用户名: 密码: 验证码:
反渗透海水淡化网络系统的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反渗透技术广泛应用于海水和苦咸水淡化当中。相对于其他海水淡化技术,它的主要优势在于无相变、能耗低、模块化,因此近年来发展较快,市场占有率高。但目前反渗透工程设计仍主要采用基于工程经验的传统的设计方法,在技术可行的基础上并不能保证最优结果。因此进行反渗透系统优化研究是十分必要的。本文系研究反渗透海水及苦咸水淡化系统的优化问题,以降低吨水成本和能耗为目标开展以下工作。
     首先针对采用功(压力)交换器的反渗透系统,建立了基于有限差分传质的反渗透系统超结构模型。该模型考虑了功(压力)交换器内盐水混合状况,得到的混合整数非线性规划(MINLP)采用外部逼近法求解。加入限制条件使得优化结果中压力容器以及压力容器内膜元件的个数为整数解。利用该模型对不同盐度进料海水的反渗透系统进行优化研究,产水水质小于500mg/L,结果表明:进料海水盐度升高,吨水成本升高,反渗透系统工艺也随之变化。当进料海水盐度在32000mg/L以上,最优化的反渗透方案为一段反渗透工艺。当进料水盐度低于28000mg/L时,反渗透系统采用带段间增压泵的两段式工艺,当进料盐度不同时采用的膜元件型号也不同。随着产水水质含盐量需求下降,吨水成本呈上升趋势。对于进料海水盐度为35000mg/L、产水水质要求在300~500mg/L范围时,单级反渗透系统可以满足产水水质的需求。当产水水质要求在50~100mg/L范围时,选用两级反渗透工艺。
     其次,采用ε-限制算法对基于有限差分传质模型的反渗透系统进行多目标优化,吨水成本和吨水能耗同时优化得到非劣解(Pareto最优集),决策者可以根据不同的设计要求选择合适的反渗透配置工艺。以吨水成本和能耗分别为优化目标,对有无能量回收的反渗透系统进行单目标优化,无能量回收装置与采用透平的反渗透系统均采用带段间增压泵的两段式反渗透工艺,而以PX型作为能量回收装置的反渗透系统采用单段式工艺。以无能量回收装置来比较,采用透平式的反渗透方案其吨水成本下降不大;而采用PX型的反渗透方案,吨水成本最低。对采用PX型的反渗透系统,进行多目标优化设计,优化得到的反渗透方案的吨水成本在US$0.52—$0.69/m3之间,吨水能耗在2.30—2.79kW h/m~3之间,吨水成本与吨水能耗的变化趋势相反,一级反渗透方案能同时满足较低的制水成本和吨水能耗。当进料海水盐度升高时,多目标最优化设计的非劣解曲线向右上方平移,最低吨水成本和最低吨水能耗均有上升。
     最后,采用广义析取模型对反渗透系统进行优化。用传质模型来描述压力容器内膜元件传质过程,对于超结构内不存在的膜元件则视为单纯的输入输出操作而没有传质过程,反渗透级做同样处理,得到的广义析取模型采用逻辑外部逼近法求解。相对于混合整数非线性规划,广义析取模型可以避免在计算过程中超结构中不存在的反渗透级以及物流为零的变量引起的不可行解,使得非线性规划子问题能更快收敛。利用该模型研究了电价、膜元件价格和海水温度等因素对海水淡化设计结果的影响。电价的变化对反渗透系统吨水成本影响较大。当电价升高时,可以通过降低系统的操作压力或增加膜面积来降低海水淡化的成本。相对于电价,膜元件价格的变化对反渗透系统吨水成本影响处于第二位。当进料海水温度升高时,所需要的操作压力逐渐减小,所需的膜面积减少,反渗透的吨水成本呈下降趋势。
     本文开展了反渗透系统优化研究,考虑了由于系统内功(压力)交换器盐水混合引起的盐度升高,加入限制条件使得压力容器的个数以及压力容器内膜元件的个数为整数解。优化研究表明本文的结果可用于对实际的反渗透工程设计或系统评估。
The reverse osmosis (RO) has been widely used for seawater and brackish waterdesalination. The main advantages of RO over other desalination processes are its nophase change, energy saving, modularity, etc. Therefore, RO developed rapidly andits market share increased recently. However, it is still necessary to develop asystematic optimization method for RO process. In this paper, studies on optimizationof RO networks for desalination of seawater and brackish water to reduce cost andpower consumption of desalted water are carried out.
