用户名: 密码: 验证码:
近红外光谱分析模型优化和模型转移算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近红外(NIR)光谱由于信号强度低、谱峰重叠严重等特点,故需要用化学计量学手段建立数学模型来提取有化学意义的信息。为了提高模型的预测效果,NIR光谱模型需要优化;为了提高NIR光谱模型的通用性,必须实现模型转移。
     NIR光谱模型的优化包括光谱预处理以及变量选择等手段。在光谱预处理方面,本文研究了基于分数阶Savitzky-Golay求导的光谱预处理方法。分数阶Savitzky-Golay求导的光谱预处理方法是对整数阶Savitzky-Golay求导的推广,而整数阶Savitzky-Golay求导则是分数阶Savitzky-Golay求导在阶次为整数条件下的特例。和整数阶Savitzky-Golay求导类似,分数阶Savitzky-Golay求导通过构造奇数点的窗口,先拟合出待求导的多项式的系数。然后,根据Riemann-Liouville对分数阶导数的定义,以及之前拟合的多项式系数,通过对原光谱线性组合,得出分数阶求导的结果。分数阶Savitzky-Golay求导不需要使用繁琐的数学公式,只需构造出对角带状矩阵,将其右乘光谱矩阵即可实现求导计算。我们通过柴油数据,小麦数据、玉米数据对该方法实行验证。结果发现,在固定窗口以及多项式次数的情况下,分数阶导数能获得比整数阶导数更详细的信息,且其计结果的交互检验均方根误差(RMSECV)以及预测均方根误差(RMSEP)均小于整数阶求导。当预测结果为样品粘度、密度、硬度等非组分含量信息时,其计算结果明显优于整数阶求导。
     在变量选择方面,本文研究了基于变量稳定性的竞争性自适应加权抽样法(SCARS)。该方法通过构造若干个变量集合。对每个集合中的变量,该方法通过Monte Carlo方法计算变量的稳定性,以此作为变量重要性的指标。之后,用基于指数函数的强制删除法以及竞争性自适应加权抽样法(ARS)对变量进行删除。对剩下的变量集合重复上述过程进行变量选择(重新计算稳定性,强制删除,ARS)。最后对每个集合的结果进行交互检验,选择RMSECV最小的集合作为最优集合。我们用烟草数据、玉米数据以及小麦数据对这个方法进行验证。结果发现,基于SCARS选择的变量集,其计算结果的RMSECV值以及RMSEP值均小于移动窗口法(MWPLS), Monte Carlo无信息变量消除法(MCUVE)以及竞争性自适应加权抽样法(CARS)。
     我们还考察了变量选择导致过拟合问题。我们通过随机数产生的无分类意义的数据,用SCARS法,CARS法以及MCUVE法进行变量选择,结果发现对于这些无分类意义的数据,变量选择方法居然能够选择一些“较好的”变量组合,使其校正集的计算误差极大地减小,且原数据变量数越大,分类的结果“越好”。除了分类数据之外,我们对随机产生的回归数据也做了研究,也发现了同样的现象。这种异常的结果揭示了变量选择也会导致过拟合,从无信息数据中找到一些“好的”变量组合,使变量选择的结果偏向于校正集。为了研究这种现象的产生原因以及预防策略,我们用烟草尼古丁数据作为有信息组分,然后添加和有信息数据成不同比例的无信息数据构造模拟数据。然后将这模拟数据,分为校正集以及独立测试集两部分。其中校正集用SCARS方法进行变量选择,对每一个变脸选择的集合,我们不仅计算其校正集的RMSECV值,同时用校正集建模计算其独立测试集的RMSEP数值。考察随着变量集合的收缩,RMSECV以及RMSEP的变化情况。结果发现,对于以噪声作为无信息数据,当噪声的标准差小于等于有信息光谱标准差均值0.02倍时;对于以重排光谱作为无信息组分的数据,无信息组分的强度小于等于有信息光谱强度的0.1倍时,RMSECV的的变化趋势和RMSEP乎一致。但是随着无信息组分的增加,其变化趋势的相似性变小。对于以噪声作为无信息组分的数据,当噪声的标准差大于有信息光谱标准差均值0.02倍时;对于以重排光谱作为无信息组分的数据,无信息组分的强度大于有信息光谱标准差均值0.1倍时,RMSECV以及RMSEP变化趋势有显著差异。比较变量选择中RMSECV以及RMSEP变化趋势图可用于检验变量选择算法的有效性:当二者变化较小时候,可以认为变量选择是有效的;而当二者差异较大时,则变量选择算法是无效的。
     在模型转移方面,本文研究了基于光谱中有信息成分的模型转移方法。通过预测向量的偏最小二乘法(PLS)分别从主光谱和从光谱中提取与预测值建模相关的信息。之后,用基于光谱校正的模型转移法(典型相关分析法(CCA)、直接校正法(DS)以及预测矩阵的偏最小二乘法(PLS2))将从光谱的有信息成分转移成主光谱的有信息组分。最后将转移后的有信息组分代入主光谱的模型进行预测。我们用玉米数据、三组分体系数据以及人工配置的牛奶中富马酸二甲酯数据,对这种模型转移方法进行了验证。结果显示,对于基于光谱转移的模型转移法,基于光谱中有信息组分的转移的结果要好于基于全光谱的模型转移。
In order to overcome the drawbacks of near infrared (NIR) spectroscopy, such as low absorption intensity and overlapped bands, chemometrics methods are used to construct models to extract chemical information. For the purpose of improving the prediction ability, the models should be optimized by spectral pretreatment and variable selection. And in the aim of improving generality of the models, the models should be executed calibration transfer.
     On aspect of spectral pretreatment, this paper applied fractional order Savitzky-Golay differentiation to preprocess NIR spectra. The fractional order Savitzky-Golay differentiation is the generalization of ordinary Savitzky-Golay differentiation (integral order Savitzky-Golay differentiation) while the ordinary Savitzky-Golay differentiation is the special case of fractional order Savitzky-Golay differentiation at integral order. Similar as ordinary Savitzky-Golay differentiation, the fractional order Savitzky-Golay differentiation also obtains the parameters of polynomial by fitting the data in the window of spectra. Then, with the aid of Riemann-Liouville fractional calculus theory and the parameters of polynomial, the results of differentiation can be obtained by the linear combination of the data in the window. Without complex mathematical formula, the fractional order Savitzky-Golay differentiation can obtain the spectra differentiation results by multiplying a band diagonal matrix on the right of raw spectra. Three datasets including diesel, wheat and corn datasets were applied to test this method. The results showed that compared with ordinary Savitzky-Golay differentiation, the proposed method can obtain more details of spectra to obtain small values of and root mean square error of cross valudation (RMSECV) and root mean square error of prediction (RMSEP), especially for the non-chemical information containing viscosity, density and hardness.
