gel derived highlycondensed fluorinated methacryl silica and silica–zirconia hybrid materials [J]. Journal ofNon-Crystalline Solids,2008,354:4975-4980.
    [55] Hae-Joon Lee, Jae-Hwa Song, Jung-Hyun Kim. Synthesis of resorcinol-formaldehyde gelparticles by the sol-emulsion-gel technique [J]. Materials of Letters,1998,37:197-200.
    [56] Andrew I. Cooper, Colin D. Wood, and Andrew B. Holmes. Synthesis of Well-DefinedMacroporous Polymer Monoliths by Sol-Gel Polymerization in Supercritical CO2[J]. Ind. Eng.Chem. Res.2000,39,:4741-4744.
    [57] A. Taavoni-Gilan, E.Taheri-Nassji, H. Akhondi. The effect of zirconia content on propertiesof Al2O3–ZrO2(Y2O3) composite nanopowders synthesized by aqueous sol-gel method [J].Journal of Non-Crystalline Solids,2009,355:311-316.
    [58] M. R. Barati, S. A. Seyyed Ebrahimi, A. Badiei. The role of surfactant in synthesis ofmagnetic nanocrystalline powder of NiFe2O4by sol–gel auto-combustion method [J]. Journal ofNon-Crystalline Solids,2008,354:5184-5185.
    [59] M. A. Alves Rosa, E. P. Santos, C. V. Santilli, C. H. Pulcinelli. Zirconia foams prepared byintegration of the sol-gel method and dual soft template techniques [J]. Journal of Non-CrystallineSolids,2008,354:4786-4789.
    [60]吴遵义. C-TiO2的制备及其对三氯乙酸的光催化降解[J].石油化工,2006,35(5):488-492.
    [61]潘青山,郑思宁,郑柳萍,颜桂炀.碳掺杂TiO2光催化剂的制备及其性能表征[J].福建师范大学学报(自然科学版),2012,28(1):73-76,98.
    [62] Sara Goldstein, David Behar, and Joseph Rabani. Nature of the Oxidizing Species Formedupon UV Photolysis of C-TiO2Aqueous Suspensions [J]. J. Phys. Chem. C,2009,113:12489-12494.
    [63] Renata Ferreira, Lins. Marinalva, Aparecida Alves-Rosa, Sandra Helena, Pulcinelli, CelsoValentim Santilli. Formation of TiO2ceramic foams from the integration of the sol-gel methodwith surfactants assembly and emulsion [J]. J Sol-Gel Sci Technol,2012,63:224-229.
    [64] M. Saif, S. M. K. Aboul-Fotouh, S. A. El-Molla, M. M. Ibrahim, L. F. M. Ismail.Improvement of the structural, morphology, and optical properties of TiO2for solar treatment ofindustrial wastewater [J]. J Nanopart Res,2012,14(11):1227.
    [65] Tsutomu Minami. Advanced sol-gel coatings for practical applications [J]. J Sol-Gel SciTechnol,2013,65(1):4-11.
    [66] Liu Liang, Daniel Mandler. Electro-assist deposition of binary sol-gel films with gradedstructure[J]. Electrochimica Acta,2013,102:212-218.
    [67] M. Borlaf, J. M. Poveda, R. Moreno, M. T. Colomer. Synthesis and characterization ofTiO2/Rh3+nanoparticulate sols, xerogels and cryogels for photocatalytic applications [J]. Journalof Sol-Gel Science and Technology,2012,63(3):408-415.
    [68] C. R. Tubio, F. Guitian, A. Gil. Preparation and characterization of Ce-doped and Zr-dopedsol-gel inks of titanium alkoxide [J]. Journal of Sol-Gel Science and Technology,2012,64(2):436-441.
    [69] Li Na, Zhu Yu-Mei, Gao Kai, Li Zhi-Hong. Preparation of sol-gel derived microcrystallinecorundum abrasives with hexagonal platelets[J].2013,20(1):71-75.
    [70] Salem Elmaghrum, Arnaud Gorin, Rapha K. Kribich, Brian Corcoran; Robert Copperwhite,Colette McDonagh, Mohamed Oubaha. Development of a sol-gel photonic sensor platform for thedetection of biofilm formation [J]. Sensors and Actuators B: Chemical,2013,177:357-363.
    [71] Hou Yue, Amir M. Soleimanpour, Ahalapitiya H. Jayatissa. Low resistive aluminum dopednanocrystalline zinc oxide for reducing gas sensor application via sol-gel process [J]. Sensors andActuators B: Chemical,2013,177:761-769.
