用户名: 密码: 验证码:
基于空间认知的智能导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口前,大多数导航系统采用以数据模型和数学计算为基础的数据驱动方法实现路径规划和引导。尽管能够从经济角度提高交通的效率,然而由于忽略人们对空间信息的获取、加工和推理模式,这种导航模式还存在着一些局限性。而基于认知概念方法的路径规划和引导正在成为导航领域的研究热点。
     相关研究已经表明,将人们导航活动中的空间认知原理体现在导航系统的开发中,可以使导航过程更加符合人们找路和指路的认知习惯,进而能够增强导航系统的有效性,提高用户的自信心和满意度,降低用户的心理压力和精力分散,减少在陌生环境下导航的不确定性,并帮助用户构建环境的认知地图。
     认知导航的研究主要具有三个特点:1)普遍考虑了地标对导航系统可用性的改善;2)在路径规划过程中考虑体现人们空间认知原理的最优路径选择标准;3)在路径引导过程中采用接近人们空间交际的方式组织和表达路径信息。尽管成果已经比较丰硕,已有研究中仍然存在以下三方面的不足:
     1.难以简捷、高效地从环境中提取地标数据。目前比较有代表性地标提取方法(如空间对象显著性度量模型、空间数据挖掘方法、网络资源搜索方法等)通常需要采集、处理和维护海量数据(如空间对象的外观、语义、结构特征或描述文本等),实现起来比较困难。
     2.空间认知导向的路径规划过于依赖具体的网络模型。由于不同用户通常具有不同的认知偏好,其关注的地标或各认知特征的权重系数通常有较大差异。因此,在将空间认知规则融入到路网的权值时,通常需要针对不同用户生成不同的路网模型。这会给路网数据的共享和维护带来较大麻烦。
     3.难以将用户的先验空间知识无缝融合到基于转向的路径引导中。目前,基于转向的路径引导通常以路径上每个决策点为基本参考对象,而体现用户先验空间知识的路径引导通常参考到环境中有全局显著特征的空间要素。由于缺少统一表达两种参考对象的路径表达框架,这两种路径引导方式通常是独立或交叉进行的。
     针对以上三方面的问题,本文提出了针对性的解决方法。以地标提取、路径规划和路径引导方法为核心,本文主要包含以下五个方面的内容:
     1.首先提出本文的研究背景和意义。从以数据模型和数学计算为基础的传统导航系统到以基于认知概念方法的智能导航系统的演进,然后总结认知导航领域的国内外研究进展,包括路径规划、路径引导和路径信息具象化的算法和方法,并分析当前研究中存在的主要问题,进而提出本文的研究目标和主要内容。
     2.总结本文研究内容的主要理论基础。具体表现在利用与人们的空间认知过程尤其是导航活动相关的空间认知本体和空间认知理论实现对环境的特征化。其中,被讨论的空间认知本体主要包括空间认知要素、定性空间关系以及空间参考系统等,涉及的空间认知理论主要包括空间组合、空间分层以及空间交际等。
     3.提出一种基于城市兴趣点(points of interest, POI)数据的分层地标提取方法。该方法从公众认知、空间分布和个体特征三个方面综合衡量各POI对象的显著程度,讨论了利用问卷调查、多密度空间聚类和数据规格化方法计算POI对象各项显著性指标值的过程。最后,显著度较高的若干层对象被当作地标,其加权Voronoi图被用来反映各地标的空间影响范围及上下层关系。
     4.提出一种不依赖完备路网模型的基于分层强化学习的自适应路径规划方法。在该方法中,道路网仅约束强化学习智能体的状态转移规律,影响路径选择的空间认知因素被转换为状态变化的即时奖励方程。本方法定义了符合人们空间认知习惯的路径选择标准,并采用基于网络Voronoi图的分层强化学习实现自适应路径规划。该方法分为两个阶段:预学习阶段自动发现子目标节点,并构建包含局部最优策略的子任务;实时学习阶段利用预定义策略实现高效的Q值更新,并根据Q值追溯最优路径。
     5.提出一种面向自然语言且能够实现转向决策和先验知识无缝融合的自适应路径引导方法。该方法提出了一个将路径抽象为一系列结构统一、具有时序性和多粒度性、符合人们认知习惯又能反映用户空间知识、且可以被加工为指导用户沿路径前进的并易于转换为自然语言的短语或句子的指示单元的表达框架;并说明了利用环境结构、路径特征、先验知识等上下文因素生成多粒度的指示单元,从中选择最合适的指示单元序列,进而实现自适应路径引导的过程。
Most navigation systems today realize their functions of route selection and route directions with data-driven approaches, which are always designed upon explicit quantitative models and exact mathematical computations. Although they are considered to be effective to improve economic efficiency of commercial or fleet traffic, the neglect of human cognitive principles in spatial information acquiring, processing and reasoning may lead to some limitations of navigation services in this mode.