     First, an optimization model of RO networks with pressure exchanger (PX) isestablished based on finite difference membrane transport model, and salinity increasecaused by volumetric mixing in PX is considered. The optimum design problem canbe solved as a mixed-integer nonlinear problem (MINLP) using outer-approximationalgorithm. Discrete numbers constraints are added to make sure the number ofmembrane elements in each PV and PVs employed in the RO stage are integers. Thevariation of salinity of feed seawater is studied using the RO super-structure model,and the maximum product concentration is500mg/L, the results show that when thefeed water salinity increases, the desalted water cost increases correspondingly, andsystem processes also change. For the feed seawater concentration higher than32000mg/L, single-stage RO system is favored. When the feed seawater concentration isbelow28000mg/L, two-stage RO system with inter-stage pump is the better choice.Different types of membrane modules are selected for different feed seawater salinity.The desalted water cost increases with the decreases of permeate concentrationrequirement. For the looser permeate concentration requirement range form300~500mg/L, single-pass configuration can meet the required quality of desalted water. Whenthe lower permeate quality requirement of concentration from50~100mg/L, two-passsystem is selected.
     Secondly, multi-objective optimization (MOO) of RO networks based on finitedifference membrane transport model is solved by ε-constraint algorithm, and non-inferior solutions (Pareto optimal set) are obtained. Decision-makers can chooseproper RO design configuration process for different design requirement. RO systems with or without ERD are optimized and compared as single objective optimizationusing desalted water cost and unit energy cost as the optimization objective,respectively. Two-stage RO system with inter-stage pump is favored for RO systemswith turbine or without energy recovery device (ERD). For RO system with PX, asimple single-stage system is favored. The desalted water cost of the RO system withturbine dose not decline much comparing with the system without ERD, and thedesalted water cost of the RO system with PX is the lowest. For a specific RO projectusing PX as the ERD, the MOO optimal process configurations achieve to producepotable water with a desalted water cost between US$0.52—0.69/m3and powerconsumption between2.30—2.79kW h/m3. The variation of the power consumptionis contrary to the desalted water cost. One-stage layout is proved to minimizesimultaneously the power consumption and the desalted water cost. With increasingthe feed water salinity, the pareto curve shift to the upper right, and the lowestdesalted water cost and the lowest power consumption of the RO system are bothincrease.
     Finally, a generalized disjunctive programming (GDP) approach is established forthe optimization of RO networks. The nonlinear model based on GDP is proposed thatrelies on the identification and application of mass balances and equilibrium equationsfor existence membrane modules in PV. For non-existing or inactive modules, theequations considered are simply input-output relations in which no mass transfer takesplace. RO stage takes similar treatment. A variant of the logic-based outerapproximation algorithm is proposed to solve the problem. It would be desirable notonly to reduce the size of the NLP sub-problems, but also to avoid infeasibilities thatare due to the non-existing RO stage and linearization at zero flows in the ROsuperstructure. RO seawater projects are studied using the proposed logic-based outerapproximation algorithm, and several factors such as electricity price, membranemodule price, average seawater temperature, etc, are concerned. The desalted watercost is very sensitive to electricity price. When the electricity price increases, thedesalted water cost can be decrease through increasing operating pressure orincreasing membrane area. The desalted water cost is more sensitive to changes inelectricity price than membrane price. If the seawater temperature increases, theoperation pressure required by the RO system decreases and the total membrane areareduces, so the desalted water cost decreases.
     Study on the optimization of RO networks is carried out, taking into account thesalinity increase caused by volumetric mixing in PX, and discrete numbers constraintsare added to make sure the number of membrane elements in each PV and PVsemployed in the RO stage are integers. Optimization researches show that the resultsin this paper could be utilized in the actual engineering design of RO process orsystem evaluation.