     A new variable selection method called stability competitive adaptive reweighted sampling (SCARS) was proposed. In SCARS, variable is selected by an index of stability that is defined as the absolute value of regression coefficient divided by its standard deviation. SCARS algorithm consists of a number of loops. In each loop, the stability of each variable is computed. Then based on stability, enforced wavelength selection and adaptive reweighted sampling (ARS) is used to select important variables. The selected variables are kept as a variable subset and further used in the next loop. After running the loops, a number of subsets of variables are obtained and the RMSECV of partial least square (PLS) models established with subsets of variables is computed. The subset of variables with the lowest RMSECV is considered as the optimal variable subset. The performance of the proposed algorithm was evaluated by three NIR datasets:tobacco, corn and wheat datasets. The results show that the SCARS can supply the least RMSECV and RMSEP comparing with methods of Moving Window PLS (MWPLS), Monte Carlo uninformative variable elimination (MCUVE) and competitive adaptive reweighted sampling (CARS).
     Furthermore, the overfitting caused by variable selection was also explored. We applied variable selection methods including SCARS, CARS and MCUVE to select variables from dataset without classification information generated from randomly variables. To our surprise, for the dataset without classification information, the variable selection methods can still select some "good" variable combinations to separate "two classes" with "low" prediction errors. Furthermore, the prediction errors decreased with the number of raw variables ascending. In addition to classification, when the randomly variables without regression information were generated, SCARS still selected "good" variable combinations to obtain low prediction errors. In essence, the phenomenon that variable selection method can obtain "good" variable combinations from uninformative variables is overfitting. In order to research the causes and diagnostic methods of the overfitting problems, the tobacco dataset were used by adding uninformative data torawspectra at different ratios to generate simulated data. After the simulated data had been constructed, the data were divided into two parts:calibration set and independent test set. Finally, variable selection was executed to compare the variation paths of RMSECV for calibration set with the corresponding variation paths of RMSEP for independent test set. The results show that when the ratio values of uninformative data to spectra are small (equal to or smaller than0.02for noise data as uninformative data and equal to or smaller than0.1for randomly permuted spectra as informative data), the paths of RMSECV are similar as those of RMSEP. While the ratio values are higher than0.02for noise data as uninformative data and0.1for randomly permuted spectra as informative data, the paths of RMSECV are different from those of RMSEP. The comparison of the paths between RMSECV and RMSEP can be used to evaluate the effect of variable selection:the high similarity of two paths means variable selection is effective while low similarity means variable selection is ineffective.
     For calibration transfer, we proposed a new calibration transfer method which corrects informative components instead of full spectral. This method employs partial least square (PLS) method for vector to extract the informative components related to predicted property from raw spectra and then corrects the informative components based on spectral transfer such as canonical correlation analysis (CCA), direct standardization (DS) and partial least square for matrix (PLS2). The performance of this algorithm was tested by three batches of spectra:corn dataset, tri-component solvent dataset and dataset of dimethyl fumarate in milk. The results showed that the performance of correcting informative components can decrease errors significantly in contrast with those of correcting full spectra.
引文
[1]Siesler H W, Ozaki Y, Kawata S, et al. Near-infrared spectroscopy:principles, instruments, applications [M]. Wiley, com,2008.
    [2]褚小立.化学计量学方法与分子光谱分析技术[M].1 ed.北京:化学工业出版社,2011.
    [3]陆婉珍.现代近红外光谱分析技术[M].中国石化出版社,2007.
    [4]Blanco M, Villarroya I. NIR spectroscopy:a rapid-response analytical tool [J]. TrAC Trends in Analytical Chemistry,2002,21 (4):240-250.
    [5]Berardo N, Pisacane V, Battilani P, et al. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy [J]. J Agr Food Chem, 2005,53 (21):8128-8134.
    [6]Bureau S, Ruiz D, Reich M, et al. Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy [J]. Food Chem,2009,113 (4): 1323-1328.
    [7]Robinson A R, Mansfield S D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling [J]. Plant J,2009,58 (4):706-714.
    [8]De Beer T R M, Alleso M, Goethals F, et al. Implementation of a Process Analytical Technology System in a Freeze-Drying Process Using Raman Spectroscopy for In-Line Process Monitoring [J]. Anal Chem,2007,79 (21): 7992-8003.
    [9]De Beer T R M, Bodson C, Dejaegher B, et al. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process [J]. J Pharm Biomed Anal,2008,48 (3):772-779.
    [10]Moes J J, Ruijken M M, Gout E, et al. Application of process analytical technology in tablet process development using NIR spectroscopy:Blend uniformity, content uniformity and coating thickness measurements [J]. Int J Pharm,2008,357 (1-2):108-118.
    [11]De Beer T R M, Vercruysse P, Burggraeve A, et al. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools [J]. J Pharm Sci,2009,98 (9):3430-3446.
    [12]Li H, Liang Y, Long X, et al. The continuity of sample complexity and its relationship to multivariate calibration:A general perspective on first-order calibration of spectral data in analytical chemistry [J]. Chemom Intell Lab Syst,2013,122: 23-30.
    [13]Yun Y, Liang Y, Xie G, et al. A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems [J]. Analyst, 2013.
    [14]Ben-Dor E, Banin A. Near-infrared reflectance analysis of carbonate concentration in soils [J]. Appl Spectrosc,1990,44 (6):1064-1069.
    [15]Ward H W, Sistare F E. On-line determination and control of the water content in a continuous conversion reactor using NIR spectroscopy [J]. Anal Chim Acta,2007, 595 (1-2):319-322.
    [16]Cramer J A, Kramer K E, Johnson K J, et al. Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares [J]. Chemom Intell Lab Syst,2008,92 (1):13-21.
