用户名: 密码: 验证码:
热水促进的环氧开环反应机理研究及2,3-环氧角鲨烯的碳正离子-π环化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包含两部分内容。
     第一部分是对热水催化的环氧开环反应的机理研究。自从1980年Breslow小组报道了Diels-Alder反应在水中进行时有显著的加速效应后,水促进的有机化学反应就引起了有机化学家的重视。越来越多的研究发现有机化学反应在纯水中进行时可以取得显著的加速效应,这些反应可以分为以下四类:(1)‘'In Water"氢键催化:一个或者多个水分子通过与溶解在水中的反应物形成氢键活化反应物;(2)"On Water"氢键催化:一个或者多个水分子在反应物和水的油水界面上与不溶解在水中的反应物形成氢键活化反应物(据推测界面上的水分子比溶液中的水分子具有更多游离的羟基,与反应物更容易形成氢键);(3)高温水(200-370℃)中的Bronsted酸碱催化:随着温度的升高,水的自电离增强,溶液中氢质子和氢氧根离子的浓度逐渐增大,于是高温水可以作为酸、碱或者酸碱共催化剂催化有机化学反应;(4)疏水作用:水将非极性的有机反应物挤压在一起使其能量更接近反应过渡态的能量。2008年我们小组报道了热水(60-100℃)促进的环氧和吖丙啶的开环反应,我们认为热水在反应中起到Bronsted酸催化的作用。在本论文的第一章中,我们研究了热水促进的(-)-α-蒎烯环氧的水解重排反应和该反应主要产物trans-(-)-sobrerol消旋化的机理。在此基础上,我们研究了水溶液中HCl的浓度、反应温度、向反应体系中添加有机溶剂以及反应物浓度对tral-s-(-)-sobrerol(?)肖旋化反应的影响并提出了热水在反应中起到以下三个作用:(1)作为反应物和产物;(2)作为氢质子的来源并催化了trans-(-)-sobrerol的SN1溶剂解反应;(3)作为一种大极性的溶剂稳定了反应中间体碳正离子。进一步的研究证实了传统Bronsted酸催化的烯丙醇消旋化反应和1,3—重排反应在热水中也可以高效地发生,并且不需要加入其它催化剂。接着我们报道了在1:1的水和1,4-二氧六环混合溶剂中没有外加酸碱催化剂条件下顺反式R构型柠檬烯环氧的水解动力学拆分,当顺式R构型柠檬烯环氧反应完全后,反式R构型的柠檬烯环氧能以最高77%的产率和大于98%的de值回收。该方法相对于文献中已有方法的优点在于:不需要加入额外的催化剂,分离得到的反式R构型柠檬烯环氧产率高,光学纯度高并且拆分反应速度较快。这个发现进一步证实了热水可以作为一种温和的Bronsted酸催化某些原本酸催化有机化学反应。同时我们通过对香叶醇乙酯环氧水解的1H NMR实验研究和对水溶性差异性很大的两类环氧烷水解动力学实验的研究,提出水相中的环氧开环反应不是"On Water"氢键催化而是"In Water"酸催化的过程。在此基础上我们报道了一种在水和1,4-二氧六环混合溶剂中,没有外加酸碱催化剂条件下疏水性环氧水解的有效方法,其它的亲核试剂(胺类,叠氮化钠,苯硫酚)在该体系中同样可以高效地进攻疏水性的1-十二烯环氧,以很高的产率得到相应的开环产物。
     第二部分中我们研究了2,3-环氧角鲨烯的碳正离子-π环化反应。聚烯烃的碳正离子-π环化反应是合成多环化合物的一种有效方式,在本论文的第二章中我们尝试了2,3-环氧角鲨烯在水或者六氟异丙醇中的环化反应,在纯水中,2,3-环氧角鲨烯不能发生反应,加入等体积的1,4-二氧六环后,2,3-环氧角鲨烯会发生完全的水解反应生成角鲨烯二醇,如果向热水中加入十二烷基磺酸钠(SDS)和对甲基苯磺酸(PTSA),2,3-环氧角鲨烯可以发生环化反应并能以15%的产率分离到三环产物14-epithalinaol。在六氟异丙醇中,室温下2,3-环氧角鲨烯的环化反应就可以顺利地进行,环化反应不仅可以生成三环产物14-epithalinaol,还可以生成单环的产物camelliol。经过进一步的条件优化后,三环产物14-epithalinaol的产率可提高到39%,比我们尝试的另外几种Lewis酸催化下14-epithalinaol的产率高。
The thesis contains two sections.