引文
[1] UN. Water Development and Management, Proceeding of UN Water conference,1977, part4, Oxford: Programon Press,1978
    [2]王世昌,人类需要海水淡化技术,国际学术动态,1997,(1):13~14
    [3]张彤,水资源节约利用与流域经济发展,经济学家,2006,(2):118~120
    [4]杨尚宝,我国海水利用产业发展的战略与规划,2006海水淡化与水再利用西湖论坛
    [5]国家环保局,1998年中国环境状况公报,环境保护,1999(7):3~9
    [6]王世昌,海水淡化工程,北京:化学工业出版社,2003,3~4
    [7]高从楷,海水淡化及海水与苦咸水利用发展建议,高等教育出版社,附件:海水利用专项规划:1~10
    [8]李凭力,马佳,解利昕等,冷冻法海水淡化技术新进展,化工进展,2005,24(7):749~753
    [9]解利昕,李凭力,王世昌,海水淡化技术现状及各种淡化方法的评述,化工进展,2003,22(10):1081~1084
    [10] Emad Ali. Understanding the operation of industrial MSF plants Part I: Stabilityand steady-state analysis. Desalination,2002,143:53~72
    [11] E. E. Tarlfa, N. J. Scenna. A dynamic simulator for MSF plants. Desalination,2001,138:349~364
    [12] S. Al-Hengari, M. El-Bousiffi, W. El-Mudir. Performance analysis of a MSFdesalination unit. Desalination,2005,182:73~85
    [13] F. Karl, V. Renaudin, D. Alonso. New MED plate desalination process: Thermalperformanes. Desalination,2004,166:53~62.
    [14] A. Ophir, F. Lokiec. Advanced MED process for most economical seawaterDesalination. Desalination,2005,182:187~198.
    [15] M. A1-Shammiri, M. Safar. Multi-effect distillation plants: state of the art.Desalination,1999,126:45~59.
    [16] R. Semiat, Desalination: present and future. Water Int.2000,25(1):54~65.
    [17]王世昌,化工百科全书第六卷海水淡化,北京:化学工业出版社,1994:665~697.
    [18] M. Mulder, Basic Principles of Membrane Technology. Kluwer Academic,Dordrecht. The Netherlands,2nd Edition,1996.
    [19] B. Liberman, The importance of energy recovery devices in reverse osmosisdesalination, http://www.twdb.state.tx.us/Desalination/The%20Future%20of20Desalination%20in%20Texas%20%20Volume%202/documents/C8.pdf#search=%22The%20importance%20of%20energy%20recovery%20devices%20in%20reverse%20osmosis%20des alination%2290H.
    [20] Desalination by reverse osmosis, http://www.oas.org/usde/publications/Unit/oea59e/ch20.htm.
    [21] A. Mosseta, V. Bonnelye, M. Petry. The sensitivity of SDI analysis: from ro feedwater to raw water. Desalination,2008,222:17~23
    [22] K. Burashi, A. R. Hussain. Seawater RO plant operation and maintenanceexperience: Addur desalination plant operation assessment. Desalination,2004,165:11~22
    [23] R. Rautenbach, T. Melin, Mebranverfahren (Grundlagen der Module andAnlagenaus legung),2nd ed.,2003.
    [24] H. Strathmann, Electrodialytic Membrane Processes and their PracticalApplication, Comett Advanced Course on Membrane Technology-Electro-Membrane Processes, Stuttgart,1993.
    [25] H. S. hmann, Application of ion exchange membranes in industrial processes,Macromol. Chem., Macromol. Symp.1993,70:363~377.
    [26] H. Strahtmann, Electrodialysis, in: Membrane Handbook, W.S.W. Ho andK.K.Sirkar, Eds., Van Nostrand Reinhold, New York,1992, pp.218~262.
    [27] M. Demircioglu, N. Kabay, E. Ersbz, I. Kurucaovali, C. Safak and N. Gizli, Costcomparison and efficiency modeling in electrodialysis of brine, Desalination,136(2001):317~323.
    [28]18th IDA Worldwide Desalting Plants Inventory,2004
    [29] H.M. Laborde, K.B. Franca, H. Neff, A.M.N. Lima, Optimization strategy forsmall-scale reverse osmosis water desalination system based on solar energy,Desalination,2001,133:1~12
    [30] M. E. Findley, Vaporization through porous membrane. Process Design,1967,6(2):226~230.
    [31] Z. Qiand, E. L. Cussler. Hollow fiber gas membrane. AIChEJ.1986,31(9):1548.
    [32] M. Gryta, K. Karakulski, M. Tomaszewska. Treatment of effluents from theregeneration of ion exchangers using the MD process. Desalination.2005,180:173~180.
    [33] M. Gryta, Concentration of NaCl solution by membrane distillation integratedwith crystallisation, Sep. Sci. Technol.,2002,37(15):3535~3558.
    [34] M. Gryta, M. Tomaszewska, A.W. Morawski, J. Grzechulska, Membranedistillation of NaC1solution containing natural organic matter, J. Membr.Sci.,2001,181:279~287.