    [17]Balabin R M, Safieva R Z, Lomakina E I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction [J]. Chemom Intell Lab Syst,2007,88 (2):183-188.
    [18]Hemmateenejad B, Karimi S. Construction of stable multivariate calibration models using unsupervised segmented principal component regression [J]. J Chemometr,2011,25 (4):139-150.
    [19]Chauchard F, Cogdill R, Roussel S, et al. Application of LS-SVM to non-linear phenomena in NIR spectroscopy:development of a robust and portable sensor for acidity prediction in grapes [J]. Chemom Intell Lab Syst,2004,71 (2):141-150.
    [20]Chen Q, Zhao J, Fang C H, et al. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM) [J]. Spectrochim Acta A Mol Biomol Spectrosc,2007,66 (3): 568-574.
    [21]Zhang Y, Cong Q, Xie Y, et al. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine [J]. Spectrochim Acta A Mol Biomol Spectrosc,2008,71 (4):1408-1413.
    [22]Cay Y, Cicek A, Kara F, et al. Prediction of engine performance for an alternative fuel using artificial neural network [J]. Appl Therm Eng,2012,37:217-225.
    [23]Despagne F, Massart D L, Jansen M, et al. Intersite transfer of industrial calibration models [J]. Anal Chim Acta,2000,406 (2):233-245.
    [24]Liu Y, Sun X, Ouyang A. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN [J]. LWT-Food Science and Technology,2010,43 (4):602-607.
    [25]Balabin R M, Lomakina E I, Safieva R Z. Neural network (ANN) approach to biodiesel analysis:Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy [J]. Fuel,2011,90 (5): 2007-2015.
    [26]Wold H. Causal flows with latent variables:Partings of the ways in the light of NIPALS modelling [J]. European Economic Review,1974,5(1):67-86.
    [27]Lyttkens E, Areskoug B, Wold H. The convergence of NIPALS estimation procedures for six path models with one or two latent variables [J]. Rapport technique, University of Goteborg,1975,23.
    [28]Ergon R. Re-interpretation of NIPALS results solves PLSR inconsistency problem [J]. J Chemometr,2009,23 (2):72-75.
    [29]Paine S W, Barton P, Bird J, et al. A rapid computational filter for predicting the rate of human renal clearance [J]. Journal of Molecular Graphics and Modelling,2010, 29 (4):529-537.
    [30]Rossel R a V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra [J]. Geoderma,2010,158 (1-2):46-54.
    [31]杜一平,潘铁英,张玉兰.化学计量学应用[M].化学工业出版社,2008.
    [32]Croker D M, Hennigan M C, Maher A, et al. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam [J]. J Pharm Biomed Anal,2012.
    [33]Chan C O, Chu C C, Mok D K, et al. Analysis of berberine and total alkaloid content in cortex phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection [J]. Anal Chim Acta,2007,592 (2):121-131.
    [34]Xing J, Van Linden V, Vanzeebroeck M, et al. Bruise detection on Jonagold apples by visible and near-infrared spectroscopy [J]. Food Control,2005,16 (4): 357-361.
    [35]Isaksson T, Kowalski B. Piece-wise multiplicative scatter correction applied to near-infrared diffuse transmittance data from meat products [J]. Appl Spectrosc,1993, 47 (6):702-709.
    [36]Kupyna A, Rukke E-O, Schiiller R B, et al. The effect of flow rate in acoustic chemometrics on liquid flow:Transfer of calibration models [J]. Chemom Intell Lab Syst,2010,100 (2):110-117.
    [37]Windig W, Shaver J, Bro R. Loopy MSC:A simple way to improve multiplicative scatter correction [J]. Appl Spectrosc,2008,62 (10):1153-1159.
    [38]Songxi F, Lin L, Fan H, et al. Accuracy analysis of surface figure fitting based on opto-mechanical-thermal technology; proceedings of the Photonics Asia, F,2012 [C]. International Society for Optics and Photonics.
    [39]Huang Z, Turner B J, Dury S J, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis [J]. Remote Sens Environ, 2004,93(1):18-29.
    [40]Winning H, Viereck N, Salomonsen T, et al. Quantification of blockiness in pectins—A comparative study using vibrational spectroscopy and chemometrics [J]. Carbohyd Res,2009,344 (14):1833-1841.
    [41]Thennadil S, Martin E. Empirical preprocessing methods and their impact on NIR calibrations:a simulation study [J]. J Chemometr,2005,19 (2):77-89.
    [42]Chen Z, Li L, Jin J, et al. Quantitative Analysis of Powder Mixtures by Raman Spectrometry:the influence of particle size and its correction [J]. Anal Chem,2012.
    [43]Jin J, Chen Z, Li L, et al. Quantitative spectroscopic analysis of heterogeneous mixtures:the correction of multiplicative effects caused by variations in physical properties of samples [J]. Anal Chem,2012,84 (1):320-326.
    [44]Chen Z, Morris J, Martin E. Extracting Chemical Information from Spectral Data with Multiplicative Light Scattering Effects by Optical Path-Length Estimation and Correction [J]. Anal Chem,2006,78 (22):7674-7681.
    [45]Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures [J]. Anal Chem,1964,36 (8):1627-1639.
    [46]Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure [J]. Anal Chem,1972,44 (11):1906-1909.
    [47]Ritthiruangdej P, Ritthiron R, Shinzawa H, et al. Non-destructive and rapid analysis of chemical compositions in Thai steamed pork sausages by near-infrared spectroscopy [J]. Food Chem,2011,129 (2):684-692.
    [48]Hu Y, Erxleben A, Ryder A G, et al. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy [J]. J Pharm Biomed Anal,2010,53 (3):412-420.
    [49]Chen Q, Jiang P, Zhao J. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,76 (1):50-55.
    [50]Barbin D F, Elmasry G, Sun D W, et al. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging [J]. Anal Chim Acta,2012,719: 30-42.
    [51]Pravdova V, Walczak B, Massart D, et al. Calibration of somatic cell count in milk based on near-infrared spectroscopy [J]. Anal Chim Acta,2001,450 (1): 131-141.
    [52]Candolfi A, De Maesschalck R, Jouan-Rimbaud D, et al. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra [J]. J Pharm Biomed Anal,1999,21 (1):115-132.
    [53]Arnold M A, Small G W. Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra [J]. Anal Chem,1990,62 (14):1457-1464.