     In chapter one, we studied the mechanism of ring-opening of epoxides in hot water. Since Breslow et al observed an exceptional acceleration of the Diels-Alder reaction in water in1980, the use of water as a catalyst in organic reactions has attracted great attention from chemists. Rate-enhancing effects were widely observed in organic reactions operated in pure water and these reactions can be summarized into four types:(1) the in-water hydrogen bond catalysis:one or more water molecules activate reactants by forming hydrogen bonds with them;(2) the on-water hydrogen bond catalysis:one or more water molecules form hydrogen bonds with reactants at the interface between water and organic reactants and activate the reactants (it was proposed that there are more free dangling OH groups capable of forming hydrogen bonds at the interface than in bulk water);(3) the Brφnsted acid/base catalysis in high-temperature water (temperature between200-370℃):water can act as an acid, base, or dual acid/base catalyst as the self-ionization of water enhances at high temperatures;(4) the hydrophobic interaction between water and nonpolar organic reactants:the nonpolar segments of reactants are brought together in the transition state by the hydrophobic interaction between water and organic reactants. In2008we reported hot water promoted ring-opening of epoxides and aziridines and hot water was proposed as a Bransted acid catalyst within. In chapter one, we studied hydrolysis of (-)-a-pinene oxide in hot water and also the mechanism of racemization of the initially formed major product trans-(-)-sobvevol.Then we studied the effects of HCl's concentration, the reaction temperature, the addition of organic co-solvent, and the concentration of the solute to the racemization of trans-(-)-sobrerol and proposed that several roles of water played in the reaction:(1) water participates in the elementary reaction as a reactant and as a product;(2) water is the source of H3O+which catalyzes the SN1solvolysis reaction of trans-(-)-sobrerol;(3) water acts as a very polar solvent stabilizing the carbocation intermediate formed in the reaction. Further investigation of the application of the reaction showed that the racemization or1,3-rearrangement of other allylic alcohols could efficiently proceed in hot water. Then we reported an efficient hydrolytic kinetic separation of trans/cis-(R)-(+)-limonene oxides in1:1mixed solvent of water and1,4-dioxane without additional catalyst. trans-(R)-(+)-Limonene oxide was recovered in high yield (77%) and high purity (de>98%). This method was superior to the existing methods for not using additional catalysts, high yield and high purity of trans-(R)-(+)-limonene oxide recovered and relatively fast reaction rate. This discovery again suggested that hot water can act as a mild acid catalyst to promote organic reactions. In depth1H NMR studies of hydrolysis of6,7-epoxygeranyl acetate in D2O and kinetic studies of hydrolysis of epoxides with different aqueous solubilities were done and we proposed that the ring-opening of epoxides in hot water was not "On Water"-catalyzed but was actually a "In Water"-catalyzed reaction. Then we reported an efficient methodology for ring-opening of extremely hydrophobic epoxides in mixture solvent of water and1,4-dioxane without the use of additional acid or base catalyst. Other nucleophiles such as amines, sodium azide and thiophenol could also effectively open1-dodecene oxide in the same system, yielding the corresponding products.
     In chapter two we studied the cationic-π cyclization of2,3-oxidosqualene. Cationic-π cyclization provides an efficient method for constructing polycyclic compounds. We tried cyclization of2,3-oxidosqualene in water or1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The cyclization raction could not take place in pure water while squalene1,2-diol was obtained when equal volumn of1,4-dioxane was added. Tricyclic product14-epithalinaol was obtained with15%yield when SDS (20mol%) and PTSA (20mol%) were added to hot water. In HFIP, the cyclization of2,3-oxidosqualene reacted at room temperature and formed major products14-epithalinaol and camelliol. The yield of14-epithalinaol was increased to39%in the optimized reaction condition which was higher than Lewis acid catalyzed the same transformation.
引文
[1]For reviews and books, see:(a) Fischmeister, C.; Doucet, H. Green Chem.2011,13,741. (b) Anastas, P. T.; Eghbali, N. Chem. Soc. Rev.2010,39,301. (c) Horvath, I. T. Green Chem.2008, 10,1024. (d) Horvath, I. T.; Anastas, P. T. Chem. Rev.2007,107,2167. (e) Matlack, A. S. Introduction to Green Chemistry, Marcel Dekker, New York,2001. (f) Anastas, P. T., Heine, L. G.; Williamson, T. C. (Eds.) Green Chemical Syntheses and Processes, American Chemical Society, Washington, DC,2000. (g) Anastas, P. T.; Williamson, T. C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, Oxford,1998.
    [2]Rideout,D. C.; Breslow, R. J. Am. Chem. Soc. 1980,102, 7816.
    [3]For reviews and books, see: (a) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072. (b) Marziale, A. N.; Jantke, D.; Faul, S. H.; Reiner, T.; Herdtweck, E.; Eppinger, Jorg. Green Chem. 2011, 13, 169. (c) Jessop, P. G. Green Chem. 2011, 13, 1391. (d) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302. (e) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725. (f) Organic Reactions in Water, Lindstrdm, U. M., Ed.; Blackwell: Oxford, UK, 2007. (g) Chen, L.; Li, C.-J. Chem. Soc. Rev. 2006, 35, 68. (h) Li, C.-J. Chem. Rev. 2005, 105, 3095. (i) Grieco, P. A. Organic Synthesis in Water, Blackie Academic and Professional: London, 1998. (j) Li, C.-J.; Chan, T.-H. Organic Reactions in aqueous media; Wiley; New York, 1997.
    [4](a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. (b) Kabayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209. (c) Morten, C. J.; Byers, J. A.; Van Dyke, A. R.; Vilotijevic, I.; Jamison, T. F. Chem. Soc. Rev. 2009, 38, 3175. (d) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33. (e) Breslow, R.; Maitra, U.; Rideout, D. C. Tetrahedron Lett. 1983, 24, 1901.
    [5]Otto, S.; Engberts, J. B. F. N. Org. Biomol. Chem. 2003, 1, 2809.
    [6]Meijer, A.; Otto, S.; Engberts, J. B. F. N. J. Org. Chem. 1998, 63, 8989.
    [7]Brandes, E.; Grieco, P. A.; Gajewski, J. J. J. Org. Chem. 1989, 54, 515.
    [8]Inoue, Y.; Araki, K.; Shiraishi, S. Bull. Chem. Soc. Jpn. 1991, 64, 3079.
    [9]Coutouli-Argyropoulou, E.; Sarridis, P.; Gkizis, P. Green Chem. 2009, 11, 1906.
    [10]Khatik, G. L; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433.
    [11]Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259.
    [12]Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649.
    [13]Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189.
    [14]Byers, J. A.; Jamison, T. F. J. Am. Chem. Soc. 2009,131, 6383.
    [15]Van Dyke, A. R.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48,4430.
    [16]Sreedhar, B.; Reddy, P. S.; Reddy, M. A. Synthesis 2009, 1732.
    [17]Gawande, M. B.; Branco, P. S. Green Chem. 2011,13,3355.
    [18]Marshall, W. L.; Franck, E. U. J. Phys. Chem. Ref. Data 1981, 10, 295.
    [19]Uematsu, M.; Franck, E. U. J. Phys. Chem. Ref. Data 1980, 9, 1291.
