用户名: 密码: 验证码:
绿色反应体系中催化选择加氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加氢反应是很多基本的化学结构单元进行官能化的基础,加氢反应能单纯增加有机化合物中氢原子的数目,使不饱和的有机物转变为相对饱和的有机物,这在现代化学工业中是重要的领域之一。因此,开发清洁有效的绿色加氢催化体系具有深远的研究意义。
     本课题主要内容是从绿色化学的角度出发,选取绿色反应溶剂和催化剂,使用不同的氢源分别进行不饱和醛酮,烯烃或硝基苯衍生物的催化加氢反应,并研究了α,β-不饱和醛与醇之间发生加氢-酯化串联反应生成饱和酯的反应活性。具体研究的内容有以下几个方面:
     在氢气为氢源的加氢体系中,我们研究了嵌段聚合物P123/[BMMIM]OAc离子液体混合胶束稳定的镍纳米颗粒体系,利用多种仪器表征和活性评价等多种研究方法系统考察了催化剂的制备条件、物理化学性质(金属纳米颗粒的尺寸以及表面电荷性质)和催化反应性能之间的相互关系。研究发现,催化剂的制备条件对镍纳米颗粒的活性有很大的影响,如还原温度和稳定剂的量等。将合成的镍纳米颗粒催化剂应用于C=C双键及-N02官能团的水相加氢反应,发现镍纳米颗粒在温和的反应条件下对于烯烃,α,β-不饱和醛酮和硝基苯衍生物都有很高的催化活性及其选择性,镍纳米颗粒在水相加氢体系能循环使用8次而没有明显的催化活性下降。通过表征结果证明即使在催化体系循环5次后,混合胶束稳定的Ni纳米颗粒在水中仍有很高的分散性。并且添加[BMMIM]OAc离子液体可以提高催化体系的碱性,并能提供额外的立体位阻来抑制纳米颗粒的聚集。因此,添加离子液体后能提高催化剂的反应活性和稳定性。
     通常在使用异丙醇作为氢源的氢转移加氢体系中需加入碱性物质来活化氢源。因此在氢转移反应部分,我们尝试在不添加碱的条件下,使用多相的金纳米催化剂在异丙醇介质中催化羰基化合物的氢转移反应,使该反应更加绿色。通过比较不同的制备方法,载体和还原方法后发现,使用在550℃下焙烧的镁铝水滑石作为载体,金通过尿素沉淀沉积后,NaBH4作为还原剂制得的金纳米颗粒催化剂对于无外碱的氢转移加氢体系具有很好的反应活性及选择性,并且金纳米催化剂具有很高的循环利用性。通过表征发现,镁铝复合氧化物经过水中负载金纳米颗粒后发生再生现象,其结构恢复成层状水滑石结构。金纳米颗粒是以Au0形式负载在水滑石表面的,因此催化剂的活性中心为Au0。
     对于α,β-不饱和醛与醇之间一步生成饱和酯的加氢-酯化串联反应,一般采用咪唑,噻唑,三唑等催化剂在强碱的作用下脱质子生成卡宾活性物种来催化反应的进行。在加氢酯化部分,我们研究了不同的咪唑离子液体对于加氢酯化反应的催化活性。通过比较发现,Lewis碱性离子液体[BMIM]OAc在不添加强碱的条件下,对于肉桂醛与乙醇间的加氢酯化反应有很高的产率。中性离子液体以及Br(?)nsted碱性离子液体对于这类反应没有催化活性。Lewis碱性离子液体的碱性对于反应的转化率有很大的影响。
Hydrogenation reaction is the fundamental reaction for chemical transformation, and it can simply increase the number of hydrogen atoms in organic compounds and make relatively unsaturated organic compounds into saturated organic compounds. Considering the importance of hydrogenation reaction, the development of clean, efficient green hydrogenation reaction system has far-reaching research significance.
     According to the perspective of green chemistry, we chose green reaction solvents and green catalysts for hydrogenation of the unsaturated aldehydes, ketones, olefins or nitrobenzene derivatives and the hydrogenation related reaction, such as hydrogen transfer reaction, and the redox esterification reaction of α,β-unsaturated aldehydes and alcohols which generated saturated ester. The main research contents have the following several aspects:
     In hydrogenation reaction by H2as hydrogen donor, the Ni nanoparticles were stabilized by the mixed micelle of the block copolymer P123/[BMMIM]OAc ionic liquids and employed for aqueous phase hydrogenation reaction. It could be demonstrated that the relationship of the preparation conditions and physical-chemical properties (size and surface charge properties of metal nanoparticles) with the performance of Ni catalyst through instrumental characterization and the activity tests of Ni catalysts. It was found that preparation conditions of Ni nanoparticles have great influence on the activity, such as the reduction temperature and the amount of stabilizers and so on. The synthesized Ni nanoparticles showed the excellent catalytic activity and selectivity for the selective hydrogenation of C=C and nitro compounds in the aqueous phase under very mild reaction conditions. And the Ni catalysts can be recycled at least for eight times without significant decrease in catalytic activity. The results of characterization revealed that the mixed micelles stabilized Ni NPs catalysts were highly dispersed in aqueous phase even after five times catalytic recycles. In addition, The addition of ionic liquid ([BMMIm]OAc) can afford the basicity and an additional steric protection from aggregation of Ni NPs, resulting in enhancing stability and catalytic activity of Ni NPs.