     In recent years, route selection and directions on the basis of cognitive conceptual approaches have been becoming research focuses in the fields of navigation. Relevant studies shows that the integration of spatial cognition principles of human navigation activities into the development of navigation systems can make selected routes in line with the cognitive habits of human wayfinding, and make route directions close to the way of describing routes to others in direction giving. Hence, the effectiveness and acceptability of these navigation systems could be significantly enhanced, while user confidence and satisfaction being increased, user mental workload, attention distraction and navigational uncertainty being reduced. Besides, it is helpful for users to form a cognitive map of the environment in this case.
     Researches on cognitive navigation have three major characteristics. First, landmarks are generally employed for improving the usability of navigation systems. Second, optimal route selection criteria reflecting the principles of human spatial cognition are frequently considered in the process of route selection. Third, the organization and representation of route information close to the way of human spatial communication are usually adopted in route directions. Although related achievements are abundant, existing researches are still insufficient in the following three aspects.
     1. It is difficult to extract landmarks from the envrionment in a simple and efficient way, as the representative landmark extraction approaches at present, such as feature significance measuring, spatial data mining and web resources searching, usually need acquisition, processing and maintenance of massive data, such as the visual, structural and cognitive characteristics of spatial features and route descriptive textes.
     2. The realization of spatial cognition motivated route selection is over-reliant on specific network models. As the diversity of user cognitive preferences leads to different concerned landmarks and different weight coefficients of cognitive criteria, personalized network models need be generated to meet different users when integrating regulations of spatial cognition into weights of road network. This could bring big troubles to the sharing and maintenance of road network data between different users.
     3. It is hard to seamlessly integrate the a-priori environmental knowledge of users into turn-by-turn route directions. At present, the primary reference objects of turn-by-turn route directions are always the decision points on the route, while the route directions considering user's a-priori spatial knowledge are usually referred to environmental features with global salient characteristics. As the absence of a route representation framework which could uniformly represent these two kinds of reference objects, turn-by-turn route directions and knowledge based route directions are generally implemented individually or alternately.
     Against to the above three issues, pertinent solutions are proposed in this thesis. Focused on the approaches of landmark extraction, route selection and route directions, this study mainly includes contents in the following five parts.
     1. The research background and significance of this thesis are introduced and discussed. Firstly, the necessity of development from traditional model and computation driven navigation systems into cognitive conceptual approach based intelligent navigation systems is pointed out. Then, the research progresses of cognitive navigation, including route selection algorithms, route direction approaches and route information externalization, are reviewed. After the analysis of existing problems in literature, the research objectives and research contents of this thesis are made clear.
     2. The theoretical foundations of the main research contents in this thesis are summarized. This is specifically shown in the processes of environmental aspectualization according to some cognitive ontologies and cognitive theories related to the human activities of spatial cognition especially navigation. The introduced spatial cognitive ontologies include cognitive conceptual primitives, qualitative spatial relations and spatial reference systems. Related spatial cognitive theories involve spatial chunking, spatial hierarchization and spatial communication.
     3. An approach of extracting hierarchical landmarks from points of interest (POI) in urban environments is proposed. This approach measures the significance of every POI object from three factors, which are public cognition, spatial distribution and individual characteristic. Based on a significance measure model composed of three vectors corresponding to these three factors, the processes of computing the vector values of a POI are discussed by the methods of questionnaire survey, multi-density spatial clustering and data normalization respectively. At last, the POI objects with relative high significances are treated as landmarks in different levels. Then, the weighted Voronoi diagrams generated from each level of landmarks can reflect the influence area of every landmark and associate the landmarks in the same level and between the sequential levels.