    [35] A. Masarwa, D. Meyerstein, N. Daltrophe, O. Kedem, Compact acceleratedprecipitation softening (CAPS) as pretreatment for membrane desalination,Desalination,1997,113:73~84
    [36]丁德文,工程海冰学概论[M],北京:海洋出版社,2000:25~50
    [37] M. Jefferiersm, W. Wrrks, R. Shaw, et al, Structural Characteristic of Congelat-ion and Platel Ice and Their Role in the Develop of Antarctic Land-fast Sea Ice.Glacial,1993,39(132):223~238
    [38] D. Col, L. Shapior, Observations of Brine Drainage Networks and Microstructureof First-year Sea Ice, J. Geophys Res.,1998,103(C10):21739~21750
    [39] L. Xie, J. Ma, F. Cheng, etc, al., Study on ice desalination technology,Desalination,2009,245:146~154
    [40] K. Bourouni, T. Ben M’Barek,A.Al Taee. Design and optimization ofdesalination reverse osmosis plants driven by renewable energies using geneticalgorithms. Renewable Energy.2011,36:936~950
    [41] A. M. Gilau, M. J. Small. Designing cost-effective seawater reverse osmosissystem under optimal energy options. Renewable Energy,2008,33:617~630
    [42] A. Sultan, J. Rheinlander, H. Gabler. Seawater reverse osmosis powered fromrenewable energy sources—hybrid wind/photovoltaic/grid power supply for smallscale desalination in Libya. Desalination,2002,153:17~23
    [43] A. Kalogirou, Seawater desalination using renewable energy sources. Prog.Energy Combust SCI,2005,31(3):242~81
    [44] E. Cardona, A. Piacentino. Optimal design of cogeneration plants for seawaterdesalination. Desalination,2004,166:411~426
    [45] A.M. Helal, A.M. El-Nashar, E. Al-Katheeri, S. Al-Malek. Optimal design ofhybrid RO MSF desalination plants Part I: Modeling and algorithms. Desalination2003,154:43~66
    [46] A.M. Helal, A.M. El-Nashar, E. Al-Katheeri, S. Al-Malek. Optimal design ofhybrid RO MSF desalination plants Part II: Results and discussion. Desalination2004,160:13~27
    [47] A. M. Helal, A.M. El-Nashar, E. Al-Katheeri, S. Al-Malek. Optimal design ofhybrid RO MSF desalination plants Part III: Sensitivity analysis. Desalination2004,169:43~60
    [48] S. F. Mussati, P. A. Aguirre, N. J. Scenna. A rigorous, mixed-integer, nonlinealprogramming model (MINLP) for synthesis and optimal operation of cogenera-tion seawater desalination plants. Desalination2004,166:339~345
    [49] G. Marian, Marcovecchio, S. F.Mussati, P. A. Aguirre, N. J. Scenna.Optimization of hybrid desalination processes including multi stage flash andreverse osmosis systems. Desalination,2005,182:111~122
    [50] United Nations Report. Natural Resources, Water Series New York,1985,14:8
    [51] A. D. Khawaji, I. K. Kutubkhanah, J.M. Wie. Advances in sea waterdesalination technologies. Desalination,2008,221:47~69
    [52] IDA Desalination Inventory Report, No.17, Inter-national DesalinationAssociation, Topsfield, MA, USA
    [53] DA Desalting Inventory2004: Desalination Business Stabilized on a High Level,Int. Desal. Water Reuse,2004,14(2):14~17
    [54] K. P. Lee, T. C. Arnot. D. Mattia. A review of reverse osmosis membranematerials for desalination Development to date and future potential. Journal ofMembrane Science,2011,370:1~22
    [55] New Desalination Capacity,1980-2009-Chart, Global Water Intelligence,2009,10
    [56] Desalination: A National Perspective, National Academies Press,2009
    [57] The Big Dipper: Contracted Desalination Capacity Forecast-Chart, GlobalWater Intelligence,2009,10
    [58] Global Water Intelligence, Market Profile: Desalination Markets2007Preview,October2006,27
    [59]谭永文,沈炎章,卢光荣等,嵊山500吨/日反渗透海水淡化示范工程,水处理技术,2000,26(1):1~6
    [60]樊雄,张希建,山东长岛县反渗透海水淡化工程,水处理技术,2003,29(1):41~43
    [61]谭永文,张希建,陈文松等,荣成万吨级反渗透海水淡化示范工程,水处理技术,2004,30(3):157~161