    [20]Chandler, K.; Deng, F.; Dillow, A. K.; Liotta, C. L.; Eckert, C. A. Ind.. Eng. Chem. Res., 1997, 36, 5175.
    [21]Patrick, H. R.; Glaser, R.; Griffith, K.; Liotta, C. L.; Eckert, C. A. Ind. Eng. Chem. Res., 2001, 40, 6063.
    [22]Lesutis, H. P.; Glaser, R.; Liotta, C. L.; Eckert, C. Chem. Commun. 1999, 2063.
    [23]Kuhlmann, B.; Arnett, E. M.; Siskin, M. J. Org. Chem. 1994, 59, 3098.
    [24]Akiya, N.; Savage, P. E. Ind. Eng. Chem. Res. 2001, 40, 1822.
    [25](a) Xu, X.; Antal, M. J.; Anderson, D. G. M. Ind. Eng. Chem. Res. 1997, 36, 23. (b) Xu. X.; Antal, M. J. AIChE J., 1994, 40, 1524.
    [26]Gettler, J. D.; Hammett, L. P. J. Am. Chem. Soc. 1943, 65, 1824.
    [27]Brown, J. S.; Glaser, R.; Liotta, C. L; Eckert, C. Chem. Commun. 2000, 1295.
    [28]Chamblee, T. S.; Weikel, R. R.; Nolen, S. A.; Liotta, C. L.; Eckert, C. A. Green Chem. 2004, 6, 382.
    [29]Gladden, G.W.; Watson, G. Perfumery, Essent. Oil Rec.1964, 55, 793.
    [30]Kremsner, J. M.; Kappe, C. O. Eur. J. Org. Chem. 2005, 3672.
    [31]Wang, Z.; Cui, Y.-T.; Xu, Z.-B.; Qu, J. J. Org. Chem. 2008, 73, 2270.
    [32]Lu, J.; Brown, J. S.; Liotta, C. L.; Eckert, C. A. Chem. Commun. 2001, 665.
    [33]Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973, 26, 2521.
    [34]Baldwin, J. E. J. Chem. Soc., Chem. Commun., 1976, 734.
    [35]Wang, J.; Liang, Y.-L.; Qu, J. Chem. Commun. 2009, 5144.
    [36]Zhang, X.; Houk, K. N. J. Org. Chem. 2005, 70, 9712.
    [37]Gunaydin, H.; Houk, K. N. J. Am. Chem. Soc. 2008,130, 15232.
    [38]Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.
    [39]Jung, Y.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
    [40]Thomas, L. L.; Tirado-Rives, J.; Jorgensen, W. A. J. Am. Chem. Soc, 2010, 132, 3097.
    [41]Zhang, H.-B.; Liu, L.; Chen, Y.-J.; Wang, D.; Li, C.-J. Eur. J. Org. Chem. 2006, 869.
    [42]Cozzi, P. G.; Zoli, L. Angew. Chem., Int. Ed. 2008, 47, 4162.
    [43](a) Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807. (b) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66. c) Berger, S. T. A.; Seeliger, F. H.; Hofbauer, F.; Mayr, H. Org. Biomol. Chem. 2007, 5, 3020. (d) Seeliger, F.; Berger,S. T. A.; Remennikov, G. Y.; Polborn, K.; Mayr, H. J. Org. Chem. 2007, 72, 9170.
    [44]Shapiro, N.; Vigalok, A. Angew. Chem., Int. Ed. 2008, 47, 2849.
    [45]Tiwari, S.; Kumar, A. J. Phys. Chem. A. 2009, 113, 13685.
    [46]Orloff, G.; Winter, B.; Fehr, C. in Perfumes, Arts, Science & Technology:, (Eds.: Muller, P. M. Lamparsky, D.), Elsevier, New York, 1991, p. 287.
    [47]Kaminska, J.; Schwegler, M. A.; Hoefnagel, A. J.; van Bekkum, H. Reel. Trav. Chim. Pays-Bas. 1992,111,432.
    [48]Neri, G.; Rizzo, G.; Crisafulli, C.; De Luca, L.; Donato, A.; Musolino, M. G.; Pietropaolo, R. Appl. Catal. A:Gen. 2005, 295, 116.
    [49]Wilson, K.; Renson, A.; Clark, J. H. Catal. Lett. 1999, 61, 51.
    [50]Ravindra, D. B.; Nie, Y. T.; Jaenicke, S.; Chuah, G. K. Catal Today 2004, 96, 147.
    [51]da Silva Rocha, K.; Hoehne, J. L.; Gusevskaya, E. V. Chem. Eur. J. 2008, 14, 6166.
    [52](a) Holderich, W. F.; Roseler, J.; Heitmann, G.; Liebens, A. T. Catal. Today 1997, 37, 353. (b) Kunkeler, P. J.; van der Waal, J. C; Bremmer, J.; Zuurdeeg, B. J.; Downing, R. S.; van Behhum, H. Catal. Lett. 1998, 53, 135.
    [53]Flores-Moreno, J. L.; Baraket, L.; Figueras, F. Catal. Lett. 2001, 77, 113.
    [54]Ravasio, N.; Zaccheria, F.; Guidotti, M.; Psaro, R. Top. Catal. 2004, 27, 157.
    [55]Alaerts, L.; Seguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006,12, 7353.
    [56]Kunkeler, P. J.; van der Waal, J. C; Bremmer, J.; Zuurdeeg, B. J.; Downing, R. S.; van Bekkum, H. Catal.Lett. 1998,55, 135.
    [57]Selva, A.; Ferrario, F.; Ventura, P.; Pellegata, R. Org. Mass. Spectrom. 1987, 22, 523.
    [58]Wang, Z. D.; Chen, J. Z.; Song, Z. Q.; Jiang, Z. K.; Han, Z. J.; Chen, C. Linchan Huanxue Yu Gongye, 2007, 27, 1.