     4. A complete network model independent, interactive route selection approach using hierarchical reinforcement learning (HRL) is presented. In the learning process, the state transitions of the agent are constrained by the topological structure of streets, each perceived state-action pair of the environment is mapped into a immediate reward function of turning decisions at intersections. In this approach, the route selection criteria for cognitively motivated optimal routes are defined, and optimal route policies with maximal cumulative rewards can be adaptively found through a two-stage network Voronoi diagram based learning process. The first pre-learning stage automatically identifies some nodes in road network as subgoals and constructs corresponding subtasks containing local optimal route policies for achieving the subgoals. The second real-time learning stage focuses on efficiently updating the Q-values of every available state-action pair using predefined policies, and tracing the optimal routes after convergence. Furthermore, this approach can efficiently adapt to permanent or sudden environmental changes.
     5. A context-adaptive route direction oriented to natural language is proposed for the seamless integration of user's a-priori spatial knowledge into turn-by-turn route directions. In this approach, a route representation framework and its main implementation procedures are proposed. In the framework, a route is represented as a sequence of uniform temporal and various granular instruction units, which could meet human cognitive habits, may reflect user's spatial knowledge, and can be processed into route instruction phrases or sentences which are apt to be expressed in natural language. For the implementation of context-adaptive route directions, landmark extraction, various granular instruction unit generation and most appropriate instruction unit sequence selection are introduced, while some contextual factors such as environmental structures, route characteristics and prior knowledge are also considered in these procedures.
引文
[1]. Achatschitz, C.2005. Identifying the necessary information for a spatial decision:Camping for Beginners. CORP 2005 & Geomultimedia05.
    [2]. Agrawal, R., Jagadish, H. V.1994. Algorithms for searching massive graphs. IEEE Transaction on Knowledge and Data Engineering,6(2):225-238.
    [3]. Agrawala, M.2001. Visualizing route maps. PhD Thesis. Palo Alto, California:Stanford University.
    [4]. Allen, G. L.1997. From knowledge to words to wayfinding:Issues in the production and comprehension of route directions. COSIT 1997, LNCS 1329. Berlin:Springer.363-372.
    [5]. Allen, G. L., Kirasic, K. C..1985. Effects of the cognitive organization of route knowledge on judgments of macrospatial distance. Memory and Cognition,13(3):218-227.
    [6]. Allen, J. F.1983. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843
    [7]. Anez, J., De La Barra, T., Perez, B.1996. Dual graph representation of transport networks Transportation Research Part F,30(3):209-216
    [8]. Ankerst, M., Breunig, M. M., et al..1999. OPTICS:Ordering points to identify the clustering structure. Proc. ACM SIGMOD'99 Int. Conf. on Management of Data. Philadelphia PA.49-60
    [9]. Barkowsky, T.2001. Mental processing of geographic knowledge. Spatial Information Theory-Foundations of Geographic Information Science. D. R. Montello. Berlin:Springer.371-386.
    [10]. Barrow, K.1991. Human factors issues surrounding the implementation of in-vehicle navigation and information systems. SAE Society of Automotive Engineers Transactions,100(6):1243-1257.
    [11].Barto, A. G., Mahadevan S.2003. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems,13(4):341-379
    [12]. Berendt, B., Barkowsky, T. et al..1998. Spatial representation with aspect maps. Spatial cognition:An interdisciplinary approach to representing and processing spatial knowledge. C. Freksa, C. Habel and K. F. Wender. Berlin:Springer.313-336
    [13]. Burnett, G.2000. "Turn right at the traffic lights" The requirement for landmarks in vehicle navigation systems. Journal of Navigation,53(3):499-510.
    [14]. Burnett, G. E.1998. "Turn right at the King's Head" Drivers'requirements for route guidance information. PhD Thesis. Loughborough University.
    [15]. Burns, P. C.1998. Wayfinding errors while driving. Journal of Environmental Psychology,18(2): 209-217.
    [16].Caduff, D., Timpf S.2005. The landmark spider:Representing landmark knowledge for wayfinding tasks. Reasoning with mental and external diagrams:computational modeling and spatial assistance. Papers from the 2005 AAAI spring symposium. B. T, F. C, H. M and L. R. Menlo Park, CA. 30-35.
    [17].Caduff, D., Timpf S.2008. On the assessment of landmark salience for human navigation. Cognitive Processing,9(4):249-267.
    [18]. Car, A., Frank, A. U.1994. General principles of hierarchical spatial reasoning-The case of wayfinding. Sixth Int. Symposium on Spatial Data Handling, SDH'94, Edinburgh, Scotland.646-664.