    [62]刘金生,庞胜林,华能玉环电厂海水淡化工程设计概述,水处理技术,2005,31(11):73~83
    [63]旅大市多效多级蒸馏法海水淡化会战组,多效多级蒸馏法海水淡化小型试验研究—蒸发工艺试验[J],水处理技术,1978,4(1):1~10
    [64]徐克俊,引进美国日产3000吨多级闪蒸海水淡化装置及调试,水处理技术,1992,18(2):134~140
    [65]唐琳虹,“十五”国家重点科技攻关项目示范工程正式实施—黄岛电厂3000吨蒸馏法海水淡化工程奠基仪式在青岛举行,海洋技术,2002,21(4):32
    [66]阮国岭,海水淡化及其在电厂中的应用,电力设备,2006,7(9):1~5
    [67]杨瑞哲,黄骅发电厂海水淡化蒸发器保温施工工艺,电力建设,2008,29(7):99~99
    [68]北疆电厂海水淡化(一期)工程,给水排水动态,2007(2):9
    [69]谭永文,谭斌,王琪,中国海水淡化工程进展,水处理技术,2008,33(1):1~3
    [70]海水淡化成套技术专项全面启动,化工经济技术信息,2007(9):5~5
    [71] FilmtecTM Membranes-Filmtec Sw30hr Le-400Seawater Reverse OsmosisElement, in, Dow Chemical Company
    [72] J. M. Laine, Design&Operation Considerations: Two Large-Scale Case Studies,in, Suez Environment,2009
    [73] R.L. Stover, Low Energy Consumption SWRO, in: Clean Technology2008,Boston Massachusetts,2008
    [74] A. Shimokawa,Desalination PlantwithUniqueMethods in Fukuoka, in: Japan-U.S.Governmental Conference on Drinking Water Quality Management andWastewater Control, Las Vegas,2009
    [75] Europe’s Largest SWRO Plant Opens,Water Desalination Report,2009,45
    [76] Membrane Element Swc4+, Hydranautics Corporation
    [77] Toray SeaWater RO Elements-Tm800c, Toray Industries
    [78] A. Kumano, N. Fujiwara, Cellulose triacetatemembranes for reverse osmosis, in:N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds.), Advanced MembraneTechnology and Application, JohnWiley&Sons, New Jersey,2008,39
    [79] R.L. Stover, A. Amegliob, P.A.K. Khanc. The Ghalilah SWRO plant: anoverview of the solutions adopted to minimize energy consumption. Desalination,2005,184:217~221
    [80] R. L. Stover. Seawater reverse osmosis with isobaric energy recovery devices.Desalination,2007,203:168~175
    [81] I. B. Cameron, R. B. Clemente. SWRO with ERI’s PX Pressure Exchangerdevice-a global survey. Desalination,2008,221:136~142
    [82] G.G. Pique, Low power bill makes seawater desalination affortable, DesalinationWater Reuse,2005,15(3):47~50
    [83] J.P. MacHarg and S.A. McClellan, Pressure exchanger helps reduce energycosts in brackish water RO system, J. AWWA,2004,96(11):44~48
    [84] M. Wilf, Fundamentals of RO–NF technology, International Conference onDesalination Costing, Limassol,2004
    [85] A. Zilouchian, M.Jafar, Automation and process control of reverse osmosisplants using soft-computeing methodologies, desalination,2001,135:51~59
    [86] P. Cote, J. Cadera, A new immersed membrane for pertreatment toreverse osmosis, Desalination,2001,139:229~236
    [87] I.M. El-Azizi, Dseign criteria of10,000m3/d SWRO desalination plant ofTajura, Libya, Desalination,2002,153:273~279
    [88] W.E. Mickols, M. Busch, Y. Maeda and J. Tonner, A Novel Design Approachfor Seawater Plants, IDA World Congress, Singapore,2005
    [89] S. Rybar, R. Boda, C. Bartels. Split partial second pass design for SWRO plants.Desalination and Water Treatment.2010,13:186~194
    [90] C. Fritzmann. J. L wenberg, T. Wintgens, et al. state-of-the-art of reverseosmosis desalination. Desalination,2007,216:1~76
    [91] M. Verhuelsdonk, T. Attenborough, O. Lex, T. Altmann. Design andoptimization of seawater reverse osmosis desalination plants using specialsimulation software. Desalination,2010,250:729~733
    [92] DOW FILMTEC Reverse Osmosis Technical Manual. http://www.dow.com/scripts/litorder.asp?filepath=liquidseps/pdfs/noreg/609-00071.pdf
    [93] A. Chatterjee, A. Ahluwalia, S. Senthilmurugan, et, al. Modeling of a radial fowhollow fber module and estimation of model parameters using numericaltechniques. Journal of Membrane Science,2004,236:1~16
    [94] S.Senthilmurugan, A. Ahluwalia, S. K. Gupta. Modeling of a spiral-woundmodule and estimation of model parameters using numerical techniques.Desalination,2005,173:269~286