     Generally, it is necessary for adding alkaline substances to transfer hydrogenation reaction system if isopropanol as hydrogen donor. Hence, supported Au nanoparticles was synthesized and applied for transfer hydrogenation in isopropanol without alkaline. Through comparing the different preparation methods, supports and reduction condition, it was found that the calcined MgAl-hydrotalcite under550℃as the support, and supported Au nanoparticles was synthesized through urea deposition precipitation method and then reduced by NaBH4. It was found that the MgAl oxides was regenerated to the MgAl-hydrotalcite structure. The Au0was the active center for the transfer hydrogenation reaction. The Au nanoparticles could be applied for the transfer hydrogenation of aromatic aldehydes, ketones and nitrobenzene derivatives, and showed high catalytic activity and selectivity. Au catalysts could be recycled without significant decrease in catalytic activity.
     The internal redox esterification of α,β-unsaturated aldehydes and alcohols is usually catalyzed by deprotonation of azolium salts such as thiazolium, imidazolium, and triazolium salts in the presence of bases. In the part of redox esterification reaction, different ionic liquids were applied as catalysts and reaction solvents. It was found that the Lewis basic ionic liquid,1-butyl-3-methylimidazolium acetate ([BMIM]OAc), exhibited the highest activity for this reaction. The neutral and Br(?)nsted basic ionic liquids can not catalyze redox esterification and the base strength have strong effect on the yield of the saturated ester.
引文
[1]Shwarz J, Contescu C, Putyera K, Encyclopedia of Nanoscience and Nanotechnology,2nd Edition, Marcel-Dekker, New York,2004.
    [2]Chung S W, Ginger D S, Morales M W, Zhang, Z F, Chandrasekhar V, Ratner M A, Mirkin, A. Cover Picture:top-down meets bottom-up:dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small.2004,1(1):1-2.
    [3]Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M. Addition of nanoparticle ispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature. 2004,430(7002):867-870.
    [4]Waggoner P S, Craighead H G. Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a chip.2007,7(10):1238-1255.
    [5]Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing with lasmonic nanosensors. Nat. Mater.2008,7(6):442-453.
    [6]Saunders B R, Turner M L. Nanoparticle-polymer photovoltaic cells. Adv. Colloid. Interfac.2008,138(1):1-23.
    [7]Aiken J D, Finke R G. A review of modern transition-metal nanoclusters:their synthesis, characterization, and applications in catalysis. J Mol. Catal. A-Chem.1999,145(1-2):1-44.
    [8]Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts:the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Edit.2005,44(48):7852-7872.
    [9]Narayanan R, El-Sayed M A. Catalysis with transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability. J Phys. Chem. B 2005, 109(26):12663-12666.
    [10]Sowa J R, Catalysis of Organic Reactions, Taylor & Francis, New York,2005.
    [11]Blaser H U, Schmidt E, Asymmetric Catalysis on Industrial Scale, Wiley, Weinheim, 2004.
    [12]Bommarius A S, Riebel B R, Biocatalysis, Wiley, Weinheim,2004.
    [13]Li J J, Johnson D S, Modern Drug Synthesis, Wiley, New Jersey,2010.
    [14]Wieckowski A, Savinova E R, Vayenas C G, Catalysis and Electrocatalysis at Nanoparticles Surface, Marcel-Dekker, New York,2003.
    [15]Zhou B, Han S, Raja R, Somorjai G A, Nanotechnology in Catalysis, Vol 3, Springer, New York,2007.
    [16]Heiz U, Landman U, Nanocatalysis, Springer, Heidelberg,2007.
    [17]Schmid G, Maihack V, Lantermann F, Peschel S. Ligand-stabilized metal clusters and colloids:properties and applications. J. Chem. Soc.,Dalton Trans.1996,5:589.
    [18]Doyle A M, Shaikhutdinov S K, Jackson S D, Freund H J. Hydrogenation on metal surfaces:why are nanoparticles more active than single crystals? Angew. Chem. Int. Edit. 2003,42(42):5240-5243.
    [19]Pool R. Clusters:Strange Morsels of Matter:When metals or semiconductors are shrunk down to clumps only 10 or 100 atoms in size, they become a "totally new class of materials" with potentially valuable applications. Science,1990,248(4960):1186-1188.
    [20]Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T. Green chemistry:science and politics of change. Science,2002,297(5582):807-810.
    [21]Schmid G, Nanoparticles, Wiley-VCH, Weinheim,2004.
    [22]Finke R G, In Metal Nanoparticles. Synthesis, Characterization and Applications, Marcel Dekker, New York,2002,2,17.
    [23]J. H. Fendler, Nanoparticles and Nanostructured Films. Preparation, Characterization and Applications, Wiley-VCH, Weinheim,1998.
    [24]Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts? Chem. Rev.2002,102(10):3757-3778.
    [25]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev.2004,104(9):3893-3946.
    [26]Bonnemann H, Richards R M. Nanoscopic Metal Particles-Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem.2001,2001(10):2455-2480.
    [27]Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem.1998,22(11):1179-1120
    [28]张立德,牟季美.纳米材料科学.沈阳:辽宁出版社,1994.
    [29]Zhang J, Worley J, Denommee S, et al. Synthesis of metal alloy nanoparticles in solution by laser irradiation of a metal powder suspension. J Phys. Chem. B 2003,107(29): 6920-6923.
    [30]Sibbald M S, Chumanov G, Cotton T M. Reduction of cytochrome c by halide-modified, laser-ablated silver colloids. J. Phys. Chem.1996,100(11):4672-4678.
    [31]Somorjai G A, Frei H, Park J Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am. Chem. Soc. 2009,131(46):16589-16605.
    [32]Narayanan R, El-Sayed M A. Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top. Catal.2008,47(1-2):15-22
    [33]Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small.2008, 4(3):310-325.
    [34]Hiemenz P C, In Principles of Colloid and Surface Chemistry, Marcel Dekker, New York,1986.
    [35]Ozkar S, Finke R G. Nanocluster Formation and Stabilization Fundamental Studies: Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application, of Five Comparative Criteria. J Am. Chem. Soc.2002,124(20):5796-5810.