    [19]. Car, A., Frank, A. U.1993. Hierarchical street networks as a conceptual model for efficient way finding. EGIS'93-Fourth European Conference and Exhibition on Geographical Information Systems. Genova, Italy.134-139.
    [20]. Car, A., Taylor, G., et al..2001. An analysis of the performance of a hierarchical wayfinding computational model using synthetic graphs. Computers, Environment and Urban Systems,25(1): 69-88.
    [21]. Carlson, L. A.1999. Selecting a reference frame. Spatial Cognition and Computation,1(4):365-379.
    [22]. Chabini, I., Lan S.2002. Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks. IEEE Transactions on Intelligent Transportation Systems,3(1):60-74.
    [23]. Chen, J., Li, C., et al..2001. A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science,15(3):201-220.
    [24]. Chen, Y., Bell M. G. H., et al..2007. Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system. IEEE Transactions on ITS,8(1):14-20.
    [25]. Cherkassky, B. V., Goldberg, A. V., et al.1996. Shortest paths algorithms:theory and experimental evaluation. Mathematical programming,73(2):129-174.
    [26]. Claramunt, C., Winter, S.2007. Structural salience of elements of the city. Environment and Planning B,34(6):1030-1050.
    [27]. Clementini, E., Felice, P. D., et al..1997. Qualitative representation of positional information. Artificial Intelligence,95(2):317-356.
    [28]. Clementini, E., Felice, P. D., et al..2000. Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering,34(3):251-270.
    [29]. Cohn, A. G., Bennett, B., et al..1997. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica,1(3):275-316.
    [30]. Cohn, A. G., Gotts, N. M.1996. The'Egg-Yolk'representation of regions with indeterminate boundaries. In Proceedings of GISDATA Specialist Meeting on Geographical Objects with Undetermined Boundaries. P. Burrough and A. M. Frank. Francis Taylor.171-187.
    [31]. Cohn, A. G., Hazarika S. M.,2001. Qualitative spatial representation and reasoning:An overview. Fundaments Informaticae,46(1-2):1-29.
    [32]. Couclelis, H.1996. Verbal directions for way-finding:Space, cognition, and language. The Construction of Cognitive Maps. J. Portugali. Kluwer, Dordrecht.133-153.
    [33]. Cuayahuitl, H., Dethlefs, N., et al..2010. Generating adaptive route instructions using hierarchical reinforcement learning. Spatial Cognition VII, LNAI 6222. C. Holscher. Berlin:Springer.319-334.
    [34]. Dale, R., Geldof, S., et al..2002. Generating more natural route descriptions. In Proceedings of the 2002 Australasian natural language processing workshop. Canberra, Australia.41-48
    [35]. Dale, R., Geldof, S., et al..2003. CORAL:Using natural language generation for navigational assistance. In Proceedings of the 26th Australasian computer science conference (ACSC2003). Adelaide, Australia.35-44.
    [36]. Dale, R., Geldof, S., et al..2005. Using natural language generation in automatic route description. Journal of Research and practice in Information Technology,37(1):89-105.
    [37]. Dalton, N. S. C.2006. Configuration and neighborhood:is place measurable? In space syntax and spatial cognition workshop of the spatial cognition'06 conference. Bremen, Germany.
    [38]. Dalton, R. C.2001. The secret is to follow your nose:route path selection and angularity. In Proceedings of the Third International Space Syntax Symposium. Ann Arbor, University of Michigan.
    [39]. Denis, M.1997. The description of routes:a cognitive approach to the production of spatial discourse. Cahiers de psychologie cognitive,16(4):409-458.
    [40]. Denis, M., Pazzaglia, F., et al..1999. Spatial discourse and navigation:An analysis of route directions in the city of Venice. Applied Cognitive Psychology,13(2):145-174
    [41].Dietterich, T. G.2000. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research,13(1):227-303.
    [42]. Dong, P.2008. Generating and updating multiplicatively weighted Voronoi diagrams for point, line and polygon features in GIS. Computers & Geosciences,34(4):411-421.
    [43]. Duckham, M., Kulik, L.2003. Simplest paths:automated route selection for navigation. COSIT 2003. W. Kuhn, M. Worboys and S. Timpf. Berlin:Springer.169-185.
    [44]. Duckham, M., Winter, S., et al..2010. Including landmarks in routing instructions. Journal of Location Based Services,4(1):28-52.