    [59](a) Wang, Q.; Li, Y.; Chen, Q. Synth. Comnum. 2003, 33, 2125. (b) Bovara, R.; Carrea, G.; Ferrara, L.; Riva, S. Tetrahedron: Asymmetry 1991, 2, 931. (c) Braga, P. C; Allegra, L.; Bossi, R.; Scuri, R.; Castiglioni, C. L.; Romandini, S. Int. J. Clin. Pharm. Res. 1987, 7, 381. (d) Allegra, L. Bossi, R.; Braga, P. C. Respiration, 1981, 42,105.
    [60]Durbetaki, A. J.; Linder, S. M. US 2949489.
    [61](a) Gorbaty, Yu. E.; Kalinichev, A. G. J. Phys. Chem. 1995, 99, 5336. (b) Kalinichev, A. G.; Bass, J. D. Chem. Phys. Lett. 1994, 231, 301. (c) Kalinichev, A. G.; Bass, J. D.J. Phys. Chem. A 1997, 101, 9720. (d) Mountain, R. D. J. Chem. Phys. 1989, 90, 1866. (e) Mountain, R. D. J. Chem. Phys. 1995,103, 3084. (f) Mountain, R. D.J. Chem. Phys. 1999, 110, 2109. (g) Mizan, T. I.; Savage, P. E.; Ziff, R. M. J. Phys. Chem. 1996, 100, 403. (h) Chialvo, A. A.; Cummings, P. T. J. Chem. Phys. 1994, 101, 4466. (i) Chialvo, A. A.; Cummings, P. T. J. Phys. Chem. 1996, 100, 1309. 0) Matubayashi, N.; Wakai, C; Nakahara, M. Phys. Rev. Lett. 1997, 78, 2573. (k) Matubayashi, N.; Wakai, C; Nakahara, M. J. Chem. Phys. 1997,107, 9133. (1) Matubayashi, N.; Wakai, C.; Nakahara, M. J. Chem. Phys. 1999, 110, 8000. (m) Gupta, R. B.; Panayiotou, C. G.; Sanchez, I. C.; Johnston, K. P. AIChE J. 1992, 38, 1243. (n) Hoffmann, M. M.; Conradi, M. S. J. Am. Chem. Soc. 1997,119, 3811. (o) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997, 106, 247. (p) Jedlovszky, P.; Brodholt, J. P.; Bruni, F.; Ricci, M. A.; Soper, A. K.; Vallauri, R. J. Chem. Phys. 1998, 108, 8528. (q) Yoshii, N.; Yoshie, H.; Miura, S.; Okazaki, S. J. Chem. Phys. 1998, 109, 4873. (r) Liew, C. C; Inomata, H.; Arai, K.; Saito, S. J. Supercrit. Fluids 1998, 13, 83.
    [62]Woolley, E. M.; Hurkot, D. G.; Hepler, L. G. J. Phys. Chem. 1970, 74, 3908.
    [63]Schneider, C. H.; Lynch, C. C. J. Am. Chem. Soc. 1943, 65, 1063.
    [64]Gonzalez, A. G.; Rosales, D.; Gomez-Ariza, J. L.; Sanz, J. F.; Anal. Chim. Acta 1990, 228, 301.
    [65]Giuseppetti, G.; Tadini, C. Acta Ciyst. 1992, 48, 876.
    [66]Giuseppetti, G.; Tadini, C. Acta Ciyst. 1993, 49, 275.
    [67]Senda, Y.; Imaizumi, S. Tetrahedron 194, 30, 3813.
    [68](a) Wipf, P. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 827. (b) Hill, R. K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 785.
    [69]Leleti, R. R.; Hu, B.; Prashad, M.; Repic, O. Tetrahedron Lett. 2007, 48, 8505.
    [70]McCubbin, J. A.; Voth, S.; Krokhin, O. V. J. Org. Chem. 2011, 76, 853.
    [71](a) Ho, T.; Chein, R. Helv. Chim. Ada 2006, 89, 231; (b) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 11404. (c) Grimm, E. L.; Methot, J.; Shamji, M. Pure Appl. Chem. 2002, 75, 231; (d) Chrisman, W.; Camara, J. N.; Marcellini, K.; Singaram, B.; Goralski, C. T.; Hasha, D. L.; Rudolf, P. R.; Nicholson, L. W.; Borodychuk, K. K. Tetrahedron Lett. 2001, 42, 5805; (e) Comins, D. L.; Guerra-Weltzien, L. Tetrahedron Lett. 1996, 37, 3807; (f) Kido, F.; Abiko, T.; Kato, M. J. Chem. Soc., Perkin Trans. 1 1995, 2989; (g) Ho, T.; Lee, K. Tetrahedron Lett. 1995, 36, 947; (h) Tius, M. A.; Kerr, M. A. Synth. Commun. 1988, 18, 16; (i) Baker, R.; Borges, M.; Cooke, N. G.; Herbert, R. H. J. Chem. Soc., Chem. Commun. 1987, 414; (j) Yamasaki, M.J. Chem. Soc, Chem. Commun. 1972,10, 606a.
    [72]Leffmgwell, J. C.; Royals, E. E. Tetrahedron Lett. 1965, 6, 3829.
    [73]Newhall, W. F. J. Org. Chem. 1959, 24, 1673.
    [74]Furst, A.; Plattner, P. A. Helv. Chim. Acta. 1949, 32, 275.
    [75]Shackelford, R. E. (R. J. Reynolds Tobacco Co.) FR 2002595, 1969.
    [76]dos Santos, A. G.; de Lima Castro, F.; Jones, J. Synth. Commun. 1996, 26, 2651.
    [77]Blair, M.; Andrews, P. C.; Fraser, B. H.; Forsyth, C. M.; Junk, P. C.; Massi, M.; Tuck, K. L. Synthesis 2007, 1523.