    [95] S. Bhattacharya, Sun-Tak Hwang. Concentration polarization, separation factor,and Peclet number in membrane processes. Journal of Membrane Science,1997,132:73~90
    [96]A.L. Ahmad, M.F. Chong, S. Bhatia. Mathematical modeling of multiple solutessystem for reverse osmosis process in palm oil mill effuent (POME) treatment.Chemical Engineering Journal,2007,132:183~193
    [97]Y. Zhao. Modeling Of Membrane Solute Mass Transfer In NF/RO MembraneSystems.[Ph. D]. University of Central Florida.2004
    [98] K. Madireddi, R.B. Babcockb, B. Levine, et. al. An unsteady-state model topredict concentration polarization in commercial spiral wound membranes.Journal of Membrane Science,1999,157:13~34
    [99] A. I. Cavaco Mor o, A. M. Brites Alves, et. al. Concentration polarization in areverse osmosis/nanofltration plate-and-frame membrane module. Journal ofMembrane Science,2008,325:580~591
    [100] V. Geraldes, V. Semi o, M. N. Pinho. Hydrodynamics and concentrationpolarization in NF/RO spiral-wound modules with ladder-type spacers.Desalination,2003,157:395~402
    [101] S. Kim, E. M.V. Hoek. Modeling concentration polarization in reverse osmosisprocesses. Desalination,2005,186:111~128
    [102] E. Lyster, Y. Cohen. Numerical study of concentration polarization in arectangular reverse osmosis membrane channel: Permeate fux variation andhydrodynamic end effects. Journal of Membrane Science,2007,303:140~153
    [103] M. G. Marcovecchio, N. J. Scenna, et. al. Improvements of a hollow fberreverse osmosis desalination model: Analysis of numerical results. s, Chem EngRes Des (2010), doi:10.1016/j.cherd.2009.12.003
    [104] V. Geraldes, M. N. de Pinho. Mass transfer coefficient determination methodfor high-recovery pressure-driven membrane modules. Desalination,2006,195:69~77
    [105] L.Y. Hung, S. J. Lue, J.H. You. Mass-transfer modeling of reverse-osmosisperformance on0.5–2%salty water. Desalination2011,265:67~73
    [106] D.R. Paul. Reformulation of the solution-diffusion theory of reverse osmosis.Journal of Membrane Science,2004,241:371~386
    [107] D.E. Wiley, C.J.D.Fel, A. G. Fane, optimization of membrane module designfor brackish water desalination. Desalination,1985,52,249
    [108] O.K. Gupta, V. Ravindran. Branch and bound experiments in convex nonlinearinteger programming. Management science,1985,31(12):1533~1546
    [109] S. Avlonitsi, G.P. Sakellaropoulos, W.T. Hanbury, Optimal design os spiralwound modules: An analytical method, Trans. IchemE,1996,73:575~580
    [110] S. Senthilmurugan, A. Ahluwalia, S. K. Gupta. Modeling of a spiral-woundmodule and estimation of model parameters using numerical techniques.Desalination2005,173:269~286
    [111] M. G.Marcovecchio, et al., Improvements of a hollow fber reverse osmosisdesalination model: Analysis of numerical results, Chem Eng Res Des,2010,doi:10.1016/j.cherd.2009.12.003
    [112] W. Zhou, L. Song, T. K. Guan. A numerical study on concentration polarizationand system performance of spiral wound RO membrane modulesJournal ofMembrane Science.2006,271:38~46
    [113] S. A. Avlonitis. Optimization of the Design and Operation of Seawater RODesalination Plants. Separation Science and Technology,2005,40:2663~2678
    [114] S. A. Avlonitis, M. Pappas, K. Moutesidis. A unified model for the detailedinvestigation of membrane modules and RO plants performance. Desalination203(2007)218~228
    [115] A. Malek, M.N.A. Hawlader, J.C. Ho. Design and economics of RO seawaterdesalination. Desalination105(1996):245~261
    [116] F. Maskan, D. E. Wiley, L. P. M. Johnston. Optimal Design of Reverse OsmosisModule Networks. AICHE J.2000,46(5):946~954