    [54]Schrader B, Hoffmann A, Keller S. Near-infrared Fourier transform Raman spectroscopy:Facing absorption and background [J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1991,47(9-10):1135-1148.
    [55]Depczynski U, Jetter K, Molt K, et al. Quantitative analysis of near infrared spectra by wavelet coefficient regression using a genetic algorithm [J]. Chemom Intell Lab Syst,1999,47 (2):179-187.
    [56]Auer M E, Griesser U J, Sawatzki J. Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy [J]. J Mol Struct,2003,661:307-317.
    [57]Jetter K, Depczynski U, Molt K, et al. Principles and applications of wavelet transformation to chemometrics [J]. Anal Chim Acta,2000,420 (2):169-180.
    [58]Ma C, Shao X. Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra [J]. J Chem Inf Comp Sci,2004,44 (3):907-911.
    [59]Chalus P, Walter S, Ulmschneider M. Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy [J]. Anal Chim Acta,2007,591 (2):219-224.
    [60]Zhang Y, Cong Q, Xie Y, et al. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,71 (4): 1408-1413.
    [61]Cozzolino D. Near Infrared Spectroscopy in Natural Products Analysis [J]. Planta Med,2009,75 (07):746-756.
    [62]Selman B. Computational science:A hard statistical view [J]. Nature,2008,451: 639-640.
    [63]Li H, Zeng M, Tan B. et al. Recipe for revealing informative metabolites based on model population analysis [J]. Metabolomics,2010,6(3):353-361.
    [64]Devlin K J. The millennium problems:the seven greatest unsolved mathematical puzzles of our time [M]. Basic Books,2003.
    [65]Kendall G, Parkes A J, Spoerer K. A Survey of NP-Complete Puzzles [J]. Icga J, 2008,31 (1):13-34.
    [66]Fortnow L. The status of the P versus NP problem [J]. Commun Acm,2009.52 (9):78-86.
    [67]Nuessel F. A Note on the Names of Mathematical Problems and Puzzles [J]. Names:A Journal of Onomastics,2011,59 (1):57-60.
    [68]Gardiner A. Mathematical puzzling [M]. DoverPublications. com.1987. [69] Gemperline P. Practical guide to chemometrics [M]. CRC press,2010.
    [70]Gestel T V, Suykens J a K, Lanckriet G, et al. Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis [J]. Neural Comput,2002,14 (5):1115-1147.
    [71]Goudos S K, Sahalos J N. Microwave absorber optimal design using multi-objective particle swarm optimization [J]. Microw Opt Technol Let,2006,48 (8):1553-1558.
    [72]Guo X, Yang J, Wu C, et al. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization [J]. Neurocomputing,2008,71 (16-18):3211-3215.
    [73]Sorol N, Arancibia E, Bortolato S A. et al. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice:A test field for variable selection methods [J]. Chemom Intell Lab Syst,2010,102 (2):100-109.
    [74]Igne B, Hurburgh C R. Local chemometrics for samples and variables: optimizing calibration and standardization processes [J]. J Chemometr,2010,24 (2): 75-86.
    [75]Shamsipur M, Zare-Shahabadi V, Hemmateenejad B, et al. Ant colony optimisation:a powerful tool for wavelength selection [J]. J Chemometr,2006,20 (3-4):146-157.
    [76]Allegrini F, Olivieri A C. A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis [J]. Anal Chim Acta,2011,699 (1):18-25.
    [77]Bergholt M S, Zheng W, Lin K. et al. In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques [J]. Int J Cancer.2011,128 (11):2673-2680.
    [78]Shen Q, Jiang J, Tao J, et al. Modified ant colony optimization algorithm for variable selection in QSAR modeling:QSAR studies of cyclooxygenase inhibitors [J]. Journal of chemical information and modeling,2005.45 (4):1024-1029.
    [79]Zou X. Zhao J, Li Y. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of 'Fuji' apple based on BiPLS and FiPLS models [J]. Vib Spectrosc.2007.44 (2):220-227.
    [80]Zou X. Zhao J, Huang X, et al. Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of 'Fuji' apple based on different PLS models [J]. Chemom Intell Lab Syst.2007.87 (1):43-51.
    [81]wu D, He Y, Nie P, et al. Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice [J]. Anal Chim Acta,2010,659 (1-2):229-237.
    [82]Dieterle F, Kieser B, Gauglitz G. Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance [J]. Chemom Intell Lab Syst,2003,65 (1):67-81.
    [83]Jarvis R M, Goodacre R. Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data [J]. Bioinformatics,2005,21 (7):860-868.
    [84]Durand A, Devos O, Ruckebusch C, et al. Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles [J]. Anal Chim Acta,2007,595 (1):72-79.
    [85]Teofilo R F, Martins J P A, Ferreira M M C. Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression [J]. J Chemometr,2009,23 (1):32-48.
    [86]Liu F, Jiang Y, He Y. Variable selection in visible/near infrared spectra for linear and nonlinear calibrations:A case study to determine soluble solids content of beer [J]. Anal Chim Acta,2009,635 (1):45-52.
    [87]Liu F, He Y, Wang L. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy [J]. Anal Chim Acta,2008,610 (2):196-204.
    [88]Chong I G, Jun C H. Performance of some variable selection methods when multicollinearity is present [J]. Chemom Intell Lab Syst,2005,78 (1-2):103-112.
    [89]Andries J P, Vander Heyden Y, Buydens L M. Improved variable reduction in partial least squares modelling based on predictive-property-ranked variables and adaptation of partial least squares complexity [J]. Anal Chim Acta,2011,705 (1-2): 292-305.
    [90]Hoskuldsson A. Variable and subset selection in PLS regression [J]. Chemom Intell Lab Syst,2001,55 (1-2):23-38.
    [91]Forina M, Lanteri S, Oliveros M C C, et al. Selection of useful predictors in multivariate calibration [J]. Anal Bioanal Chem,2004,380 (3):397-418.
    [92]Brown P J. Wavelength selection in multicomponent near-infrared calibration [J]. J Chemometr,1992,6 (3):151-161.
    [93]Zhang Y, Xia Z, Qin L, et al. Prediction of blood-brain partitioning:a model based on molecular electronegativity distance vector descriptors [J]. J Mol Graph Model,2010,29 (2):214-220.