    [72] Maria Tereza Cortez Fernandes, Renata Batista Rivero Garcia, Carlos Alberto Paula Leite,Elizabete Yoshie Kawachi. The competing effect of ammonia in the synthesis of iron oxide/silicananoparticles in microemulsion/sol-gel system [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2013,422:136-142.
    [73] Du Li-Xia, Jiang Zi-Tao, Li Rong. Preparation of porous titania microspheres for HPLCpacking by sol–gel method[J]. Materials Letters,2013,95:17-20.
    [74] B. Tryba, M. Piszcz; B. Grzmil, A. Pattek-Janczyk and A.W. Morawski. Photodecompositionof dyes on Fe-C-TiO2photocatalysts under UV radiation supported by photo-Fenton process [J].Journal of Hazardous Materials,2009,162:111-119.
    [75] Tryba B. Immobilization of TiO2and Fe-C-TiO2photocatalysts on the cotton material forapplication in a flow photocatalytic reactor for decomposition of phenol in water [J]. Journal ofHazardous Materials,2008,151(2-3):623-627.
    [76]谢洪勇,张亚宁,徐巧莲.含碳纳米C-TiO2薄膜光催化降解气相甲苯研究[J].环境科学与技术,2008,31(3):19-22.
    [77]周化岚,葛芳州,邹忠,黎莹. C-TiO2复合光催化剂研究进展[J].材料导报,2011,25(18):166-169.
    [78]付川.铂修饰C-TiO2复合催化剂光催化染料废水[J].重庆三峡学院学报,2003,5(19):119-121.
    [79]薛丽梅,张风华,樊惠娟,陈彬,白雪峰. C-TiO2光催化还原CO2的实验研究[J].矿业工程,2011,31(1):84-87.
    [80]隋吴彬,郑经堂,仇实,吴明铂. C-TiO2复合催化剂的制备及其表征[J].天津工业大学学报,2012,31(2):47-49.
    [81] Yuan Junjie, Zhou Tian. Efficient synthesis of asymmetric particles by sol-gelprocess[J].Colloid and Polymer Science,2013,291(5):1227-1234.
    [82] Hiroaki Ishida, Kiyoharu Tadanaga, Akitoshi Hayashi, Masahiro Tatsumisago. Synthesis ofmonodispersed lithium silicate particles using the sol-gel method [J]. Journal of Sol-Gel Scienceand Technology,2013,65(1):42-45.
    [83] Gong Hua, Tang Ding-Yuan, Huang Hui, Han Man-Di, Sun Ting, Zhang Jian, Qin Xian-peng,Ma Jan. Crystallization kinetics and characterization of nanosized Nd: YAG by a modified sol-gelcombustion process[J]. Journal of Crystal Growth,2013,362:52-57.
    [84]操小鑫,陈亦琳,林碧洲,高碧芬.氧缺陷型TiO2-x可见光催化性能的研究[J].无机材料学报,2012,27(12):1301-1305.
    [85]李兴旺,吕鹏鹏,姚可夫,赵海雷,朱晓辉.常压干燥制备TiO2气凝胶及光催化降解含油污水性能研究[J].无机材料学报,2012,27(11):1153-1158.
    [86] Malgorzata Wojtoniszak, Diana Dolat, Antoni Morawski and Ewa Mijowska.Carbon-modified TiO2for photocatalysis [J]. Nanscale Research Lettes,2012,7:1-6.
    [87] Liu Hai, Yu Lixin, Chen Weifan, and Li Yingyi. The Progress of TiO2Nanocrystals Dopedwith Rare Earth Ions[J]. Journal of Nanomaterial,2012,1-9.
    [88] Liu Feila, Lu Lu, Xiao Peng, He Huichao, Qiao Lei, and Zhang Yunhuai. Effect of OxygenVacancies on Photocatalytic Efficiency of TiO2Nanotubes Aggregation [J]. Bull. Korean Chem.Soc.2012,33(7):2255-2259.
    [89] Juliana Sanches Carrocci1, Rodrigo Yuji Mori, Oswaldo Luiz CobraGuimar es,et..Application of Heterogenous Catalysis with TiO2Photo Irradiated by Sunlight andLatter Activated Sludge System for the Reduction of Vinasse Organic Load [J]. Engineering,2012,4(11):746-760.
    [90]彭丽萍,夏正才,杨昌权.金属与非金属共掺杂锐钛矿相TiO2的第一性原理计算[J].物理学报,2012,61(12):1-8.