    [45]. Eco, U.1994. How to travel with a salmon & other essays. London:Random House.
    [46]. Eden, C.1992. On the nature of cognitive maps. Jornal of Management Studies,29(3):261-265.
    [47]. Egenhofer, M. J., Franzosa, R. D.1991. Point-set topological spatial relations. International Journal of Geographical Information Science,5(2):161-174.
    [48]. Egenhofer, M. J., Herring, J. R., et al..1991. A framework for the definition of topological relationships and an algebraic approach to spatial reasoning within this framework. Report for Project Varenius. NCGIA.
    [49]. Egenhofer, M. J., Mark, D. M.1995. Naive geography. COSIT 1995, LNCS 988, Berlin:Springer.1-15.
    [50]. Elias, B.2002. Automatic generation of wayfinding maps. Journal of Geospatial Engineering,4(2): 125-134.
    [51]. Elias, B.2003. Extracting landmarks with data mining methods. COSIT 2003, LNCS 2825. W. Kuhn, M. F. Worboys and S. Timpf. Berlin:Springer.375-389.
    [52]. Frank, A. U.1991. Qualitative spatial reasoning about cardinal directions. ACSM-ASPRS Auto-Carto 10. Baltimore, Maryland
    [53]. Frank, A. U.1996. Qualitative spatial reasoning:cardinal directions as an example. International journal of geographical information systems,10(3):269-290.
    [54]. Frank, A. U.2003. Pragmatic information content:How to measure the information in a route description. Foundations of Geographic Information Science. M. Duckham, M. Goodchild and M. Worboys. London and New York:Taylor & Francis.47-68.
    [55]. Freksa, C.1991. Qualitative spatial reasoning. Cognitive and Linguistic Aspects of Geographic Space. D. M. Mark and A. U. Frank. Kluwer Academic Publishers, Dordrecht.361-372.
    [56]. Freksa, C.1992. Using orientation information for qualitative spatial reasoning. Theories and methods of spatio-temporal reasoning in geographic space. A. U. Frank, I. Campari and U. Formentini. Berlin: Springer.162-178.
    [57]. Freksa, C.1999. Spatial aspects of task-specific wayfinding maps. Visual and Spatial Reasoning in Design,. J. S. Gero and B. Tversky. Key Centre of Design Computing and Cognition, University of Sydney.15-32.
    [58]. Freksa, C., Klippel, A., et al..2007. A cognitive perspective on spatial context. In Proceedings of Spatial Cognition:Specialization and Integration. A. G. Cohn, C. Freksa and B. Nebel. Schloss Dagstuhl, Germany.
    [59]. Fu, L., Rilett, L. R.1998. Expected shortest paths in dynamic and stochastic traffic networks. Transportation Research Part B:Methodological,32(7):499-516.
    [60]. Fu, L., Sun, D., et al..2006. Heuristic shortest path algorithms for transportation applications:State of the art. Computers & Operation Research,33(11):3324-3343.
    [61].Gao, S., Chabini I.2006. Optimal routing policy problems in stochastic time-dependent networks. Transportation Research Part B:Methodological,40(2):93-122.
    [62]. Goldberg, A. V., Harrelson C.2003. Computing the shortest path:A* search meets graph theory. Report of MSR-TR-2004-24. Microsoft Research.
    [63]. Goldberg, A. V., Kaplan, H. et al..2006. Reach for A*:Efficient point-to-point shortest path algorithms. SIAM Workshop on Algorithms Engineering and Experimentation (ALENEX 06). Society for Industrial and Applied Mathematics.
    [64]. Goldberg, A. V., Silverstein, C.1997. Implementations of Dijkstra's algorithm based on multi-level buckets. Lecture Notes in Economics and Mathematical System 450.292-327.
    [65]. Golledge, R. G.1992. Place recognition and wayfinding:Making sense of space. Geoforum 23(2): 199-214.
    [66]. Golledge, R. G.1995. Path selection and route preference in human navigation:A progress report. COSIT 1995, LNCS 988. Berlin:Springer.207-222.
    [67]. Golledge, R. G.1999. Wayfinding behavior:cognitive mapping and other spatial processes. Baltimore, MD:Johns Hopkins Press.
    [68]. Goyal, R. K.2000. Similarity assessment for cardinal directions between extended spatial objects. PhD Thesis. The University of Maine.
    [69].Grice, H. P.1957. Meaning. Philosophical Review,66(3):377-388.