    [94]Sorol N, Arancibia E, Bortolato S A, et al. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice [J]. Chemom Intell Lab Syst,2010, 102(2):100-109.
    [95]Gomez C, Lagacherie P, Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements [J]. Geoderma,2008,148 (2):141-148.
    [96]Elmasry G, Wang N, Vigneault C, et al. Early detection of apple bruises on different background colors using hyperspectral imaging [J]. Lwt-Food Science and Technology,2008,41 (2):337-345.
    [97]Mirmohseni A, Abdollahi H, Rostamizadeh K. Net analyte signal-based simultaneous determination of ethanol and water by quartz crystal nanobalance sensor [J]. Anal Chim Acta,2007,585 (1):179-184.
    [98]Ferre J, Faber N K M. Net analyte signal calculation for multivariate calibration [J]. Chemom Intell Lab Syst,2003,69 (1-2):123-136.
    [99]Fortunato De Carvalho Rocha W, Luis Rosa A, Antonio Martins J, et al. Multivariate control charts based on net analyte signal and near infrared spectroscopy for quality monitoring of Nimesulide in pharmaceutical formulations [J]. J Mol Struct, 2010,982 (1-3):73-78.
    [100]Miller C E. The use of chemometric techniques in process analytical method development and operation [J]. Chemom Intell Lab Syst,1995,30 (1):11-22.
    [101]Han Q, Wu H, Cai C, et al. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection [J]. Anal Chim Acta,2008,612 (2):121-125.
    [102]Cai W, Li Y, Shao X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra [J]. Chemom Intell Lab Syst,2008,90:188-194.
    [103]Li H, Liang Y, Xu Q, et al. Model-population analysis and its applications in chemical and biological modeling [J]. Trac-trend Anal Chem,2012,38:154-162.
    [104]Li H, Liang Y, Xu Q, et al. Model population analysis for variable selection [J]. J Chemometr,2010,24 (7-8):418-423.
    [105]Li H, Xu Q, Zhang W, et al. Variable complementary network:a novel approach for identifying biomarkers and their mutual associations [J]. Metabolomics,2012,8 (6):1218-1226.
    [106]Li H, Liang Y, Xu Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J]. Anal Chim Acta, 2009,648 (1):77-84.
    [107]Alexandridis A, Patrinos P, Sarimveis H, et al. A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models [J]. Chemom Intell Lab Syst,2005,75 (2):149-162.
    [108]Wasim M, Brereton R G. Determination of number of significant components and key variables using genetic algorithms in liquid chromatography-nuclear magnetic resonance spectroscopy and liquid chromatography-diode array detection [J]. Chemom Intell Lab Syst,2006,81 (2):209-217.
    [109]Li H, Liang Y, Xu Q. Uncover the path from PCR to PLS via elastic component regression [J]. Chemom Intell Lab Syst,2010,104 (2):341-346.
    [110]Cao D, Xu Q, Liang Y, et al. The boosting:a new idea of building models [J]. Chemom Intell Lab Syst,2010,100 (1):1-11.
    [111]Moros J, Kuligowski J, Quintas G, et al. New cut-off criterion for uninformative variable elimination in multivariate calibration of near-infrared spectra for the determination of heroin in illicit street drugs [J]. Anal Chim Acta,2008,630 (2): 150-160.
    [112]Kang N, Kasemsumran S, Woo Y A, et al. Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy [J]. Chemom Intell Lab Syst,2006, 82 (1-2):90-96.
    [113]Chen H, Pan T, Chen J, et al. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods [J]. Chemom Intell Lab Syst,2011,107 (1): 139-146.
    [114]Ferrao M F, Viera M D S, Pazos R E P, et al. Simultaneous determination of quality parameters of biodiesel/diesel blends using HATR-FTIR spectra and PLS, iPLS or siPLS regressions [J]. Fuel,2011,90 (2):701-706.
    [115]Di Anibal C V, Callao M P, Ruisanchez I.1H NMR variable selection approaches for classification. A case study:The determination of adulterated foodstuffs [J]. Talanta,2011.
    [116]Cai J, Chen Q, Wan X, et al. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy [J]. Food Chem,2011,126 (3): 1354-1360.
    [117]Balabin R M, Smirnov S V. Variable selection in near-infrared spectroscopy. benchmarking of feature selection methods on biodiesel data [J]. Anal Chim Acta, 2011,692 (1-2):63-72.
    [118]Feudale R N, Woody N A, Tan H, et al. Transfer of multivariate calibration models:a review [J]. Chemom Intell Lab Syst,2002,64 (2):181-192.
    [119]Lin J, Lo S C, Brown C W. Calibration transfer from a scanning near-IR spectrophotometer to a FT-near-IR spectrophotometer [J]. Anal Chim Acta,1997,349 (1-3):263-269.
    [120]Swierenga H, Haanstra W G, Weijer A P D, et al. Comparison of Two Different Approaches toward Model Transferability in NIR Spectroscopy [J]. Appl Spectrosc, 1998,52(1):7-16.
    [121]Koehler, Small G W, Combs R J, et al. Calibration Transfer Algorithm for Automated Qualitative Analysis by Passive Fourier Transform Infrared Spectrometry [J]. Anal Chem,2000,72 (7):1690-1698.
    [122]Wulfert F, Kok W T, Noord O E D, et al. Correction of Temperature-Induced Spectral Variation by Continuous Piecewise Direct Standardization [J]. Anal Chem, 2000,72(7):1639-1644.
    [123]Lin J. Near-IR Calibration Transfer between Different Temperatures [J]. Appl Spectrosc,1998,52 (12):1591-1596.
    [124]Ozdemir D, Mosley M, Williams R. Effect of Wavelength Drift on Single-and Multi-Instrument Calibration Using Genetic Regression [J]. Appl Spectrosc,1998,52 (9):1203-1209.
    [125]Abdelkader M F, Cooper J B, Larkin C M. Calibration Transfer of Partial Least Squares Jet Fuel Property Models Using a Segmented Virtual Standards Slope-Bias Correction Method [J]. Chemom Intell Lab Syst,2011.
    [126]Pereira C F, Pimentel M F, Galvao R K, et al. A comparative study of calibration transfer methods for determination of gasoline quality parameters in three different near infrared spectrometers [J]. Anal Chim Acta,2008,611 (1):41-47.