    [78]Steiner, D.; Ivison, L.; Goralski, C. T.; Appel, R. B.; Gojkovic, J. R.; Singaram, B. Tetrahedron: Asymmetiy 2002, 13, 2359.
    [79]Bettadaiah, B. K.; Srinivas, P. J. Photochem. Photobioi, A 2004, 167, 137.
    [80]Hamada, H.; Kondo, Y.; Ishihara, K.; Nakajima, N.; Hamanda, H.; Kurihara, R.; Hirata, T. J. Biosci. Bioeng. 2003, 96, 581.
    [81]Salles, L.; Nixon, A. F.; Russell, N. C; Clarke, R.; Pogorzelec, P.; Cole-Hamilton, D. J. Tetrahedron: Asymmetiy 1999, 10, 1471.
    [82]Li, G.-X.; Qu, J. Chem. Commun. 2010, 2653.
    [83]Garyson, S. M.; Long, B. K.; Kusomoto, S.; Osbom, B. P.; Callahan, R. P.; Chambers, C. R.; Willson, C. G. J. Org. Chem. 2006, 71, 341.
    [84]Crandall, J. K. J. Org. Chem., 1964, 29, 2830.
    [1]For recent reviews on synthetic and enzymatic polycyclizations that discuss the role of cation-π interactions, see: (a) Christianson, D. W. Chem. Rev. 2006,106, 3412. (b) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730. (c) Hoshino, T.; Sato, T. Chem. Commun. 2002, 291. (d) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812. (e) Johnson, W. S. Tetrahedron 1991, 47, xi. (f) Van Tamelen, E. E. Ace. Chem. Res. 1975, 8, 152. For recently published examples, see: (a) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030. (b) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276. (c) Shenvi, R. A.; Corey, E. J. Org. Lett. 2010, 12, 3548. (d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2009, 131, 13928. (e) Zhao, Y.-J.; Serena Tan, L.-J.; Li, B.; Li, S.-M; Loh, T.-P. Chem. Commun. 2009, 3738. (f) Zhao, Y.-J.; Loh, T.-P. J. Am. Chem. Soc. 2008, 130, 10024. (g) Zhao, J.-F.; Zhao, Y.J.; Loh, T.-P. Chem. Commun. 2008, 1353.
    [2]Johnson, W. S.; Wiedhaup, K.; Brady, S. F.; Olson, G. L.J. Am. Chem. Soc. 1974, 96, 3979.
    [3]Johnson, W. S.; Telfer, S. J.; Cheng, S.; Schubert, U. J. Am. Chem. Soc. 1987,109, 2517.
    [4]Fish, P. V.; Johnson, W. S. J. Org. Chem. 1994, 59,2324.
    [5]Bogenstatter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L. J. Am. Chem. Soc. 1999, 121, 12206.
    [6]Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2008,130, 8865.
    [7]van Tamelen, E. E.; Willet, J.; Schwartz, M.; Nadeau, R. J. Am. Chem. Soc. 1966, 88, 5937.
    [8]Lodeiro. S.; Xiong, Q-B.; Wilson, W. K.; Kolesnikova, M. D.; Onak, C. S.; Matsuda, S. P. T. J. Am. Chem. Soc. 2007,129, 11213.
    [9]Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J.-P. Eur. J. Org. Chem. 2002, 3290.
    [10]Kesavan, V; Bonnet-Delpon, D.; Begue, J.-P. Tetrahedron Lett. 2000, 41, 2895.
    [11]Das, U.; Crousse, B.; Kesavan, Ve.; Bonnet-Delpon, D.; Begue, J.-P. J. Org. Chem. 2000, 65, 6749.
    [12]Philippe, C; Milcent, T.; Crousse, B.; Bonnet-Delpon, D. Org. Biomol. Chem. 2009, 7, 2026.
    [13]Westermaier, M.; Mayr , H. Chem. Eur. J. 2008,14,1638.
    [14]Li, G. -X.; Qu, J. Chem. Commun. 2010, 2653.
    [15]Cao, J. L. PhD thesis.
    [16](a) Stadler, P. A.; Eschenmoser, A.; Schinz, H.; Stork, G. Helv. Chim. Acta 1957, 40, 2191. (b) Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955, 77, 5068. (c) Eschenmoser, A.; Ruzicka, L. Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890.
    [1]For reviews and books, see: (a) Fischmeister, C.; Doucet, H. Green Chem.2011, 13, 741. (b) Anastas, P. T.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301. (c) Horvath, I. T. Green Chem. 2008, 10, 1024. (d) Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 707, 2167. (e) Matlack, A. S. Introduction to Green Chemistiy, Marcel Dekker, New York, 2001. (f) Anastas, P. T., Heine, L. G.; Williamson, T. C. (Eds.) Green Chemical Syntheses and Processes, American Chemical Society, Washington, DC, 2000. (g) Anastas, P. T.; Williamson, T. C. Green Chemistiy: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, Oxford, 1998.
    [2]Rideout, D. C; Breslow, R. J. Am. Chem. Soc. 1980,102,7816.
    [3]For reviews and books, see: (a) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072. (b) Marziale, A. N.; Jantke, D.; Faul, S. H.; Reiner, T.; Herdtweck, E.; Eppinger, Jorg. Green Chem. 2011,13, 169. (c) Jessop, P. G. Green Chem. 2011, 13, 1391. (d) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302. (e) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725. (f) Organic Reactions in Water; Lindstrom, U. M., Ed.; Blackwell: Oxford, UK, 2007. (g) Chen, L. Li, C.-J. Chem. Soc. Rev. 2006, 35, 68. (h) Li, C.-J. Chem. Rev. 2005, 105, 3095. (i) Grieco, P. A. Organic Synthesis in Water, Blackie Academic and Professional: London, 1998. (j) Li, C.-J.; Chan, T.-H. Organic Reactions in aqueous media; Wiley; New York, 1997.