    [36]Ott L S, Finke R G. Transition-metal nanocluster stabilization for catalysis:A critical review of ranking methods and putative stabilizers. Coord. Chem. Rev.2007,251(9-10): 1075-1100.
    [37]Verwey E J W, Overbeek J T G, Theory of the Stability of Lyophobic Colloids, Dover Publications:Mineola, New York,1999.
    [38]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid. Interfac.1999, 83(1-3):1-17.
    [37]Bayram E, Zahmakiran M, Ozkar S, Finke R G. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures. Langmuir 2010,26(14): 12455-12464.
    [38]Yang J, Deivaraj T C, Too H P, Lee J Y. Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 2004,20(10): 4241-4245.
    [39]Zahmakiran M, Ozkar S. Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohyride. J Mol. Catal. A-Chem.2006,258(1-2):95-103.
    [40]Zheng N, Fan J, Stucky G D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am. Chem. Soc.2006,128(20): 6550-6552.
    [41]Zahmakiran M, Ozkar S. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. J. Inorg. Chem.2009,48(18):8955-8964.
    [42]Ozkar S, Finke RG. Nanocluster formation and stabilization fundamental studies.2. proton sponge as an effective H+ scavenger and expansion of the anion stabilization ability series. Langmuir 2002,18(20):7653-7662.
    [43]Finke R G, Ozkar S. Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters:a tridentate, C3 symmetry, lattice size-matching binding model. Coord. Chem. Rev.2004,248(1-2):135-146.
    [44]Zahmakiran M, Ozkar S, Kodaira T, Shiomi T. A novel, simple, organic free preparation and characterization of water dispersible photoluminescent Cu2O nanocubes. Mater. Lett. 2009,63(3-4):400-402.
    [45]Narayanan R, El-Sayed M A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am. Chem. Soc.2003,125(27): 8340-8347.
    [46]Pastoriza-Santos I, Liz-Marzan LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002,18(7):2888-2894.
    [47]Zhao M, Sun L, Crooks R M. Preparation of Cu nanoclusters within dendrimer templates. J Am. Chem. Soc.1998,120(19):4877-4878.
    [48]Balogh L, Tomalia D A. Poly(amidoamine) dendrimer-templated nanocomposites. synthesis of zerovalent copper nanoclusters. J Am. Chem. Soc.1998,120(29):7355-7356.
    [49]Pan C, Pelzer K, Philippot K. Ligand-stabilized ruthenium nanoparticles:synthesis, organization, and dynamics. J Am. Chem. Soc.2001,123(31):7584-7593.
    [50]Schmid G, Morun B, Malm J O. Pt309Phen36030±10, a Four-Shell Platinum Cluster. Angew. Chem. Int. Ed.1989,28(6):778-780.
    [51]Dassenoy F, Philippot K, Ould Ely T, et al. Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers:FT-IR, NMR, HREM and WAXS studies. New J. Chem. 1998,22(7):703-712.
    [52]Yang J, Lee J Y, Deivaraj T C, Too H P. An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles. Langmuir 2003,19(24): 10361-10365.
    [53]Weare W W, Reed S M. Warner M G, Hutchison J E. Improved synthesis of small (dcore≈5nm) phosphine-stabilized gold nanoparticles. J Am. Chem. Soc.2000,122(51): 12890-12893.
    [54]Son S U, Jang Y, Yoon K Y, Kang E, Hyeon T. Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles. Nano Lett.2004,4(6):1147-1150.
    [55]Pelzer K, Laleu B, Lefebvre F, et al. New Ru nanoparticles stabilized by organosilane fragments. Chem. Mater.2004,16(24):4937-4940.
    [56]Zahmakiran M, Tristany M, Philippot K, Fajerwerg K, Ozkar S, Chaudret B. Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine-borane. Chem. Commun. 2010,46(17):2938-2940.
    [57]Lin Y, Finke R G. Novel Polyoxoanion- and Bu4N+-Stabilized, isolable, and redissolvable,20-30-.ANG. Ir300-900 nanoclusters:the kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible c. J. Am. Chem. Soc.1994,116(18):8335-8353.
    [58]Hornstein B J, Finke R G. Transition-metal nanocluster catalysts:scaled-up synthesis, characterization, storage conditions, stability, and catalytic activity before and after storage of polyoxoanion- and tetrabutylammonium-stabilized Ir(0) nanoclusters. J. Chem. Mater.2003, 15(4):899-909.
    [59]Durap F, Zahmakiran M, Ozkar S. Water soluble Iaurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. A.2009,369(1-2):53-59.
    [60]Durap F, Zahmakiran M, Ozkar S. Water soluble Iaurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane:High activity and long lifetime. Int. J. Hydrogen Energy.2009,34(17):7223-7230.
    [61]Sheldon R A. Green solvents for sustainable organic synthesis:state of the art. Green Chem.2005,7(5):267.
    [62]Jansen JF, Brabander-van den Berg E M, Meijer E W. Encapsulation of guest molecules into a dendritic box. Science.1994,266(5188):1226-1229.
    [63]Schroder U, Wadhawan J D, Compton R G, et al. Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J. Chem.2000,24(12):1009-1015.
    [64]Migowski P, Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J.2007,13(1):32-39.
    [65]Mu X, Meng J, Li Z, Kou Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids:long lifetime nanocluster catalysts for benzene hydrogenation. J Am.Chem. Soc.2005,127(27):9694-9695.
    [66]Yang X, Fei Z, Zhao D, Ang W H, Li Y, Dyson P J. Palladium nanoparticles stabilized by an ionic polymer and ionic liquid:a versatile system for C-C cross-coupling reactions. J. Inorg. Chem.2008,47(8):3292-3297.
    [67]Yang X, Yan N, Fei Z, et al. Biphasic hydrogenation over PVP stabilized Rh nanoparticles in hydroxyl functionalized ionic liquids. Inorg. Chem.2008,47(17):7444-7446.