    [127]Ge Y, Morgan C L S, Grunwald S, et al. Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers [J]. Geoderma,2011, 161 (3-4):202-211.
    [128]De Fatima Bezerra De Lira L, De Vasconcelos F V C, Pereira C F, et al. Prediction of properties of diesel/biodiesel blends by infrared spectroscopy and multivariate calibration [J]. Fuel,2010,89 (2):405-409.
    [129]Graffelman J. Enriched biplots for canonical correlation analysis [J]. J Appl Stat, 2005,32(2):173-188.
    [130]De Clercq W, Vergult A, Vanrumste B, et al. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram [J]. IEEE Trans Biomed Eng,2006,53 (12):2583-2587.
    [131]Yamamoto H, Yamaji H, Fukusaki E, et al. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting [J]. Biochem Eng J,2008,40 (2):199-204.
    [132]Fan W, Liang Y, Yuan D, et al. Calibration model transfer for near-infrared spectra based on canonical correlation analysis [J]. Anal Chim Acta,2008,623 (1): 22-29.
    [133]Pereira C F, Pimentel M F, Galvao R K H, et al. A comparative study of calibration transfer methods for determination of gasoline quality parameters in three different near infrared spectrometers [J]. Anal Chim Acta,2008,611 (1):41-47.
    [134]Park R, Agnew R, Gordon F, et al. The development and transfer of undried grass silage calibrations between near infrared reflectance spectroscopy instruments [J]. Anim Feed Sci Tech,1999,78 (3-4):325-340.
    [135]Liu X, Han L J, Yang Z L. Transfer of near infrared spectrometric models for silage crude protein detection between different instruments [J]. J Dairy Sci,2011,94 (11):5599-5610.
    [136]Leion H, Folestad S, Josefson M, et al. Evaluation of basic algorithms for transferring quantitative multivariate calibrations between scanning grating and FT NIR spectrometers [J]. J Pharm Biomed Anal,2005,37 (1):47-55.
    [137]白晶.分数阶模型的离散化方法研究[D];大连交通大学,2009.
    [138]Oldham K, Spanier J. The fractional calculus [M]. Academic Press, New York. 1974.
    [139]Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus [J]. Communications in Nonlinear Science and Numerical Simulation,2011,16 (3): 1140-1153.
    [140]Oldham K B, Spanier J. The fractional calculus [M]. Academic press New York, 1974.
    [141]Mandelbrot B B. The fractal geometry of nature [M]. Macmillan,1983.
    [142]Podlubny I. Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications [M]. Access Online via Elsevier,1998.
    [143]李远禄.分数阶微积分滤波原理、应用及分数阶系统辨识[D];南京航空航天大学,2007.
    [144]Duval L, Duarte L T, Jutten C. An Overview of Signal Processing Issues in Chemical Sensing [J]. Proceedings of ICASSP 2013,2013:8742-9746.
    [145]Chen D, Chen Y, Xue D. Digital Fractional Order Savitzky-Golay Differentiator [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2011,58 (11): 758-762.
    [146]Chen D, Chen Y, Xue D. Digital fractional order Savitzky-Golay differentiator and its application; proceedings of the Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, F,2011 [C].
    [147]李远禄,于盛林,郑呈.基于分数阶微分的重叠伏安峰分离方法[J]. Chin J Anal Chem,2007,35 (5):747-750.
    [148]Romanenko S V, Larin S L, Stasyuk N V. Use of differentiation and smoothing in linear-sweep and staircase stripping voltammetry of some metals [J]. J Anal Chem, 2000,55(11):1063-1068.
    [149]Li Y, Hu L. Fractional-order derivative spectroscopy for resolving overlapped Lorenztian peak-signals; proceedings of the Signal Processing (ICSP),2010 IEEE 10th International Conference on, F 24-28 Oct.2010,2010 [C].
    [150]Galvao R K H, Hadjiloucas S, Kienitz K H, et al. Fractional Order Modeling of Large Three-Dimensional RC Networks [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2013,60 (3):624-637.
    [151]Jakubowska M. Signal Processing in Electrochemistry [J]. Electroanal,2011,23 (3):553-572.
    [152]王小东.Riemann-Liouville分数阶微积分及其性质证明[D];太原理工大学,2008.
    [153]Luo J, Ying K, Bai J. Savitzky-Golay smoothing and differentiation filter for even number data [J]. Signal Process,2005,85 (7):1429-1434.
    [154]Luo J, Ying K, He P, et al. Properties of Savitzky-Golay digital differentiators [J]. Digit Signal Process,2005,15 (2):122-136.
    [155]Choudhury M D, Chandra S, Nag S, et al. Forced spreading and rheology of starch gel:Viscoelastic modeling with fractional calculus [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,407:64-70.
    [156]Orczykowska M, Dziubinski M. The Fractional derivative rheological model and the linear viscoelastic behavior of hydrocolloids [J]. Chemical and Process Engineering,2012,33 (1):141-151.
    [157]Tong D, Liu Y. Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe [J]. Int J Eng Sci,2005,43 (3-4):281-289.
    [158]Stastna J, Zanzotto L. Linear response of regular asphalts to external harmonic fields [J]. J Rheol,1999,43 (3):719-734.
    [159]Agrawal O P. Application of Fractional Derivatives in Thermal Analysis of Disk Brakes [J]. Nonlinear Dynam,2004,38 (1-4):191-206.
    [160]Gil-Negrete N, Vinolas J, Kari L. A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code [J]. J Sound Vib,2006,296 (4-5):757-776.
    [161]Vargas W, Murcia J, Palacio L, et al. Fractional diffusion model for force distribution in static granular media [J]. Phys Rev E,2003,68 (2).
    [162]Vazquez L. From Newton's Equation to Fractional Diffusion and Wave Equations [J]. Advances in Difference Equations,2011,2011:1-13.
    [163]Garcia Tarrago M J, Kari L, Vinolas J, et al. Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings [J]. Polym Test,2007,26 (5):629-638.
    [164]Simpson R, Jaques A, Nunez H, et al. Fractional Calculus as a Mathematical Tool to Improve the Modeling of Mass Transfer Phenomena in Food Processing [J]. Food Engineering Reviews,2012,5(1):45-55.