    [117] A. Zhu, P. D. Christofdes, Y. Cohen. Minimization of energy consumption fora two-pass membrane desalination: Effect of energy recovery, membranerejection and retentate recycling. Journal of Membrane Science2009,339:126~137
    [118] S. Liang, C. Liu, L. Song. Two-Step Optimization of Pressure and Recovery ofReverse Osmosis Desalination Process. Environ. Sci. Technol.2009,43(9):3272~3277
    [119] M. Li. Minimization of Energy in Reverse Osmosis Water Desalination UsingConstrained Nonlinear Optimization. Ind. Eng. Chem. Res.2010,49:1822~1831
    [120] A. Zhu, P. D. Christofdes,Y. Cohen, Effect of Thermodynamic Restriction onEnergy Cost Optimization of RO Membrane Water Desalination. Ind. Eng. Chem.Res.2009,48:6010~6021
    [121] A. Zhu, P. D. Christofdes,Y. Cohen, Energy Consumption Optimization ofReverse Osmosis Membrane Water Desalination Subject o Feed SalinityFluctuation. Ind. Eng. Chem. Res.2009,48:9581~9589
    [122] A. Zhu, P. D. Christofdes,Y. Cohen, Minimization of energy consumption for atwo-pass membrane desalination: Effect of energy ecovery, membrane rejectionand retentate recycling. J. Membr. Sci.2009,339:126~137
    [123] A. Zhu, P. D. Christofdes,Y. Cohen, On RO Membrane and Energy Costs andAssociated Incentives for Future Enhancements of Membrane Permeability. J.Membr. Sci.2009,344:1~5
    [124] C. Parka, P.K. Parkb, P. P. Manec et, al. Stochastic cost estimation approach forfull-scale reverse osmosis desalination plants. Journal of Membrane Science,2010,364:52~64
    [125] A. A. Setiawan, Y. Zhao, C.. V. Nayar. Design, economic analysis andenvironmental considerations of mini-grid hybrid power system with reverseosmosis desalination plant for remote areas Renewable Energy.2009,34:374~383
    [126] F. Maskan, D. E. Wiley, L. P. M. Johnston. Optimal Design of Reverse OsmosisModule Networks. AIChE Journal.2000,46(5):946~954
    [127] A. Villafafila, I.M. Mujtaba. Fresh water by reverse osmosis based desalinationSimulation and optimisation. Desalination,2003,155: l~13
    [128] W.G.J. van der Meer, M. Riemersma, J.C. van Dijk. Only two membranemodules per pressure vessel-Hydraulic optimization of spiral-wound membranefiltration plants. Desalination,1998,119:57~64
    [129] J. W. McCutchan,V. Goel, System analysis of a multistage tubular modulereverse osmosis plant for seawater desalination, Desalination,1974,14:57~76
    [130] F. Evangellsta, Improved Graphical-Analytical Method for the Design ofReverse-Osmosis Plants. Ind. Eng. Chem. Process Des. Dev.,1986,25,(2):366~375
    [131] M. Zhu, M. M. E1-Halwagl. Optimal design and scheduling of flexiblereverse osmosis networks. Journal of Membrane Science,1997,129:161~174
    [132] M. Zhu, M. M. E1-Halwagl, M.A. Ahmad. Optimal design and scheduling offlexible reverse osmosis networks, Journal of Membrane Science,1997,129:161~174
    [133] H.J. See, V.S. Vassiliadis, D.I. Wilson. Optimisation of membraneregeneration scheduling in reverse osmosis networks for seawater desalination.Desalination.1999.125:37~54
    [134] N.Voros, Z.B.Maroulis. Optimization of reverse osmosis networks for seawaterdesalination. Computers chem. Engng.1996,20:345~350
    [135] J.E. Nemeth, Innovative system designs to optimize performance of ultra-lowpressure reverse osmosis membranes, Desalination.1998.119:63~71
    [136] W.G.J. van der Meer, C.W. A. Averink, J.C. van Dijk, Mathematical modelof nanofiltration systems. Desalination,1996,105:25~31
    [137]Y.Y. Lu, Y.D. Hu, X.L. Zhang, et al. Optimum design of reverse osmosis systemunder different feed concentration and product specification. Journal ofMembrane Science,2007,287:219~229