    [91] Hanbin Lee, Minsik Choi, Younhee Kye, Myoungyoung An, and Ik Mo Lee. Control ofParticle Characteristics in the Preparation of TiO2Nano Particles Assisted by Microwave [J]. Bull.Korean Chem. Soc.2012,33(5):1699-1702.
    [92]房治,周庆祥. TiO2纳米管阵列在环境研究领域的进展[J].化学学报,2012,70(17):1767-1774.
    [93] Zou Jian-peng, Wang Ri-zhi. Crack initiation, propagation and saturation of TiO2nanotubefilm[J]. Transaction of Nonferrous Metal Society of China,2012,22(3):627-633.
    [94] Li Jingfeng, He Dawei, Wang Yongsheng, Fu Ming, Wu Hongpeng&Wang Jigang.Synthesis and Photocatalytic Enhancement with Graphene of TiO2Nanotubes [J]. IntegratedFerroelectrics,2012,135:151-157.
    [95] Xie Tianjiao, Ruan Shengping, Zhang Haifeng, Zhang Min, Chen Weiyou&Liu Caixia.TiO2Ultraviolet Detectors with Sandwich Structure[J]. Integrated Ferroelectrics,2012,135:138-143.
    [96] Li WenShuang, Wu Songping, Ren Qun. Preparation and Characterization of Silanized TiO2Nanoparticles and Their Application in Toner [J]. Industrial and Engineering Research,2012,131(8):1854-1862.
    [97] Yu Jiaguo, Mietek Jaroniec and Lu Gongxuan. TiO2Photocatalytic Materials[J]. InternationalJournal of Photoenergy,2012:1-5.
    [98] Li QuanJun, Liu Ran, Cheng Benyuan, et. High pressure behavior of nanoporous anataseTiO2[J]. Materials Research Bulletin,2012,47(6):1396-1399.
    [99]姬平利,王金刚,朱晓丽,孔祥正. Ag掺杂型空心TiO2纳米微球的制备与表征及其光催化性能[J].物理化学学报,2012,28(9):2155-2161.
    [100]朱绪飞,韩华,宋晔,段文强.阳极氧化物纳米孔道和TiO2:纳米管形成机理的研究进展[J].物理化学学报,28(6):1291-1305.
    [101] Dai Gaopeng, Liu Suqin, Liang Ying, Liu Huajun, Zhong Zhicheng. A simple preparation ofcarbon and nitrogen co-doped nanoscaled TiO2with exposed {001} facets for enhancedvisible-light photocatalytic activity [J]. Journal of Molecular Catalysis: A Chemical,2013,308-309:38-42.
    [102] Jiang Tingshun, zhang Lei, Ji Meiru, Wang Qian, Zhao Qian, Fu Xiaoqi, Yin Hengbo.Carbon Nanotubes/TiO2Nanotubes composite photocatalysts for efficient degradation of methylorange dye [J]. Particuology,2013,498:1-6.
    [103] Zhu Lei, Meng Ze-da, Chong-yeon Park. Characterization and relative sonocatalyticeffciencies of a new MWCNT [J]. Ultrasonics Sonochemistry,2013,20:478-484.
    [104] Fatemeh Davar, Assadollash Hassankhani, Mohanmand Raze Loghman. Controllablesynthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method[J].Ceramics International,2013,39:2933-2941.
    [105] Joanne Gamage Macenvy, Cui Wengquan, Zhang Zisheng. Degradative and disinfectiveproperties of carbon-doped anatase-rutile TiO2[J]. Catalysis Today,2013,207:191-199.
    [106] Mehrdad Keshmiri, Madjid Mohseni, Tom Troczynski. Development of novel TiO2sol-gelderived composite and its photocatalytic activities for trichloroethylene oxidation [J]. AppliedCatalysis B: Environmental,2004,53:209-219.
    [107] Yean Ling Pang, Ahmad Zuhairi Abdullah. Effect of carbon and nitrogen co-doping oncharacteristics and sonocatalytic [J]. Chemical Engineering Journal,2013,214:129-138.
    [108] R. Varsudavan, T. Karthik, S. Garnesan, R. Jayavel. Effect of microwave sintering on thestructural and densification behavior of sol-gel derived zirconia toughened alumina (ZTA)nanocomposites [J]. Ceramics International,2013,39:3195-3024.
    [109] Marsoor Farbod, Marzieh Kajbafvala. Effect of nanoparticle surface modification on theadsorption-enhanced photocatalysis of Gd/TiO2nanocomposite [J]. Powder Technology,2013,239:434-440.