    [165]Sjoberg M, Kari L. Nonlinear Isolator Dynamics at Finite Deformations:An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model [J]. Nonlinear Dynam,2003,33 (3):323-336.
    [166]Shahsavari R, Ulm F-J. Indentation analysis of fractional viscoelastic solids [J]. Journal of Mechanics of materials and Structures,2009,4 (3):523-550.
    [167]White S, Kim S, Bajaj A, et al. Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam [J]. Nonlinear Dynam,2000,22 (3):281-313.
    [168]Shao X, Zhang M, Cai W. Multivariate calibration of near-infrared spectra by using influential variables [J]. Analytical Methods,2012,4 (2).
    [169]De Lucena D V, Woerle De Lima T, Da Silva Soares A, et al. Multi-objective evolutionary algorithm for variable selection in calibration problems:A case study for protein concentration prediction; proceedings of the Evolutionary Computation (CEC), 2013 IEEE Congress on, F,2013 [C]. IEEE.
    [170]Soares S F C, Gomes A A, Araujo M C U, et al. The successive projections algorithm [J]. TrAC Trends in Analytical Chemistry,2012.
    [171]Centner V, Massart D-L, Noord O E D, et al. Elimination of Uninformative Variables for Multivariate Calibration [J]. Anal Chem,1996,68 (21):3851-3858. [172] Du G, Cai W, Shao X. A variable differential consensus method for improving the quantitative near-infrared spectroscopic analysis [J]. Science China Chemistry, 2011.
    [173]Ye S F, Wang D, Min S G. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection [J]. Chemom Intell Lab Syst,2008,91 (2):194-199.
    [174]Chen D, Cai W S, Shao X G. Removing uncertain variables based on ensemble partial least squares [J]. Anal Chim Acta,2007,598 (1):19-26.
    [175]Chen D, Hu B, Shao X, et al. Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models [J]. Analyst,2004,129 (7):664-669.
    [176]Mantanus J, Ziemons E, Lebrun P, et al. Moisture content determination of pharmaceutical pellets by near infrared spectroscopy:Method development and validation [J]. Anal Chim Acta,2009,642 (1-2):186-192.
    [177]Jouan-Rimbaud D, Massart D-L, Leardi R, et al. Genetic algorithms as a tool for wavelength selection in multivariate calibration [J]. Analytical Chemistry,1995, 67 (23):4295-4301.
    [178]Zheng Y, Lai X, Bruun S W, et al. Determination of moisture content of lyophilized allergen vaccines by NIR spectroscopy [J]. J Pharm Biomed Anal,2008, 46 (3):592-596.
    [179]Aft Kaddour A, Mondet M, Cuq B. Application of two-dimensional cross-correlation spectroscopy to analyse infrared (MIR and NIR) spectra recorded during bread dough mixing [J]. J Cereal Sci,2008,48 (3):678-685.
    [180]Ribeiro J S, Ferreira M M, Salva T J. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy [J]. Talanta,2011,83 (5):1352-1358.
    [181]Salgo A, Gergely S. Analysis of wheat grain development using NIR spectroscopy [J]. J Cereal Sci,2012.
    [182]张明锦.基于特征选择的多变量数据分析方法及其在谱学研究中的应用[D];华东理工大学,2011.
    [183]向春兰.微量近红外光谱分析技术及其在液态奶中富马酸二甲酯测定中的应用[D];华东理工大学,2012.
    [184]Qazi S, Georgakis A, Stergioulas L K, et al. Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis [J]. Signal Processing, IEEE Transactions on,2007,55 (6):3150-3154.
    [185]Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform [J]. Signal Processing, IEEE Transactions on,1996,44 (9): 2141-2150.
    [186]Djurovic I, Stankovic S, Pitas I. Digital watermarking in the fractional Fourier transformation domain [J]. J Netw Comput Appl,2001,24 (2):167-173.
    [187]Dragoman D. Classical versus complex fractional Fourier transformation [J]. J Opt Soc Am A,2009,26 (2):274-277.
    [188]Dinc E, Demirkaya F, Baleanu D, et al. New approach for simultaneous spectral analysis of a complex mixture using the fractional wavelet transform [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15 (4): 812-818.
    [189]Dinc E, Baleanu D. A review on the wavelet transform applications in analytical chemistry [M]. Mathematical Methods in Engineering. Springer.2007:265-284.
    [190]Chen L, Zhao D. Optical image encryption based on fractional wavelet transform [J]. Opt Commun,2005,254 (4):361-367.
    [191]Shi J, Zhang N, Liu X. A novel fractional wavelet transform and its applications [J]. Science China Information Sciences,2012,55 (6):1270-1279.
    [192]姚建军,向阳,周勇,et al.基于倒频谱方法的柴油机气缸压力识别[J].船海工程,2006,35(1):011.
    [193]蔡熹耀,李志荣.频谱细化技术与功率倒频谱在振动信号分析中的应用[J].洛阳工业高等专科学校学报,1999,3:2.
    [194]Noll A M. Cepstrum pitch determination [J]. The journal of the acoustical society of America,1967,41:293.
    [195]Childers D G, Skinner D P, Kemerait R C. The cepstrum:A guide to processing [J]. Proc Ieee,1977,65 (10):1428-1443.
    [196]Neiberg L, Casasent D P, Fontana R J, et al. Feature space trajectory neural net classifier:8-class distortion-invariant tests; proceedings of the Photonics East'95, F, 1995 [C]. International Society for Optics and Photonics.
    [197]Chao T-H, Lau B, Park Y. Vehicle detection and classification in shadowy traffic images using wavelets and neural networks; proceedings of the Photonics East'96, F, 1997 [C]. International Society for Optics and Photonics.
    [198]Stoeckler J, Welland G. Beyond Wavelet [M]. New York:Academic Press. 2003.
    [199]Chappelier V, Guillemot C. Oriented wavelet transform for image compression and denoising [J]. Image Processing, IEEE Transactions on,2006,15 (10): 2892-2903.
    [200]Yang X, Li W, Jiao L. Image Denoising Based on Second Generation Bandelets and Multi-level Thresholding; proceedings of the Intelligent Control and Automation, 2006 WCICA 2006 The Sixth World Congress on, F,2006 [C]. IEEE.
    [201]Mansoor A B, Mumtaz M, Masood H, et al. Personal identification using palmprint and contourlet transform [M]. Advances in Visual Computing. Springer. 2008:521-530.