    [4](a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. (b) Kabayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209. (c) Morten, C. J.; Byers, J. A.; Van Dyke, A. R.; Vilotijevic, I.; Jamison, T. F. Chem. Soc. Rev. 2009, 38, 3175. (d) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33. (e) Breslow, R.; Maitra, U.; Rideout, D. C. Tetrahedron Lett. 1983, 24, 1901.
    [5]Otto, S.; Engberts, J. B. F. N. Org. Biomol. Chem. 2003,1, 2809.
    [6]Meijer, A.; Otto, S.; Engberts, J. B. F. N.J. Org. Chem. 1998, 63, 8989.
    [7]Brandes, E.; Grieco, P. A.; Gajewski, J. J. J. Org. Chem. 1989, 54, 515.
    [8]Inoue, Y.; Araki, K.; Shiraishi, S. Bull. Chem. Soc. Jpn. 1991, 64, 3079.
    [9]Coutouli-Argyropoulou, E.; Sarridis, P.; Gkizis, P. Green Chem. 2009, 11, 1906.
    [10]Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433.
    [11]Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259.
    [12]Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7,3649.
    [13]Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189.
    [14]Byers, J. A.; Jamison, T. F. J. Am. Chem. Soc. 2009,131, 6383.
    [15]Van Dyke, A. R.; Jamison, T. F. Angew. Chem.. Int. Ed. 2009, 48,4430.
    [16]Sreedhar, B.; Reddy, P. S.; Reddy, M. A. Synthesis 2009, 1732.
    [17]Gawande, M. B.; Branco, P. S. Green Chem. 2011, 13, 3355.
    [18]Marshall, W. L.; Franck, E. U. J. Phys. Chem. Ref. Data 1981, 10, 295.
    [19]Uematsu, M.; Franck, E. U. J. Phys. Chem. Ref. Data 1980, 9, 1291.
    [20]Chandler, K.; Deng, F.; Dillow, A. K; Liotta, C. L.; Eckert, C. A. Ind. Eng. Chem. Res., 1997, 36, 5175.
    [21]Patrick, H. R.: Glaser, R.; Griffith, K.; Liotta, C. L.; Eckert, C. A.Ind. Eng. Chem. Res., 2001, 40, 6063.
    [22]Lesutis, H. P.; Glaser, R.; Liotta, C. L.; Eckert, C. Chem. Commun. 1999, 2063.
    [23]Kuhlmann, B.; Arnett, E. M.; Siskin, M. J. Org. Chem. 1994, 59, 3098.
    [24]Akiya, N.; Savage, P. E.Ind. Eng. Chem. Res. 2001, 40, 1822.
    [25](a) Xu, X.; Antal, M. J.; Anderson, D. G. M. Ind. Eng. Chem. Res. 1997, 36, 23. (b) Xu, X.; Antal, M. J. AIChE J., 1994, 40, 1524.
    [26]Gettler, J. D.; Hammett, L. P.J. Am. Chem. Soc. 1943, 65, 1824.
    [27]Brown, J. S.; Glaser, R.; Liotta, C. L.; Eckert, C. Chem. Commun. 2000,1295.
    [28]Chamblee, T. S.; Weikel, R. R.; Nolen, S. A.; Liotta, C. L.; Eckert, C. A. Green Chem. 2004, 6, 382.
    [29]Gladden, G.W.; Watson, G. Perfumeiy, Essent. Oil Rec.1964, 55, 793.
    [30]Kremsner, J. M.; Kappe, C. O. Eur.J. Org. Chem. 2005, 3672.
    [31]Wang, Z.; Cui, Y.-T.; Xu, Z.-B.; Qu, J. J. Org. Chem. 2008, 73, 2270.
    [32]Lu, J.; Brown, J. S.; Liotta, C. L.; Eckert, C. A. Chem. Commun. 2001, 665.
    [33]Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973, 26, 2521.
    [34]Baldwin, J. E. J. Chem. Soc., Chem. Commun., 1976, 734.
    [35]Wang, J.; Liang, Y.-L.; Qu, J. Chem. Commun. 2009, 5144.
    [36]Zhang, X.; Houk, K. N. J. Org. Chem. 2005, 70, 9712.
    [37]Gunaydin, H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 15232.
    [38]Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew.Chem., Int. Ed. 2005, 44, 3275.
    [39]Jung, Y.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
    [40]Thomas, L. L.; Tirado-Rives, J.; Jorgensen, W. A. J. Am. Chem. Soc., 2010,132, 3097.
    [41]Zhang, H.-B.; Liu, L.; Chen, Y.-J.; Wang, D.; Li, C.-J. Eur. J. Org. Chem. 2006, 869.
    [42]Cozzi, P. G.; Zoli, L. Angew. Chem., Int. Ed. 2008, 47,4162.
    [43](a) Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807. (b) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66. c) Berger, S. T. A.; Seeliger, F. H.; Hofbauer, F.; Mayr, H. Org. Biomol. Chem. 2007, 5. 3020. (d) Seeliger, F.; Berger,S. T. A.; Remennikov, G. Y.; Polbom, K.; Mayr, H. J. Org. Chem. 2007, 72, 9170.
    [44]Shapiro, N.; Vigalok, A. Angew. Chem., Int. Ed. 2008, 47, 2849.
    [45]Tiwari, S.; Kumar, A. J. Phys. Chem. A. 2009, 113, 13685.
    [46]Orloff, G.; Winter, B.; Fehr, C. in Perfumes, Arts, Science & Technology, (Eds.: Muller, P. M. Lamparsky, D.), Elsevier, New York, 1991, p. 287.
    [47]Kaminska, J.; Schwegler, M. A.; Hoefnagel, A. J.; van Bekkum, H. Reel Trav. Chim. Pays-Bas. 1992,111,432.
    [48]Neri, G.; Rizzo, G.; Crisafulli, C; De Luca, L.; Donato, A.; Musolino, M. G.; Pietropaolo, R. Appl. Catal. A:Gen. 2005, 295,116.