    [110] Beata Tryba. Effect of TiO2Precursor on the Photoactivity of Fe-C-TiO2Photocatalysts forAcid Red (AR) Decomposition [J]. J. Adv. Oxid. Technol.2007,10(2):267-272.
    [111] Yan Hongjian, Saji Thomas Kochuveedu, Quan Li Na,et.. Enhanced photocatalytic activityof C, F-codoped TiO2loaded with AgCl [J]. Journal of Alloy and Compounds,2013,560:20-26.
    [112] Xu Qing Zhi, Diana V. Wellia, Shi Yan,et.. Enhanced photocatalytic activity ofC–N-codoped TiO2films prepared via an organic-free approach [J]. Journal of HazardousMaterials,2011,188:172-180.
    [113] Wu Zhongbiao, Dong Fan, Liu Yue, Wang Haiqiang. Enhancement of the visible lightphotocatalytic performance of C-doped TiO2[J]. Catalysis Communications,2009,11:82-86.
    [114] G. Colón, M.C. Hidalgo, M. Mac′as, J.A. Navio. Enhancement of TiO2-C photocatalyticactivity by sulfate promotion [J]. Applied Catalysis A: General,2004,259:235-243.
    [115] Agustina Manassero, Maria Lucila Satufa, Orlando Mario Alfanlo. Evaluation of UV andvisible light activity of TiO2catalysts for water remediation [J]. Chemical Engineering Journal,2013,225:378-386.
    [116] Necmattin Kihnc, Erdemn Sennic, Mage IsiK, et. Fabrication and gas sensing properties ofC-doped and un-doped TiO2nanotubes [J]. Ceramics International,2013,5(110):1-7.
    [117] Hu Xiaoye, Zhang Tianci, Jin Zhen, et. Fabrication of carbon-modified TiO2nanotube arraysand their photocatalytic activity [J]. Materials Letters,2008,62:4579-4581.
    [118] Bai Hongwei, Keith Shao Yao Kwan, Liu Zhaoyang,et.. Facile synthesis of hierarchicallymeso_nanoporous S-and C-codoped TiO2and its high photocatalytic efficiency in H2generation[J]. Applied Catalysis B: Environment,2013,129:294-300.
    [119] C. Tealdi, E. Quartarone, P. Garlinetto,et.. Flexible deposition of TiO2electrodes forphotocatalytic applications: Modulation of the crystal phase as a function of the layer thickness [J].Journal of Solid State Chemistry,2013,199;1-6.
    [120] Mehdi Alzamani, Ali Shohuhfar, Ebrahim Eghdam, Sadegh Mastali. Influence of catalyst onstructural and morphological properties of TiO2nanostructured films prepared by sol-gel onglass[J]. Process in Natural Science: Materials International,2013,23(1):77-84.
    [121] Wang Ming-Qiu, Yan Jun, Cui Haiping, Du Shi-Guo. Low temperature preparation andcharacterization of TiO2nanoparticles coated glass beads by heterogeneous nucleation method[J].Materials Characterization,2013,76:39-47.
    [122] N. Stem, E. F. Chinaglia, S. G. Dos Santos Filho. Microscale meshes of Ti3O5nano-andmicrofibers prepared via annealing of C-doped TiO2thin films [J]. Materials Science andEngineering B,2011,176:1190-1196.
    [123] Nor Hafizah, Iis Sopyan. Nanosized TiO2Photocatalyst Powder via Sol-Gel MethodEffect of Hydrolysis Degree on Powder Properties [J]. International Journal of Photoenergy,2009,ID962783:1-8.
    [124] Sreenivasan Koliyat Parayil, Harrison S. Kibombo, Ranjit T. Koodali. Naphthalenederivatized TiO2-carbon hybrid materials for efficient photocatalytic splitting of water [J].Catalysis Today,2013,199:8-14.
    [125] Li Ming, Zhou Shifeng, Zhang Yuewei, Chen Guangqin, Hong Zhanglian. One-stepsolvothermal preparation of TiO2-C composites and their visible light photocatalytic activities [J].Applied Surface Science,2008,254:3762-3766.
    [126] Goldie Oza, Sunil Pandey, Arvind Gupta, Sachin Shinde, Ashmi Mewada, Pravin Jagadale,Maheshwar Sharon, Madhuri Sharon. Photocatalysis-Assisted Water Filtration: UsingTiO2-Coated vertically aligned Multi-walled Carbon Nano Tube Array for Removal of Escherichiacoli O157:H7[J]. Materials Science&Engineering C,2013,6(39):1-35.