    [202]Ke D. Wavelets, curvelets and wave atoms for image denoising; proceedings of the Image and Signal Processing (CISP),2010 3rd International Congress on, F 16-18 Oct.2010,2010 [C].
    [203]Lu H, Hu X, Zhang L, et al. Local energy based image fusion in sharp frequency localized contourlet transform [J]. Journal of Computational Information Systems,2010,6(12):3997-4005.
    [204]Zhu W, Li Q, Liu S, et al. Image Fusion Algorithm Based on the Second Generation Bandelet; proceedings of the E-Product E-Service and E-Entertainment (ICEEE),2010 International Conference on, F 7-9 Nov.2010,2010 [C].
    [205]Li Y, Feng X, Fan Y. Investigation of Shift Dependency Effects on Multiresolution-Based Image Fusion Performance [J]. Journal of Software,2011,6 (3):475-482.
    [206]Lu H, Zhang L, Serikawa S. Maximum local energy:An effective approach for multisensor image fusion in beyond wavelet transform domain [J]. Comput Math Appl,2012,64 (5):996-1003.
    [207]Zhang Y Q, Zhang P L, Wang G D, et al. Feature Enhancement of Wear Particle Images Based on Curvelet Transform [J]. Advanced Materials Research,2012,490: 1166-1170.
    [208]Deng M, Zeng Q, Zhang L. Research on Fusion of Infrared and visible images based on directionlet transform [J]. IERI procedia,2012,3:67-72.
    [209]顾勇为,归庆明,朱建青,et al.把握数学建模过程中的数学直观[J].数学的实践与认识,2001,31(6):759-760.
    [210]程钊.图论中若干著名问题的历史注记[J].数学的实践与认识,2009,39(24):73-81.
    [211]廖仲春.离散数学的教学探讨[J].湖南工业职业技术学院学报,2008,8(5):142-143.
    [212]Ribenboim P. Fermat's last theorem for amateurs [M]. Springer,1999.
    [213]Singh S. Fermat's last theorem:the story of a riddle that confounded the world's greatest minds for 358 years [M]. HarperCollins UK,2007.
    [214]冯丽珠,王忠华.费马大定理获证始末[J].数学通讯,2002,13:022.
    [215]张贤科.古希腊名题与现代数学[M].科学出版社,2007.
    [216]王树禾.数学思想史[M].国防工业出版社,2003.
    [217]颜宪邦,屈姿朴.四色定理论证的关键[J].航空计算技术,2004,34(1):38-41.
    [218]谢力同,刘桂真.与四色定理有关的一些结果[J].山东大学学报:自然科学版,1998,33(1):1-6.
    [219]谢彦麟.代数方程的根式解及伽罗瓦理论[M].哈尔滨工业大学出版社,2011.
    [220]Cao D S, Liang Y Z, Xu Q S, et al. A new strategy of outlier detection for QSAR/QSPR [J]. J Comput Chem,2010,31 (3):592-602.
    [221]Stanimirova I, Serneels S, Van Espen P J, et al. How to construct a multiple regression model for data with missing elements and outlying objects [J]. Anal Chim Acta,2007,581 (2):324-332.
    [222]Chen D, Cai W, Shao X. A strategy for enhancing the reliability of near-infrared spectral analysis [J]. Vib Spectrosc,2008,47 (2):113-118.
    [223]Fernandez Pierna J, Jin L, Daszykowski M, et al. A methodology to detect outliers/inliers in prediction with PLS [J]. Chemom Intell Lab Syst,2003,68 (1-2): 17-28.
    [224]Zhuang Y, Baras J S. Optimal wavelet basis selection for signal representation, F,1994 [C].
    [225]Mojsilovic A, Popovic M V, Rackov D M. On the selection of an optimal wavelet basis for texture characterization [J]. Image Processing, IEEE Transactions on, 2000,9 (12):2043-2050.
    [226]Singh B N, Tiwari A K. Optimal selection of wavelet basis function applied to ECG signal denoising [J]. Digit Signal Process,2006,16 (3):275-287.
    [227]Etemad K, Chellappa R. Separability-based multiscale basis selection and feature extraction for signal and image classification [J]. Image Processing, IEEE Transactions on,1998,7 (10):1453-1465.
    [228]Bartlett M S. Independent component representations for face recognition [M]. Face Image Analysis by Unsupervised Learning. Springer.2001:39-67.
    [229]Yuen P, Lai J. Face representation using independent component analysis [J]. Pattern Recogn,2002,35 (6):1247-1257.
    [230]Ekenel H K, Sankur B. Feature selection in the independent component subspace for face recognition [J]. Pattern Recogn Lett,2004,25 (12):1377-1388.
    [231]Chen Z, Morris J, Martin E. Correction of Temperature-Induced Spectral Variations by Loading Space Standardization [J]. Anal Chem,2005,77 (5): 1376-1384.
    [232]Chen Z, Morris J. Improving the linearity of spectroscopic data subjected to fluctuations in external variables by the extended loading space standardization [J]. The Analyst,2008,133 (7):914.
    [233]Chen Z, Lovett D, Morris J. Process Analytical Technologies (PAT)—the impact for Process Systems Engineering [M]//BERTRAND B, XAVIER J. Computer Aided Chemical Engineering. Elsevier.2008:967-972.
    [234]Chen Z, Morris J, Borissova A, et al. On-line monitoring of batch cooling crystallization of organic compounds using ATR-FTIR spectroscopy coupled with an advanced calibration method [J]. Chemom Intell Lab Syst,2009,96 (1):49-58.
    [235]Weisberg A, Najarian M, Borowski B, et al. Spectral angle automatic cluster routine (SAALT):an unsupervised multispectral clustering algorithm; proceedings of the Aerospace Conference,1999 Proceedings 1999 IEEE, F,1999 [C]. IEEE.
    [236]Gomes V M, Pereira A C, Saraiva P M, et al. Development of Generalized Platforms for the Analysis of Complex Datasets [J]. Qual Reliab Eng Int,2012,28 (5): 508-523.
    [237]Matero S, Den Berg F V, Poutiainen S, et al. Towards better process understanding:Chemometrics and multivariate measurements in manufacturing of solid dosage forms [J]. J Pharm Sci,2013,102 (5):1385-1403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700