    [70]. Grice, H. P.1975. Logic and conversation. Speech Acts. P. Cole and J. L. Morgan. Academic Press, New York.41-58.
    [71]. Gryl, A., Moulin, B., et al..2002. A conceptual model for representing verbal expressions used in route descriptions. Spatial language:Cognitive and computational perspectives. K. R. Coventry and P. Olivier. Dordrecht:Kluwer Academic Publishers.19-42.
    [72]. Habel, C.2003. Incremental generation of multimodal route instructions. Natural language generation in spoken and written dialogue, A AA1 Spring Symposium. Palo Alto, CA.44-51.
    [73]. Ilansen, S., Richter, K. F., et al..2006. Landmarks in OpenLS:A data structure for cognitive ergonomic route directions. Geographic Information Science. LNCS 4197. M. Raubal, H. J. Miller, A. U. Frank and M. F. Goodchild. Berlin:Springer.128-144.
    [74]. Haque, S., Kulik, L., et al..2007. Algorithms for reliable navigation and wayfinding. Spatial Cognition V, LNCS 4387. T. Barkowsky, M. Knauff, G. Ligozat and D. R. Montello. Berlin:Springer.308-326.
    [75]. Herskovits, A.1998. Schematization. Representation and processing of spatial expressions. P. Olivier and K.-P. Gapp. Mahwah NJ, USA:Lawrence Erlbaum Associates.149-162.
    [76]. Howard, R. A.2007. Dynamic probabilistic systems:Semi-Markov and decision processes. Dover Publications Inc..
    [77]. Huang, B., Wu, Q., et al..2007. A shortest path algorithm with novel heuristics for dynamic transportation networks. International Journal of Geographical Information Science,21(6):625-644.
    [78]. Huang, P. W., Jean, Y. R.1994. Using 2D C-Strings as spatial knowledge representation for image database systems. Pattern Recognition,27(9):1249-1257.
    [79]. Huang, Y. W., Jing, N., et al..1997. A hierarchical path view model for path finding in intelligent transportation systems. Geolnformatica,1(2):125-159.
    [80]. Jacob, R., Marathe, M., et al.1999. A computational study of routing algorithms for realistic transportation networks. Journal of Experimental Algorithmics,4:1-19.
    [81]. Jagadeesh, G. R., Srikanthan, T., et al..2002. Heuristic techniques for accelerating hierarchical routing on road networks. IEEE Transactions on Intelligent Transportation System,3(4):301-309.
    [82]. Jeffrey, D. J.1981. Ways and means for improving driver route guidance. Transport and Road Research Laboratory Report No.1016.
    [83].Jing, N., Huang, Y. W., et al..1998. Hierarchical encoded path views for path query processing:An optimal model and its performance evaluation. IEEE Transactions on Knowledge and Data Engineering,10(3):409-431.
    [84]. Kaindl, H., Kainz, G.1997. Bidirectional heuristic search reconsidered. Journal of Artificial Intelligence Research,7(1):283-317.
    [85]. Kanoulas, E., Du, Y., et al..2006. Finding fastest paths on a road network with speed patterns. In Proceedings of the 22nd International Conference on Data Engineering (ICDE'06), Atlanta, Georgia, America.
    [86]. Kaufman, D., Smith, R.1993. Fastest paths in time-dependent networks for intelligent vehicle-highway systems application. Journal Of Intelligent Transportation Systems,1(1):1-11.
    [87]. Kettani, D., Moulin, B.1999. A spatial model based on the notions of spatial conceptual map and of object's influence areas. COSIT 1999, LNCS 1661. C. Freksa and D. M. Mark. Berlin:Springer. 401-416.
    [88]. King, G. F.1986. Driver performance in highway navigation tasks. Transportation Research Record, 1093:1-11.
    [89]. Klippel, A.2003. Wayfinding choremes:Conceptualizing wayfinding and route direction elements. PhD Thesis. University of Bremen
    [90]. Klippel, A., Dewey, C., et al..2004. Direction concepts in wayfinding assistance systems. Workshop on Artificial Intelligence in Mobile Systems (AIMS'04). Saarbriicken:SFB 378 Memo 84
    [91]. Klippel, A., Freksa, C., et al..2006. You-Are-Here maps in emergencies:The danger of getting lost. Journal of Spatial Sciences,51(1):117-131.