    [127] M. Langlet, S. Permpoon, D. Riasseto, G. Berthrome, E. Pernot, J. C. Joud. Photocatalyticactivity and photo-induced superhydrophilicity of sol-gel derived TiO2films [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2006,181:203-214.
    [128] Aida L. Barbosa1, Isel Castro. Photocatalyic Cyanide removal using TiO2, FeMoO4/TiO2,and HPMoCu/TiO2Catalysis under simulated solar light and parabolic cylindrical collectorreactor[J]. Av. cien. Ing,2012,3(4):69-79.
    [129] G. Pecchi, P. Reyes, P. Sanhueza, J. Villarsenor. Photocatalytic degradation ofpentachlorophenol on TiO2sol-gel catalysts [J]. Chemosphere,2001,43:141-146.
    [130] Michael J. Mattle, K. Ravindranathan Thampi. Photocatalytic degradation of RemazolBrilliant Blue by sol-gel derived carbon-doped TiO2[J]. Applied Catalysis B: Environmental,2013,140-141:348-355.
    [131] Jong-Soon Kim, Kiminori Itoh, Masayuki Murabayashi. Photocatalytic degradation oftrichloroethylene in the gas phase over TiO2sol-gel films: Analysis of products[J]. Chemosphere,36(3):483-495.
    [132] Paulina Gorska, Adriana Zaleska, Jan Hupka. Photodegradation of phenol by UV-TiO2andVis-N,C-TiO2processes:Comparative mechanistic and kinectic studies [J]. Separation andPurification Technology,2009,68:90-96.
    [133]R. Velmurugan, B. Krushnakumar, B. Subash, M. Swaminathan. Preparation andcharacterization of carbon nanoparticles loaded TiO2and its catalytic activity driven by naturalsunlight [J]. Solar Energy Materials&Solar Cells,2013,108:205-212.
    [134] M. A. Nawi, I. Nawawi. Preparation and characterization of TiO2coated with a thin carbonlayer for enhanced photocatalytic activity under fluorescent lamp and solar light irradiation [J].Applied Catalysis A: General,2013,453:80-91.
    [135] Xiong Bi-Tao, Zhou Bao-Xue, Li Long-Hai, et. Preparation of nanocrystalline anatase TiO2using basic sol-gel method [J]. Chemical Papers,2008,62(4):382–387.
    [136]肖逸松,柳松,向德成,王晔.掺碳二氧化钛光催化的研究进展[J].硅酸盐通报,2011,30(2):348-355.
    [137] Wu Zhijiao, Wu Qian, Du Lixia, et. Progress in the synthesis and applications of hierarchicalflower-like TiO2nanostructures [J]. Particuology,2013,557:1-8.
    [138] Federico Cesano, Diego Pellereji, Domennica Scarano,et.. Radially organized pillars inTiO2and in TiO2-C microspheres: Synthesis, Characterization, and Photocatalytic tests[J]. Journalof Photochemistry and Photobiology A: Chemistry,2012,242:51-58.
    [139] Wang Yabo, Zhang Ya-nan, Zhao Guohua, et. Electrosorptive photocatalytic degradation ofhighly concentrated p-nitroaniline with TiO2nanorod-clusters/carbon aerogel electrode undervisible light[J]. Separation and Purification Technology,2013,104:229-237.
    [140] Jatinder Kumar, Ajay Bansal. Sol-gel Derived Films of Nano-crystals of TiO2forPhotocatalytic Degradation of Azorubine Dye [J]. International Journal of ChemTech Research,2010,2(3):1547-1552.
    [141] B. Palanisamy, C. M. Badu, B. Sundaravel, et. Sol-gel synthesis of mesoporous mixedFe2O3-TiO2photocatalyst: Application for degradation of4-chlorophenol [J]. Journal ofHazardous Materials,2013,252-253:233-242.
    [142] Hyeok Choi, Elias Stathatos, D. D. Dionysiou.Sol-gel preparation of mesoporousphotocatalytic TiO2films and TiO2/Al2O3composite membranes for environmental applications[J]. Applied Catalysis,2006,23:60-67.
    [143] He Zuoli, Que Wenxiu, Chen Jing, et. Surface chemical analysis on the carbon-dopedmesoporous TiO2photocatalysts after post-thermal treatment:XPS and FTIR characterization[J].Journal of Physics and Chemistry of Solids,2013,74:924-928.
    [144] Liu Hui, Dong Xiaonan, Li Guangjun, Su Xing, Zhu Zhenfeng. Synthesis of C, Agco-modified TiO2photocatalyst and its application in waste water purification [J]. Applied SurfaceScience,2013,271:276-283.