    [68]Pillai U R, Sahle-Demessie E. Phenanthroline-stabilized palladium nanoparticles in polyethylene glycol-an active and recyclable catalyst system for the selective hydrogenation of olefins using molecular hydrogen. J. Mol. Catal. A:Chem.2004,222:153-158.
    [69]Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Edit.2007,46(25):4630-4660.
    [70]Stowell C A, Korgel B A. Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett.2005,5(7):1203-1207.
    [71]Roucoux A, Schulz J, Patin H. Arene hydrogenation with a stabilised aqueous Rhodium(0) suspension:a major effect of the surfactant counter-anion. Adv. Synth. Catal. 2003,345(12):222-229.
    [72]Li Y, El-Sayed M A. The effect of stabilizers on the catalytic activity and stability of pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 2001, 105(37):8938-8943.
    [73]Ozkar S, Finke R G. Transition-metal nanocluster stabilization fundamental studies: hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition-metal nano. Langmuir 2003,19(15):6247-6260.
    [74]Tosheva L, Valtchev V P. Nanozeolites:synthesis, crystallization mechanism, and applications. Chem. Mater.2005,17(10):2494-2513.
    [75]Kato H, Minami T, Kanazawa T, Sasaki Y. Mesopores created by platinum nanoparticles in zeolite crystals. Angew. Chem. Int. Edit.2004,43(10):1251-1254.
    [76]Castillejos E, Debouttiere P J, Roiban L, et al. An efficient strategy to drive nanoparticles into carbon nanotubes and the remarkable effect of confinement on their catalytic performance. Angew. Chem. Int. Edit.2009,48(14):2529-2533.
    [77]Sayle D C, Doig JA, Parker S C Watson G W. Metal oxide encapsulated nanoparticles. J. Mater. Chem.2003,13(9):2078.
    [78]Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today.1997, 36(1):153-166.
    [79]Shi F, Zhang Q, Ma Y, He Y, Deng Y. From CO oxidation to CO2 activation:an unexpected catalytic activity of polymer-supported nanogold. J Am. Chem. Soc.2005, 127(12):4182-4183.
    [80]Graeser M, Pippel E, Greiner A, Wendorff J H. Polymer core-shell fibers with metal nanoparticles as nanoreactor for catalysis. Macromol.2007,40(17):6032-6039.
    [81]Kaneda K, Mizugaki T. Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energ. Environ. Sci.2009,2(6):655.
    [82]Zahmakiran M, Tonbul Y, Ozkar S. Ruthenium(0) nanoclusters supported on hydroxyapatite:highly active, reusable and green catalyst in the hydrogenation of aromatics under mild conditions with an unprecedented catalytic lifetime. Chem. Commun.2010, 46(26):4788-4790.
    [83]El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-10 J.Mater. Chem.2009,19(41):7625.
    [84]Peng Z, Wu J, Yang H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater.2010,22(3):1098-1106.
    [85]Mazumder V, Sun S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am. Chem. Soc.2009,131(13):4588-4589.
    [86]Zahmakiran M, Ozkar S. The preparation and characterization of gold(0) nanoclusters stabilized by zeolite framework:Highly active, selective and reusable catalyst in aerobic oxidation of benzyl alcohol. Mater. Chem. Phys.2010,121(1-2):359-363.
    [87]Zahmakiran M, Ozkar S. Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles. Mater. Lett.2009,63(12):1033-1036.
    [88]Su F, Lv L, Lee F Y, Liu T, Cooper A I, Zhao X S. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. J Am. Chem. Soc.2007,129(46):14213-14223.
    [89]Choi H, Al-Abed S R, Agarwal S, Dionysiou D D. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater.2008,20(11):3649-3655.
    [90]Barau A, Budarin V, Caragheorgheopol A. A simple and efficient route to active and dispersed silica supported palladium nanoparticles. Catal. Lett.2008,124(3-4):204-214.
    [91]Haruta M. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal.1993,144(1):175-192.
    [92]Martinez A, Prieto G. The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catal. Commun.2007,8(10): 1479-1486.
    [93]He P, Zhang M, Yang D, Yang J. Preparation of Au-loaded TiO2 by photochemical deposition and ozone photocatalytic decomposition. Surf. Rev. Lett.2006,13(01):51-55.
    [94]Dominguez-Dominguez S, Arias-Pardilla J, Berenguer-Murcia A, Morallon E, Cazorla-Amoros D. Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J. Appl. Electrochem.2007,38(2):259-268.
    [95]Panziera N, Pertici P, Barazzone L, et al. MVS-derived palladium nanoparticles deposited on polydimethylphosphazene as recyclable catalysts for Heck-type reactions: Preparation, structural study, and catalytic activity. J. Catal.2007,246(2):351-360.
    [96]George S M. Atomic layer deposition:an overview. Chem. Rev.2010,110(1):111-13
    [97]Jiang X, Huang H, Prinz F B, Bent S F. Application of atomic layer deposition of platinum to solid oxide fuel cells. Chem. Mater.2008,20(12):3897-3905.
    [98]Feng H, Elam J W, Libera J A, Setthapun W, Stair P C. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem. Mater.2010,22(10): 3133-3142.
    [99]Hsu I J, Hansgen D A, McCandless B E, Willis B G, Chen J G. Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction. J. Phys. Chem C. 2011,115(9):3709-3715.
    [100]Li Y, Boone E, El:Sayed M A. Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir 2002,18(12):4921-4925.
    [101]Ley S V, Mitchell C, Pears D, Ramarao C, Yu J Q, Zhou W. Recyclable polyurea: microencapsulated Pd(0) nanoparticles:an efficient catalyst for hydrogenolysis of epoxides. Org. Lett.2003,5(24):4665-4668.