    [138] Y.Y.Lu,Y.D.Hu,Optimumdesign of reverse osmosis seawater desalinationsystem considering membrane cleaning and replacing, J. Membr. Sci.,2006,282:7~13
    [139] F. Vincea, F. Marechal, E. Aoustina, et al. Multi-objective optimization of ROdesalination plants. Desalination,2008,222:96~118
    [140] Y.Saif, A.Elkamel, M. Pritzker, Optimal design of reverse-osmosis networks forwastewater treatment, Chem. Eng. Process.(2008), doi:10.1016/j.cep.2007.11.007
    [141] Y. Saif, A. Elkamel, M. Pritzker. Global Optimization of Reverse OsmosisNetwork for Wastewater Treatment and Minimization. Ind. Eng. Chem. Res.2008,47:3060~3070
    [142] C. Guria, Prashant K. Bhattachary. Multi-objective optimization of reverseosmosis desalination units using different adaptations of the non-dominatedsorting genetic algorithm (NSGA). Computers and ChemicalEngineering,2005,29:1977~1995
    [143] M. G. Marcovecchio, P. A. Aguirre, N. J. Scenna. Global optimal design ofreverse osmosis networks for seawater desalination: modeling and algorithm.Desalination,2005,184:259~271
    [144] G.Shock, A. Miquel, Mass Transfer and Pressure Loss in Spiral WoundModules. Desalination1987,64,339
    [145] H. Mehdizadeh, et al., Temperature effects on the performance of thin-filmcomposite, aromatic polyamide membranes, Indus. Eng. Chem. Res.,1989,28:814~824
    [146] FilmTec Membrane Elements, The Dow Chemical Company: Midland, MI,1995
    [147] M. B.Boudinar, W. T.Hanbury, S. Avlonitis, Numerical Simulation andOptimization of Spiral-Wound Modules. Desalination,1992,86,273.
    [148] M. Verhuelsdonk, T. Attenborough, O. Lex, T. Altmann. Design andoptimization of seawater reverse osmosis desalination plants using specialsimulation software. Desalination,2010,250:729~733
    [149] I. Moch, The Case for and Feasibility of Very High Recovery Seawater ReverseOsmosis Plants: I, Moch and Associates (Water Treatment Consultants):Wilmington, DE,2000
    [150] A. Malek, M.N.A. Hawlader, J.C. Ho, Design and economics of RO seawaterdesalination. Desalination,1996,105:245~261
    [151] Y.D.Hu,Y.Y. Lu,Cleaning strategy of the membrane modules in the reverseosmosis seawater desalination system, J. Chem. Indus. Eng.(China),2005,56:499~505
    [152] Y. Dreyzin, Ashkelon seawater desalination project—off-taker's self costs,supplied water costs and benefits, Desalination,2006,190:104~116
    [153] A. Chauvel. Manual of Process Economic Evaluation, TECHNIP,2003.
    [154] G. Mavrotas, E. Georgopoulou, S. Mirasgedis. An integrated approach for theselection of Best Available Techniques (BAT) for the industries in the greaterAthens area using multi-objective combinatorial optimization, EnergyEconomics,2007,29:953~973
    [155] M. Ehrgott, M.Wiecek, Multi-objective programming. In: Figueira, J., Greco, S.,Ehrgott, M.(Eds.), Multiple Criteria Decision Analysis. State of the Art Surveys,Springer,667~722
    [156] G. Mavrotas, Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics andComputation,2009,213:455~465
    [157] Generalized Algebraic Modeling Systems (GAMS). http://www. gams.com
    [158] J. Aghaei, H. Shayanfar, N. Amjady. Multi-objective market clearing of jointenergy and reserves auctions ensuring power system security. EnergyConversion and Management,2009,50:899~06
    [159] J. A. Labarta, I. E. Grossmann, Disjunctive optimization design models forcomplex liquid-liquid multistage extractors. AIChE Journal,2001,47(10):2243~2252
    [160] M.Turkay, I. E. Grossmann, Logic-Based MINLP Algorithms for the OptimalSynthesis of Process Networks, Comput. Chem. Eng.,1996,20(8):959~978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700