    [145] Li Haiyan, Wang Dejun, Fan Haimei, et. Synthesis of highly efficient C-doped TiO2photocatalyst and its photo-generated charge-transfer properties [J]. Journal of Collide andInterface Science,2011,354:175-180.
    [146] A.Karami. Synthesis of TiO2Nano Powder by the Sol-Gel Method and Its Use as aPhotocatalyst [J]. Journal of the Iranian Chemistry Science,2010,7:154-160.
    [147] Shieh Dong-Lin, Huang Sin-Jhang, Lin Yu-Cheng, et. TiO2derived from TiC reaction inHNO3:Investigating the origin of textural change and enhanced visible-light absorption andapplication in catalysis [J]. Microporous and Mesoporous Materials,2013,167:237-244.
    [148] Song Huanqiao, Qiu Xinpin, Li Xiaoxia, et. TiO2nanotubes promoting Pt-C catalysts forethanol electron oxidation in acidic media [J]. Journal of Power Source,2007,170:50-54.
    [149] Luisa M. P-Martinez, Sergio Morales-Torres, Athanassios G. Kontos, et. al. TiO2surfacemodified TiO2and graphene oxide-TiO2photocatalysts for degradation of water pollution undernear-UV/Vis and visible light [J]. Chemical Engineering Journal,2013,224:17-23.
    [150] Cristiana Di Valentin, Gianfranco Pacchioni. Trends in non-metal doping of anatase TiO2-B,C, N and F [J]. Catalysis Today,2013,206:12-18.
    [151] J. Lachaud, G.L. Vignoles. A Brownian motion technique to simulate gasification and itsapplication to C-C composite ablation [J]. Computational Materials Science,2009,44:1034-1041.
    [152] Fen Chiu-Shia, Linda M. Abriola. A comparison of mathematical model formulations fororganic vapor transport in porous media [J]. Advance in Water Resource,2004,27:1005-1016.
    [153] K. Aoki, P. Degond, L. Mieussens, S. Takata, H. Yoshida. A diffusion model for rarefiedflows in curved channels [J]. Society for Industrial and Applied Mathmatics,2008,6(4):1281-1316.
    [154] Zhang Li-Zhi. A fractal model for gas permeation through porous membranes [J].International Journal of Heat and Mass Transfer,2008,51:5288-5295.
    [155] G. M. Underwood, P. Li, H. Al-Abadleh, and V. H. Grassian. A Knudsen cell study of theheterogeneous reactivity of nitric acid on oxide and mineral dust particles [J]. Journal of Physicsand Chemistry,2001,105:6609-6620.
    [156] T. A. Parthasarathy, R. A. Rapp, M. Opekk, R. J. Kerans. A model for the oxidation of ZrB2HfB2and TiB2[J]. Acta Materialia,2007,55:5999-6010.
    [157] Thomas G. Koch, Hubert van den Bergh and Michel J. Rossi. A molecular diffusion tubestudy of N2O5and HONO2interacting with NaCl and KBr at ambient temperature [J]. Phys. Chem.Chem. Phys.,1999,1:2687-2694.
    [158] Tomohisa Yoshioka, Masashi Asaeda, Toshinori Tsuru. A molecular dynamics simulation ofpressure-driven gas permeation in a micropore potential field on silica membranes [J]. Journal ofMembrane Science,2007,293:81-93.
    [159] A. P. Soldatov, G. N. Evtyugina, D. A. Syrtsova, and O. P. Parenago. A New Method ofModification of Inorganic Membranes with Pyrocarbon Nano-sized Crystallites [J]. RussianJournal of Physic Chemistry A,2010,84(4):648-655.
    [160] Ding Zhongwei, Ma Runyu, A.G. Faneb. A new model for mass transfer in direct contactmembrane distillation [J]. Desalination,2002,151:217-227.
    [161] Nathalie Olivi-Tran, Anwar Hasmy. A percolation approach to aerogel gas permeability[J].Journal of physics,1999(II):7971-7976.
    [162] Yan Xun, Vaclav Janout, James T. Hsu, and Steven L. Regen. A polymerized calix6arenemonolayer having gas permeation selectivity that exceeds Knudsen diffusion [J]. J. AM. CHEM.SOC,2002,124(37):10962-10963.
    [163] V. Prasad, Q.-S. Chen, H. Zhang. A process model for silicon carbide growth by physicalvapor transport [J]. Journal of Crystal Growth,2001,229:510-515.