    [102]Demir M M, Gulgun M A, Menceloglu Y Z. Palladium nanoparticles by electrospinning from Poly(acrylonitrile:co:acrylic acid)-PdCl2 Solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromol.2004,37(5):1787-1792.
    [103]Groschel L, Haidar R, Beyer A, Reichert K H, Schomacker R. Characterization of palladium nanoparticles adsorpt on polyacrylic acid particles as hydrogenation catalyst. Catal. Lett.2004,95(1-2):67-75.
    [104]Sablong R, Schlotterbeck U, Vogt D, Mecking S. Catalysis with soluble hybrids of highly branched macromol with palladium nanoparticles in a continuously operated membrane reactor. Adv. Synth. Catal.2003,345(3):333-336.
    [105]Hirai H. Formation and Catalytic Functionality of Synthetic Polymer:Noble Metal Colloid. J. Macromol. Sci. Chem.1979,13(5):633-649.
    [106]Pellegatta J L, Blandy C, Colliere V, et al. Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene. J Mol. Catal. A-Chem.2002, 178(1-2):55-56.
    [107]Larpent C, Bernard E, Brisse-le Menn F, Patin H. Biphasic liquid-liquid hydrogenation catalysis by aqueous colloidal suspensions of rhodium:The choice of the protective-colloid agent and the role of interfacial phenomena. J Mol. Catal. A-Chem.1997,116(1-2):277-288.
    [108]Meric P, Yu K, Kong A, Tsang S. Pressure-dependent product distribution of citral hydrogenation over micelle-hosted Pd and Ru nanoparticles in supercritical carbon dioxide. J. Catal.2006,237(2):330-336.
    [109]K. R. Januszkiewicz, H. Alper, Exceedingly mild, selective and stereospecific phase-transfer-catalyzed hydrogenatlon of arenes. Organomet.1983,2:1055.
    [110]Fache F, Lehuede S, Lemaire M. A catalytic stereo-and chemo-selective method for the reduction of substituted aromatics. Tetrahedron. Lett.1995,36(6):885-888.
    [111]Pelzer K, Vidoni O, Philippot K, Chaudret B, Colliere V. Organometallic Synthesis of Size-Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols. Adv. Funct. Mater.2003,13(2):118-126.
    [112]Pelzer K, Philippot K, Chaudret B. Synthesis of monodisperse heptanol stabilized ruthenium nanoparticles. Evidence for the presence of surface hydrogens. Z. Phys. Chem. 2003,217(12-2003):1539-1548.
    [113]Jansat S, Picurelli D, Pelzer K, et al. Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New J. Chem.2006,30(1): 115.
    [114]Mao H, Yu H, Chen J, Liao X. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts. Sci. R.2013,3: 2226.
    [115]Widegren J A, Finke R G Anisole hydrogenation with well-characterized polyoxoanion-and tetrabutylammonium-stabilized Rh(0) nanoclusters:effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity. J. Inorg. Chem.2002, 41(6):1558-1572.
    [116]Aiken J D, Finke R G. Polyoxoanion-and tetrabutylammonium-stabilized, near-monodisperse,40±6A Rh(0)~1500 to Rh(0)~3700 nanoclusters:synthesis, characterization, and hydrogenation catalysis. J. Chem. Mater.1999,11(4):1035-1047.
    [117]Finke R G, Feldheim D V, Foss Jr C A. Metal Nanoparticles, Marcel Dekker, New York, 2002:17-54.
    [118]Fonseca G S, Scholten J D, Dupont J. Iridium Nanoparticles Prepared in Ionic Liquids: An Efficient Catalytic System for the Hydrogenation of Ketones. Synlett.2004, (9):1525-1528.
    [119]Zeng Y, Wang Y, Jiang J, Jin Z. Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system. Catal. Commun.2012,19:70-73.
    [120]Hu Y, Yu Y, Hou Z, Li H, Zhao X, Feng B. Biphasic Hydrogenation of Olefins by Functionalized Ionic Liquid-Stabilized Palladium Nanoparticles. Adv. Synth. Catal.2008, 350(13):2077-2085.
    [121]Zhu W W, Yang H M, Yu Y Y, Hua L, Li H, Feng B, Hou Z S. Amphiphilic ionic liquid stabilizing palladium nanoparticles for highly efficient catalytic hydrogenation. Phys. Chem. Chem. Phys.2011,13(30):13492-13500.
    [122]Zhang Y, Quek X-Y, Wu L, Guan Y, Hensen EJ. Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. J. Mol. Catal. A-Chem.2013,379:53-58.
    [123]Banerjee A, Theron R, Scott R W J. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. ChemSusChem.2012,5(1):109-116.
    [124]Beier M J, Andanson J M, Baiker A. Tuning the chemoselective hydrogenation of nitrostyrenes catalyzed by ionic liquid-supported platinum nanoparticles. ACS Catal.2012, 2(12):2587-2595.
    [125]Zhang B, Wepf R, Fischer K, Schmidt M, Besse S, Lindner P, King B T, Siegel R, Schurtenberger P, Talmon Y, Ding Y, Kroger M, Halperin A, Schliiter A D. The largest synthetic structure with molecular precision:towards a molecular object. Angew. Chem. Int. Ed.2011,50(3):737-740.
    [126]Crooks R M, Chechnik V, Lemon B I, Sun L, Yeung L K, Zhao M. Metal Nanoparticles: Synthesis, Characterization and Applications, Marcel Dekker, New York,2002, p.262.
    [127]Chung Y M, Rhee H K. Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. J Mol. Catal. A-Chem.2003, 206(1-2):291-298.
    [128]Strimbu L, Liu J, Kaifer A E. Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir 2003,19(2):483-485.