    [49]Wilson, K.; Reason, A.; Clark, J. H. Catal.Lett. 1999, 61, 51.
    [50]Ravindra, D. B.; Nie, Y. T.; Jaenicke, S.; Chuah, G. K. Catal. Today 2004, 96, 147.
    [51]da Silva Rocha, K.; Hoehne, J. L.; Gusevskaya, E. V. Chem. Eur. J. 2008,14, 6166.
    [52](a) Holderich, W. F.; Roseler, J.; Heitmann, G.; Liebens, A. T. Catal. Today 1997, 37, 353. (b) Kunkeler, P. J.; van der Waal, J. C; Bremmer, J.; Zuurdeeg, B. J.; Downing, R. S.; van Behlium, H. Catal. Lett. 1998, 53, 135.
    [53]Flores-Moreno, J. L.; Baraket, L.; Figueras, F. Catal. Lett. 2001, 77, 113.
    [54]Ravasio, N.; Zaccheria, F.; Guidotti, M.; Psaro, R. Top. Catal. 2004, 27, 157.
    [55]Alaerts, L.; Seguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006,12, 7353.
    [56]Kunkeler, P. J.; van der Waal, J. C; Bremmer, J.; Zuurdeeg, B. J.; Downing, R. S.; van Bekkum, R.Catal. Lett. 1998,53, 135.
    [57]Selva, A.; Ferrario, F.; Ventura, P.; Pellegata, R. Org. Mass. Spectrom. 1987, 22, 523.
    [58]Wang, Z. D.; Chen, J. Z.; Song, Z. Q.; Jiang, Z. K.; Han, Z. J.; Chen, C. Linchan Huanxue Yu Gongye, 2007, 27, 1.
    [59](a) Wang, Q.; Li, Y.; Chen, Q. Synth. Commun. 2003, 33, 2125. (b) Bovara, R.; Carrea, G.; Ferrara, L.; Riva, S. Tetrahedron: Asymmetry 1991, 2, 931. (c) Braga, P. C; Allegra, L.; Bossi, R.; Scuri, R.; Castiglioni, C. L.; Romandini, S. Int. J. Clin. Pharm. Res. 1987, 7, 381. (d) Allegra, L. Bossi, R.; Braga, P. C. Respiration, 1981, 42, 105.
    [60]Durbetaki, A. J.; Linder, S. M. US 2949489.
    [61](a) Gorbaty, Yu. E.; Kalinichev, A. G. J. Phys. Chem. 1995, 99, 5336. (b) Kalinichev, A. G.; Bass, J. D. Chem. Phys. Lett. 1994, 231, 301. (c) Kalinichev, A. G.; Bass, J. D. J. Phys. Chem. A 1997, 101, 9720. (d) Mountain, R. D. J. Chem. Phys. 1989, 90, 1866. (e) Mountain, R. D. J. Chem. Phys. 1995,103, 3084. (f) Mountain, R. D. J. Chem. Phys. 1999, 110,2109. (g) Mizan, T. I.; Savage, P. E.; Ziff, R. M. J. Phys. Chem. 1996, 100, 403. (h) Chialvo, A. A.; Cummings, P. T. J. Chem. Phys. 1994, 101, 4466. (i) Chialvo, A. A.; Cummings, P. T. J. Phys. Chem. 1996, 100, 1309. (j) Matubayashi, N.; Wakai, C.; Nakahara, M. Phys. Rev. Lett. 1997, 78, 2573. (k) Matubayashi, N.; Wakai, C.; Nakahara, M. J. Chem. Phys. 1997, 107, 9133. (1) Matubayashi, N.; Wakai, C.; Nakahara, M. J. Chem. Phys. 1999, 110, 8000. (m) Gupta, R. B.; Panayiotou, C. G.; Sanchez, I. C; Johnston, K. P. AIChE J. 1992, 38, 1243. (n) Hoffmann, M. M.; Conradi, M. S. J. Am. Chem. Soc. 1997,119, 3811. (o) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997,106, 247. (p) Jedlovszky, P.; Brodholt, J. P.; Bruni, F.; Ricci, M. A.; Soper, A. K.; Vallauri, R. J. Chem. Phys. 1998, 108, 8528. (q) Yoshii, N.; Yoshie, H.; Miura, S.; Okazaki, S. J. Chem. Phys. 1998, 109, 4873. (r) Liew, C. C; Inomata, H.; Arai, K.; Saito, S. J. Supercrit. Fluids 1998,13, 83.
    [62]Woolley, E. M.; Hurkot, D. G.; Hepler, L. G. J. Phys. Chem. 1970, 74, 3908.
    [63]Schneider, C. H.; Lynch, C. C. J. Am. Chem. Soc. 1943, 65, 1063.
    [64]Gonzalez, A. G.; Rosales, D.; Gomez-Ariza, J. L.; Sanz, J. F.; Anal. Chirn. Acta 1990, 228, 301.
    [65]Giuseppetti, G.; Tadini, C. Acta Ciyst. 1992, 48, 876.
    [66]Giuseppetti, G.; Tadini, C. Acta Qyst. 1993, 49, 275.
    [67]Senda, Y.; Imaizumi, S. Tetrahedron 1974, 30, 3813.
    [68](a) Wipf, P. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 827. (b) Hill, R. K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 785.
    [69]Leleti, R. R.; Hu, B.; Prashad, M.; Repic, O. Tetrahedron Lett. 2007, 48, 8505.
    [70]McCubbin, J. A.; Voth, S.; Krokhin, O. V. J. Org. Chem. 2011, 76, 853.