    [164] R. O. Fox. A quadrature-based third-order moment method for dilute gas-particle flows [J].Journal of Computational Physics,2008,227:6313-6350.
    [165] Chris Kro ger, Yannis Drossinos. A random-walk simulation of thermophoretic particledeposition in a turbulent boundary layer [J]. International Journal of Multiphase Flow,2000,26:1325-1350.
    [166] Feng Xianshe, Shao Pinghai, Robert Y.M. Huang, et. al A study of siliconerubber-polysulfone composite membranes-correlating H2/N2and O2/N2permselectivities [J].Separation and Purification Technology,2002,27:211-223.
    [167] Satoshi Taguchi, Ansgar Jüngel. A two-surface problem of the electron flow in asemiconductor on the basis of kinetic theory [J]. J Stat Phys.,2008,130:313-342.
    [168] Jun-Seok Bae, Duong D. Do. A unique behavior of sub-critical hydrocarbon permeability inactivated carbon at low pressures [J]. Korean Journal of Chemic Engineering,2003,20(6):1097-1102.
    [169] S. Kokou Dadziea, Jason M. Rees. A volume-based hydrodynamic approach to soundwave propagation in a monoatomic gas [J]. Physic of Fluid,2010,22(039901):1-3.
    [170] Lorenzo Plsanl, Glovannl Murgla. An analytical model for solid oxide fuel cells [J]. Journalof Electronchemistry Society,2007,154(8):B793-B801.
    [171] Jiang LanYing, Tai Shung Chung, Santi Kulprathipanji. An investigation to revitalize theseparation performance of hollow fibers with a thin mixed matrix composite skin for gasseparation[J]. Journal of Membrane Science,2006,276:113-125.
    [172] Fan Jun, Hirofumi Ohashi, Haruhiko Ohya. Analysis of a two-stage membrane reactorintegrated with porous membrane having Knudsen diffusion characteristics for the thermaldecomposition of hydrogen sulfide [J]. Journal of Membrane Science,2000,166:239-247.
    [173] Nicolas G. Hadjiconstantinou. Analytical results for sound wave propagation in small-scaletwo-dimensional channels [J]. Microchannels and Minichannels,2003,1030:1-6.
    [174] C. Dogbe, Approximation of a Diffusion Induced on a Kinetic Equation by a DynamicalSystem [J]. Computers and Mathematics with Applications,2005,49:1303-1325.
    [175] Olivia Coindreau, Gérard L. Vignoles. Assessment of geometrical and transport properties ofa fibrous C-C composite preform using x-ray computerized geometrical properties [J]. Journal ofMaterials Research Society,20(9):2328-2341.
    [176] Liang Changhai, Sha Guangyan, Guo Shucai. Carbon membrane for gas separation derivedfrom coal tar pitch [J]. Carbon,1999,37:1391-1397.
    [177] Jason K. Holt, Hyung Gyu Park, Olgica Bakajin. Carbon nanotube-based permeablemembranes[J]. Materials Research Society,2004,820:1-6.
    [178] Anup Kumar Sadhukhan, Parthanpratim Gupta, Ranajit Kumar Saha. Characterization ofporous structure of coal char from a single devolatilized coal particle-Coal combustion in afluidized bed[J]. Fuel Processing Technology,2009,90:692-700.
    [179] S. Zalamea, M.P. Pina, A. Viilellas, M. Menendez, J. Santamaria. Combustion of VolatileOrganic Compounds over mixed-regime catalytic membranes [J]. React.Kinet.Catal.Lett.,1999,67(1):13-19.
    [180] J. W. Elam, D. Routkevitch, P. P. Mardilovich, S. M. George. Conformal coating onultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition [J]. ChemicalMaterials,2003,15:3507-3517.
    [181] Fatemeh Davar, Asadollah Hassankhani, Mohamand Reza Loghman-Estarki. Controllablesynthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gelmethod[J]. Ceramics International,2013,39:2933-2941.
    [182] SimonE.Albo, Randall Q.Snurr, LindaJ.Broadbelt. Designing nanostructured membranes foroxidative dehydrogenation of alkanes using kinetic modeling [J]. American Chemistry Society,2008,47:5395:5401.
    [183] Oliver Krocher, Martin Elsener, Martin Votsmeier. Determination of Effective DiffusionCoefficients through the Walls of Coated Diesel Particulate Filters [J]. Ind. Eng. Chem. Res.2009,48:10746–1075.