    [129]Liu J, Alvarez J, Ong W, Roman E, Kaifer A E. Tuning the catalytic activity of cyclodextrin-modified palladium nanoparticles through host-guest binding interactions. Langmuir 2001,17(22):6762-6764.
    [130]Alvarez J, Liu J, Roman E, Kaifer A E. Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem. Commun.2000,13:1151-1152.
    [131]Nowicki A, Zhang Y, Leger B, et al. Supramolecular shuttle and protective agent:a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. Chem. Commun.2006,3:296-298.
    [132]Chau N T T, Handjani S, Guegan J P, et al. Methylated β-cyclodextrin-capped ruthenium nanoparticles:synthesis strategies, characterization, and application in hydrogenation reactions. ChemCatChem.2013,5(6):1497-1503.
    [133]Migowski P, Machado G, Texeira S R, Dupont J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys. Chem. Chem. Phys.2007, 9(34):4814-4821.
    [134]L'Argentiere PC, Cagnola EA, Canon MG, Liprandi DA, Marconetti D V. A nickel tetra-coordinated complex as catalyst in heterogeneous hydrogenation. J. Chem. Technol. Biotechnol.1998,71(4):285-290.
    [135]Hu Y, Yu Y, Zhao X, Hou Z S et al. Catalytic hydrogenation of aromatic nitro compounds by functionalized ionic liquids-stabilized nickel nanoparticles in aqueous phase: The influence of anions. Sci. China. Chem.2010,53(7):1541-1548.
    [136]Hu Y, Yu Y Y, Hou Z S, Yang H M, Feng B, Li H, Qiao Y X, Wang X R, Hua L, Pan Z Y, Zhao X G. Ionic liquid immobilized nickel(0) nanoparticles as stable and highly efficient catalysts for selective hydrogenation in the aqueous phase. Chem. Asian J.2010,5(5): 1178-1184.
    [137]Rinaldi R, Porcari A de M, Rocha T C R. Construction of heterogeneous Ni catalysts from supports and colloidal nanoparticles-A challenging puzzle. J. Mol. Catal. A-Chem.2009, 301(1-2):11-17.
    [138]Li D S, Komarneni S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc.2006,89,1510-1517.
    [139]Liaw B J, Chiang S J, Tsai C H, Chen Y Z. Preparation and catalysis of polymer-stabilized NiB catalysts on hydrogenation of carbonyl and olefinic groups. Appl. Catal. A:Gen.2005,284,239-246.
    [140]Wang A, Yin H, Lu H, Xue J, Ren M, Jiang T. Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Langmuir 2009,25(21):12736-12741.
    [141]Wang A, Yin H, Ren M, Lu H, Xue J, Jiang T. Preparation of nickel nanoparticles with different sizes and structures and catalytic activity in the hydrogenation of p-nitrophenol. New J. Chem.2010,34(4):708-713.
    [142]Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L. Preparation of Nickel Nanoparticles in Spherical Polyelectrolyte Brush Nanoreactor and Their Catalytic Activity. Ind. Eng. Chem. Res.2011,50(24):13848-13853.
    [143]Xu R, Xie T, Zhao Y, Li Y. Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology.2007,18(5):055602-055610.
    [144]Nagaveni K, Gayen A, Subbanna GN, Hegde MS. Pd-coated Ni nanoparticles by the polyol method:an efficient hydrogenation catalyst. J. Mater. Chem.2002,12(10):3147-3151.
    [145]Maxted E B. The poisoning of metallic catalysts. Adv. Catal.1951,3:129-197.
    [146]Baiker A, Monti D, Fan Y S. Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines. J. Catal.1984,88(1):81-88.
    [147]Dua Y, Chen H, Chen R, Xu N. Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem. Engineer. J.2006,125: 9-14.
    [148]Chen R, Wang Q Q, Du Y, Xing W H, Xu N P. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem. Eng. J.2009,145: 371-376.
    [149]Haruta M. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.1989,115(2):301-309.
    [150]Yoshida H, Kuwauchi Y, Jinschek J R. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science.2012,335(6066): 317-319.
    [151]Takei T, Okuda I, Bando K K, Akita T, Haruta M. Gold clusters supported on La(OH)3 for CO oxidation at 193 K. Chem. Phys. Lett.2010,493(4-6):207-221
    [152]Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund H J. Gold supported on thin oxide films:from single atoms to nanoparticles. Acc. Chem. Res.2008,41(8):949-956.
    [153]Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev.2008,37(9):2096-2126.
    [154]Ma Z, Dai S. Design of Novel Structured Gold Nanocatalysts. ACS Catal.2011,1(7): 805-818.
    [155]Lopez-Sanchez J A, Dimitratos N, Hammond C. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem.2011,3(7):551-556.
    [156]Sa J, Taylor S F R, Daly H. Redispersion of Gold Supported on Oxides. ACS Catal. 2012,2(4):552-560.
    [157]Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev.2010,110(9):5366-5397.
    [158]Ofir Y, Samanta B, Rotello VM. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev.2008,37(9):1814-25.
    [159]Su F Z, He L, Ni J, Cao Y, He H Y, Fan K N. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun.2008,30:3531-3533.
    [160]He L, Qian Y, Ding R-S. Highly efficient heterogeneous gold-catalyzed direct synthesis of tertiary and secondary amines from alcohols and urea. ChemSusChem.2012,5(4):621-624.
    [161]He L, Ni J, Wang LC. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J.2009,15(44):11833-11836.
    [162]Bulushev D A, Beloshapkin S, Ross J R H. Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal. Today.2010,154(1-2):7-12.
    [163]Shekhar M, Wang J, Lee W S. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2.J. Am. Chem. Soc.2012, 134(10):4700-4708.
    [164]Williams W D, Shekhar M, Lee W S. Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. J. Am. Chem. Soc.2010, 132(40):14018-14020.