    [71](a) Ho, T.; Chein, R. Helv. Chim. Ada 2006. 89, 231; (b) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 11404. (c) Grimm, E. L.; Methot, J.; Shamji, M. Pure Appl. Chem. 2002, 75, 231; (d) Chrisman, W.; Camara, J. N.; Marcellini, K.; Singaram, B.; Goralski, C. T.; Hasha, D. L.; Rudolf, P. R.; Nicholson, L. W.; Borodychuk, K. K. Tetrahedron Lett. 2001, 42, 5805; (e) Comins, D. L.; Guerra-Weltzien, L. Tetrahedron Lett. 1996, 37, 3807; (f) Kido, F.; Abiko, T.; Kato, M. J. Chem. Soc, Perkin Trans. 1 1995, 2989; (g) Ho, T.; Lee, K. Tetrahedron Lett. 1995, 36, 947; (h) Tius, M. A.; Kerr, M. A. Synth. Commun. 1988, 18, 16; (i) Baker, R.; Borges, M.; Cooke, N. G.; Herbert, R. H. J. Chem. Soc, Chem. Commun. 1987, 414; (j) Yamasaki, M. J. Chem. Soc, Chem. Commun. 1972, 10, 606a.
    [72]Leffingwell, J. C; Royals, E. E. Tetrahedron Lett. 1965, 6, 3829.
    [73]Newhall, W. F. J. Org. Chem. 1959, 24, 1673.
    [74]Furst, A.; Plattner, P. A. Helv. Chim. Ada. 1949, 32, 275.
    [75]Shackelford, R. E. (R. J. Reynolds Tobacco Co.) FR 2002595,1969.
    [76]dos Santos, A. G.; de Lima Castro, F.; Jones, J. Synth. Commun. 1996,26, 2651.
    [77]Blair, M.; Andrews, P. C; Fraser, B. H.; Forsyth, C. M.; Junk, P. C; Massi, M.; Tuck, K. L. Synthesis 2007, 1523.
    [78]Steiner, D.; Ivison, L.; Goralski, C. T.; Appel, R. B.; Gojkovic, J. R.; Singaram, B. Tetrahedron: Asymmetry 2002,13, 2359.
    [79]Bettadaiah, B. K.; Srinivas, P. J. Photochem. Photobiol, A 2004,167, 137.
    [80]Hamada, H.; Kondo, Y.; Ishihara, K.; Nakajima, N.; Hamanda, H.; Kurihara, R.; Hirata, T. J. Biosci. Bioeng. 2003, 96, 581.
    [81]Salles, L.; Nixon, A. F.; Russell, N. C.; Clarke, R.; Pogorzelec, P.; Cole-Hamilton, D. J. Tetrahedron: Asymmetry 1999,10, 1471.
    [82]Li, G.-X.; Qu, J. Chem. Commun. 2010, 2653.
    [83]Garyson, S. M.; Long, B. K.; Kusomoto, S.; Osbom, B. P.; Callahan, R. P.; Chambers, C. R.; Willson, C. G. J. Org. Chem. 2006, 71, 341.
    [84]Crandall, J. K. J. Org. Chem., 1964, 29, 2830.
    [85]For recent reviews on synthetic and enzymatic polycyclizations that discuss the role of cation-π interactions, see: (a) Christianson, D. W. Chem. Rev. 2006,106, 3412. (b) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730. (c) Hoshino, T.; Sato, T. Chem. Commun. 2002, 291. (d) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812. (e) Johnson, W. S. Tetrahedron 1991, 47, xi. (f) Van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152. For recently published examples, see: (a) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030. (b) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276. (c) Shenvi, R. A.; Corey, E. J. Org. Lett. 2010, 12, 3548. (d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2009, 131, 13928. (e) Zhao, Y.-J.; Serena Tan, L.-J.; Li, B.; Li, S.-M.; Loh, T.-P. Chem. Commun. 2009, 3738. (f) Zhao, Y.-J.; Loh, T.-P.J. Am. Chem. Soc. 2008, 130, 10024. (g) Zhao, J.-F.; Zhao, Y.-J.; Loh, T.-P. Chem. Commun. 2008, 1353.
    [86]Johnson, W. S.; Wiedhaup, K.; Brady, S. F.; Olson, G. L. J. Am. Chem. Soc. 1974, 96, 3979.
    [87]Johnson, W. S.; Telfer, S. J.; Cheng, S.; Schubert, U. J. Am. Chem. Soc. 1987,109, 2517.
    [88]Fish, P. V.; Johnson, W. S. J. Org. Chem. 1994, 59, 2324.
    [89]Bogenstatter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L. J. Am. Chem. Soc. 1999, 121, 12206.
    [90]Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2008,130,8865.
    [91]van Tamelen, E. E.; Willet, J.; Schwartz, M.; Nadeau, R. J. Am. Chem. Soc. 1966, 88, 5937.
    [92]Lodeiro. S.; Xiong, Q-B.; Wilson, W. K.; Kolesnikova, M. D.; Onak, C. S.; Matsuda, S. P. T. J. Am. Chem. Soc. 2007,129, 11213.
    [93]Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J.-P. Eur. J. Org. Chem. 2002, 3290.
    [94]Kesavan, V; Bonnet-Delpon, D.; Begue, J.-P. Tetrahedron Lett.2000,41,2895.
    [95]Das, U.; Crousse, B.; Kesavan, Ve.; Bonnet-Delpon, D.; Begue, J.-P. J. Org. Chem.2000,65, 6749.
    [96]Philippe, C.; Milcent, T.; Crousse, B.; Bonnet-Delpon, D. Org. Biomol. Chem.2009,7,2026.
    [97]Westermaier, M.; Mayr, H. Chem. Eur. J.2008,14,1638.
    [98]Li, G.-X.; Qu, J. Chem. Commun.2010,2653.
    [99]Cao, J. L. PhD thesis.
    [100](a) Stadler, P. A,; Eschemnoser, A.; Schinz, H.; Stork, G. Helv. Chim. Acta 1957,40,2191. (b) Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc.1955,77,5068. (c) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955,38,1890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700