    [184] Mehrdad Keshmiria, Madjid Mohsenib, Tom Troczynski. Development of novel TiO2sol–gel-derived composite and its photocatalytic activities for trichloroethylene oxidation [J].Applied Catalysis B: Environmental,2004,53:209-219.
    [185] Parminder Singh Sidhu, E.L. Cussler. Diffusion and capillary flow in track-etchedmembranes [J]. Journal of Membrane Science,2001,182:91-101.
    [186] M.E. Kainourgiakis, E.S. Kikkinides, A.K. Stubos. Diffusion and flow in porous domainsconstructed using process-based and stochastic techniques [J]. Journal of Porous Materials,2002,9:141-154.
    [187] V. I. Roldughin, A. A. Kirsh. Diffusion Deposition of Finite Size Particles on Fibrous Filtersat Intermediate Knudsen Numbers[J]. Colloid Journal,2001,63(5):619-625.
    [188] S.Jakobtorweihen, C. P. Lowe, F. J. Keil, B. Smit. Diffusion of chain molecules andmixtures in carbon nanotubes:The effect of host lattice flexibility and theory of diffusion in theKnudsen regime[J]. The Journal of Chemical Physics,2007,127(024904):1-11.
    [189] Debangsu Bhattacharyya, Raghunathan Rengaswamy. Dynamic Modeling and SystemIdentification of a Tubular Solid Oxide Fuel Cell [J]. American Control Conference,2009,2672-2677.
    [190] R. Vansudevan, T. Karthik, S. Ganesan, R. Jayavel. Effect of microwave sintering on thestructural and densification behavior of sol–gel derived zirconia toughened alumina (ZTA)nanocomposites [J]. Ceramics International,2013,39:3195-3204.
    [191] Beata Tryba. Effect of TiO2Precursor on the Photoactivity of Fe-C-TiO2Photocatalysts forAcid Red(AR) Decomposition[J]. Journal of Advance Oxidation Technology,2007,10(2):267-272.
    [192] M. Langlet, S. Permpoon, D. Riassetto,e.. Photocatalytic activity and photo-inducedsuperdrophilicity of sol-gel derived TiO2films [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181:203-214.
    [193] Jatinder Kumar, Ajay Bansal. Sol-gel Derived Films of Nano-crystals of TiO2forPhotocatalytic Degradation of Azorubine Dye [J]. International Journal of ChemTech Research,2010,2(3):1547-1552.
    [194] Hyeok Choi, Elias Stathatos, Dionysiou. Sol–gel preparation of mesoporous photocatalyticTiO2films and TiO2-Al2O3composite membranes for environmental applications [J]. AppliedCatalysis,2006,63:60-67.
    [195] G. Pecci, P. Reyes, P. Sanhueza,J.Villasenor.Photocatalytic degradation of pentachlorophenolon TiO2sol-gel catalysts [J]. Chemosphere,2001,43:141-146.
    [196] Jong-Soon Kim, Kiminori Itoh, Masayuki Murabayashi. Photocatalytic degradation oftrichloroethylene in the gas phase over TiO2sol-gel films: Analysis of products[J]. Chemosphere,1998,36(3):483-495.
    [197] Li Youji, Ma Mingyuan, Sun Shuguo,et.. Preparation and photocatalytic activity of TiO2carbon surface composites by supercritical pretreatment and sol–gel process [J]. CatalysisCommunications,2008,9:1583-1587.
    [198] J.F. Brilhac, F. Bensouda, P.Gliot, et. Experimental and theoretical study of oxygen diffusionwithin packed beds of carbon black [J]. Carbon,2000,38:1011-1019.
    [199] Vapnik Vladimir N., The Nature of Statistical Learning Theory [J]. Berlin, Springer,1995.
    [200]陆文聪,陈念贻,叶晨州,李国正.支持向量机算法和软件ChemSVM介绍[J].计算机与应用化学,2002,19(6):697-702.
    [201] Burbidge R, Trotter M, Buxton B, Holden S, Drug design by machine learning: supportvector machines for pharmaceutical data analysis [J]. Computer and Chemistry,2001,26(1):5-14
    [202]陈念贻,陆文聪.支持向量机算法在化学化工中的应用[J].计算机与应用化学,2002,19(6):673-676.
    [203] Nello Cristianini, John Shawe-Taylor, An introduction to support vector machines and otherkernel-based learning methods [J].Cambridge university press,2000
    [204] Michal Kruk and Mietek Jaroniec, Gas adsorption Charaterization of orderedorganic-Inorganic Nanocomposite Materials [J].Chemical Materials.2001,13,3169-3183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700