    [165]He L, Yu F J, Lou X B, Cao Y, He H Y Fan K N. A novel gold-catalyzed chemoselective reduction of alpha, beta-unsaturated aldehydes using CO and H2O as the hydrogen source. Chem. Commun.2010,46(9):1553-1555.
    [166]Du X L, He L, Zhao S. Hydrogen-independent reductive transformation of carbohydrate biomass into y-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angew. Chem. Int. Ed.2011,50(34):7815-7819.
    [167]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev.2007,107(6):2411-2502.
    [168]Ojeda M, Iglesia E. Formic acid dehydrogenation on au-based catalysts at near-ambient temperatures. Angew. Chem. Int. Ed.2009,48(26):4800-4803.
    [169]Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc.2011,133(31):11822-11825.
    [170]Bahn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. The Catalytic Amination of Alcohols. ChemCatChem.2011,3(12):1853-1864.
    [171]Boucher M B, Yi N, Gittleson F, Zugic B, Saltsburg H, Flytzani-Stephanopoulos M. Hydrogen production from methanol over gold supported on ZnO and CeO2 Nanoshapes. J. Phys. Chem. C.2011,115(4):1261-1268.
    [172]He L, Lou X-B, Ni J. Efficient and clean gold-catalyzed one-pot selective N-alkylation of amines with alcohols. Chem. Eur. J.2010,16(47):13965-13969.
    [173]Ishida T, Takamura R, Takei T, Akita T, Haruta M. Support effects of metal oxides on gold-catalyzed one-pot N-alkylation of amine with alcohol. Appl. Catal., A-Gen.2012, 413-414:261-266.
    [174]Soule J F, Miyamura H, Kobayashi S. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron,-nickel or -cobalt nanoparticles. J. Am. Chem. Soc.2011,133(46):18550-18553.
    [175]Zotova N, Roberts F J, Kelsall G H, Jessiman A S, Hellgardt K, Hii K K. Catalysis in flow:Au-catalysed alkylation of amines by alcohols. Green Chem.2012,14(1):226.
    [176]He L, Wang L C, Sun H. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed.2009,48(50):9538-95394.
    [177]Liu L, Qiao B, Chen Z, Zhang J, Deng Y Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O. Chem. Commun.2009,6:653-655.
    [178]Lou X B, He L, Qian Y, Liu Y M, Cao Y, Fan K N. Highly chemo- and regioselective transfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles. Adv. Synth. Catal.2011,353(2-3):281-286.
    [179]Pratap T., Baskaran S. Direct conversion of aryl nitro compounds to formanilides under catalytic transfer hydrogenation conditions. Tetrahedron Lett.2001,42(10):1983-1985.
    [180]Tang C H, He L, Liu Y M, Cao Y, He H Y, Fan K N. Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts. Chem. Eur. J. 2011,17(26):7172-7177.
    [181]Peng Q, Zhang Y, Shi F, Deng Y. Fe2O3-supported nano-gold catalyzed one-pot synthesis of N-alkylated anilines from nitroarenes and alcohols. Chem. Commun.2011, 47(22):6476-6478.
    [182]Huang J, Yu L, He L, Liu Y M, Cao Y, Fan K. N. Direct one-pot reductive imination of nitroarenes using aldehydes and carbon monoxide by titania supported gold nanoparticles at room temperature. Green Chem.2011.13(10):2672.
    [183]Xiang Y, Meng Q, Li X, Wang J. In situ hydrogen from aqueous-methanol for nitroarene reduction and imine formation over an Au-Pd/Al2O3 catalyst. Chem. Commun. 2010,46(32):5918-5920.
    [184]Cammarata L, Kazarian S G, Salter P A, Welton T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys.2001,3(23):5192-5200.
    [185]Huddleston J G, Rogers R D. Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction. Chem. Commun.1998, (16):1765-1766.
    [186]Dominguez X, Lopez I, Franco R. Notes simple preparation of a very active raney nickel catalyst. J. Org. Chem.1961,26:1625-1625.
    [187]Davar F, Fereshteh Z, Salavati-Niasari M. Nanoparticles Ni and NiO:Synthesis, characterization and magnetic properties. J Alloy. Compd.2009,476(1-2):797-801.
    [188]Li X, Zhang X, Li Z, Qian Y. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid State Commun.2006, 137(11):581-584.
    [189]Bala T, Gunning R D, Venkatesan M, Godsell J F, Roy S, Ryan K M. Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology.2009,20(41):415603.
    [190]Chen Y, Liew K Y, Li J. Size controlled synthesis of Co nanoparticles by combination of organic solvent and surfactant. Appl. Surf. Sci.2009,255(7):4039-4044.
    [191]Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corperation.1979:80-88.
    [192]Winnischofer H, Rocha T C R, Nunes W C. Socolovsky L M, Knobel M, Zanchet D. Chemical synthesis and structural characterization of highly disordered N colloidal nanoparticles. ACS nano.2008,2(6):1313-1319.
    [193]Kidwai M, Bansal V, Saxena A, Shankar R, Mozumdar S. Ni-nanoparticles:an efficient green catalyst for chemoselective reduction of aldehydes. Tetrahedron Lett.2006,47(25): 4161-4165.
    [194]Ott L S, Cline M L, Deetlefs M, Seddon K R, Finke R G. Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by NMR. J. Am. Chem. Soc.2005,127(16):5758-5759.
    [195]Jain N, Aswal V, Goyal P, Bahadur P. Salt induced micellization and micelle structures of PEO/PPO/PEO block copolymers in aqueous solution. Colloid. Surface. A 2000,173(1-3): 85-94.
    [196]Das D K, Das A K, Mondal T, Mandal A K, Bhattacharyya K. Ultrafast FRET in ionic liquid-P123 mixed micelles:region and counterion dependence. J. Phys. Chem. B 2010, 114(41):13159-13166.
    [197]Dey S, Adhikari A, Das D K, Sasmal D K, Bhattacharyya K. Femtosecond solvation dynamics in a micron-sized aggregate of an ionic liquid and P123 triblock copolymer. J. Phys. Chem. B.2009,113(4):959-965.
    [198]Alexandridis P, Holzwarthf J F, Alan Hatton T. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromol.1994,27:2414-2425.
    [199]W. F. Forbes, B. Milligan, The interaction of azodyes with pproteins.Ⅱ.The ultraviolet spectral changes occuring on adding protein to aqueous solution of methyl organe. Aust. J. Chem.1962,15:841-850.
    [200]Behera K, Dahiya P, Pandey S. Effect of added ionic liquid on aqueous Triton X-100 micelles. J. Colloid Interf. Sci.2007,307(1):235-45.
    [201]Zhang H, Cui H. Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanoparticle/Carbon Nanotube Hybrids. Langmuir 2009,25(5):2604-2612.
    [202]Tanchoux N, Bellefon C de. Kinetic and Mechanistic Study of the H-Transfer Reduction of Dimethyl Itaconate by a Rh/TPPTS Catalyst under Biphasic Conditions:Evidence for a Rhodametallacycle Intermediate. Eur. J. Inorg. Chem.2000,2000(7):1495-1502.
    [203]Johnstone R A W, Wilby A H, Entwistle I D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem Rev,1985,85:129-170.
    [204]Dayan S, Kalaycioglu NO, Dayan O. Ozdemir N, Dincer M, Buyiikgungor O. Synthesis and characterization of SiO2-supported ruthenium complexes containing aromatic sulfonamides:as catalysts for transfer hydrogenation of acetophenone. J. Chem. Soc, Dalton Trans.2013,42(14):4957-4969.
    [205]Vaccari A. Clays and catalysis:a promising future. Appl. Clay Sci.1999,14(4): 161-198.
    [206]徐如人,庞文琴,霍启升.无机合成与制备化学.高等教育出版社.第二版,2009.
    [207]Di Cosimo J I, Diez V K, Xu M, Iglesia E, Apesteguia C R. Structure and surface and catalytic properties of Mg-AI basic oxides. J. Catal.1998,178:499-510.
    [208]Chowdhury S, Mohan R S, Scott J L. Reactivity of ionic liquids. Tetrahedron 2007,63: 2363-2389
    [209]Glorius F, Hirano K. Nucleophilic Carbenes as Organocatalysts. Ernst Schering Foundation Symposium Proceedings 2007,2:159-181.
    [210]Xu L W, Gao Y, Yin J J, Li L, Xia C G.Efficient and mild benzoin condensation reaction catalyzed by simple 1-N-alkyl-3-methylimidazolium salts. Tetrahedron Lett.2005, 46(32):5317-5320.
    [211]Iwamoto K, Hamaya M, Hashimoto N, Kimura H, Suzuki Y, Sato M. Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett.2006, 47(40):7175-7177.
    [212]Sohn S S, Bode J W. Catalytic generation of activated carboxylates from enals:a product-determining role for the base. Org. Lett.2005,7:3873-3876.
    [213]Maki B E, Patterson E V, Cramer C J, Scheidt K A. Impact of solvent polarity on N-heterocyclic carbene-catalyzed P-protonations of homoenolate equivalents. Org. Lett.2009, 7:3942-3945.
    [214]Mehnert C P, Dispenziere N C, Cook R A. Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media. Chem. Commun.2002:1610-1611.
    [215]Gong K, Fang D, Wang H L, Liu Z L. Basic functionalized ionic liquid catalyzed one-pot Mannich-type reaction:three component synthesis of P-amino carbonyl compounds. Monatshefte fur Chemie.2007,138:1195-1198.
    [216]Ranu B C, Jana R. Ionic liquid as catalyst and reaction medium-a simple, efficient and green procedure for Knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org. Chem.2006,16:3767-3770
    [217]Xu J M, Liu B K, Wu W B, Qian C, Wu Q, Lin X F. Basic Ionic Liquid as Catalysis and Reaction Medium:A novel and green protocol for the markovnikov addition of N-heterocycles to vinyl esters, using a task-specific ionic liquid, [BMIM]OH. J Org. Chem. 2006,71:3991-1993.
    [218]Bourissou D, Guerret O, Gabbai F P, Bertrand G. Stable Carbenes. Chem. Rev.2000, 100(1):39-92.
    [219]Herrmann W A, Kocher C. N-heterocyclic carbenes. Angew. Chem. Int. Ed.1997,36: 2162-2187
    [220]Rodriguez H, Gurau G, Holbreya J D, Rogers R D. Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones:direct evidence for ionic liquids as proto-carbenes. Chem. Commun.2011,47:3222-3224
    [221]Sun N, Rahman M, Qin Y, Maxim M L, Rodriguez H, Rogers R D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem.2009,11(5):646-655.
    [222]Holloczki O, Gerhard D, Massone K, Szarvas L, Nemeth B, Veszpremi T, Nyulaszi L. Carbenes in ionic liquids. New J. Chem.2010,34(12):3004-3009.
    [223]Maki B E, Chan A, Scheidt K A. Protonation of homoenolate equivalents generated by n-heterocyclic carbenes. Synthesis.2008,2008(8):1306-1315.
    [224]Chen X W, Li X H, Song H B, Lu Y X, Wang F R, Hu A X. Synthesis of a basic imidazolide ionic liquid and its application in catalyzing Knoevenagel condensation. Chin. J Catal.2008,29:957-959.
    [225]Yoshizawa-Fujita M, Johansson K, Newman P, MacFarlane D R, Forsyth M. Novel Lewis-base ionic liquids replacing typical anions. Tetrahedron Lett.2006,47(16):2755-2758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700