    [92]. Klippel, A., Hansen, S., et al..2009. Urban granularities:A data structure for cognitively ergonomic route directions. Geoinformatica,13(2):223-247.
    [93]. Klippel, A., Hirtle, S., et al..2010. You-Are-Here maps:Creating spatial awareness through map-like representations. Spatial Cognition and Computation,10(2-3):83-93.
    [94]. Klippel, A., Montello, D. R.2007. Linguistic and nonlinguistic turn direction concepts. COSIT 2007, LNCS 4736. S. Winter, B. Kuipers, M. Duckham and L. Kulik. Berlin:Springer.354-372
    [95]. Klippel, A., Richter, K. F., et al..2005a. The cognitive reality of schematic maps. Map-Based Mobile Services:Theories, Methods and Implementations. L. Meng, A. Zipf and T. Reichenbacher. Berlin: Springer.57-74.
    [96]. Klippel, A., Richter, K. F. et al..2005b. Wayfinding choreme maps. VISUAL 2005, LNCS 3736. Berlin: Springer.94-108.
    [97]. Klippel, A., Richter, K.F., et al..2009. Cognitively ergonomic route directions. Handbook of Research on Geoinformatics. H. Karimi. Hershey, PA., IGI:Information Science Reference.230-237.
    [98]. Klippel, A., Tappe, H., et al..2003. Pictorial representations of routes:Chunking route segments during comprehension. Spatial Cognition Ⅲ, LNCS 2685. C. Freksa, W. Braue, C. Habel and K. F. Wender. Berlin:Springer.11-33.
    [99]. Klippel, A., Tappe, H., et al..2005. Wayfinding choremes-A language for modeling conceptual route knowledge. Journal of Visual Languages and Computing,16(4):311-329.
    [100]. Klippel, A., Tenbrink, T., et al..2009. The role of structure and function in the conceptualization of directions. Motion Encoding in Language and Space. E. v. d. Zee and M. Vulchanova. Oxford University Press.
    [101]. Klippel, A., Winter, S. 2005. Structural salience of landmarks for route directions. COSIT 2005, LNCS 3693. A. G. Cohn and D. M. Mark. Berlin: Springer. 347-362.
    [102]. Koenig, S., Likhachev, M. 2002. D* lite. In Proceedings of the AAA1 Conference of Artificial Intelligence (AAAI).
    [103]. Koenig, S., Likhachev, M., et al.. 2004. Lifelong planning A*. Artificial Intelligence, 155(1-2): 93-146.
    [104]. Kolbe, T. H. 2004. Augmented videos and panoramas for pedestrian navigation. In Proceedings of the 2nd Int. Symposium Location Based Services & TeleCartography. TU Wien. 45-52.
    [105]. Kuipers, B. J. 1978. Modeling spatial knowledge. Cognitive Science, 2(2): 129-153.
    [106]. Kuipers, B. J. 2000. The spatial semantic hierarchy. Artificial Intelligence, 119(1-2): 191-233.
    [107]. Lee, P. U., Tappe, II., et al.. 2002. Acquisition of landmark knowledge from static and dynamic presentation of route maps. Kiinstliche Intelligenz, 16(4): 32-34.
    [108]. Levine, M. 1982. You-are-here maps: Psychological considerations. Environment and Behavior, 14(2): 221-237.
    [109]. Levine, M., Marchon, I., et al.. 1984. The placement and misplacement of You-Are-Here-Maps. Environment and Behavior, 16(2): 139-157.
    [1 10]. Levinson, S. C. 1996. Frames of reference and Molyneux's question: Crosslinguistic evidence. Language and space. P. Bloom, M. Peterson, L. Nadel and M. Garrett. Cambridge, MA: MIT press. 109-169.
    [111]. Lovelace, K. L., Hcgarty, M., et al. 1999. Elements of good route directions in familiar and unfamiliar environments. COSIT 1999, LNCS 1661. C. Freksa and D. M. Mark. Berlin: Springer. 65-82.
    [112]. Lynch, K. 1960. The image of the city. Cambridge, MA: The MIT Press.
    [ I 13]. Lynch, K. 1984. Good city form. Cambridge, MA: The MIT Press
    [ I 14]. MaaU, W. 1993. A cognitive model for the process of multimodal, incremental route descriptions. COSIT 1995, LNCS, 988. A. Frank and I. Campari. Berlin: Springer. 1-13.
    1115]. MaaB, W. 1994. From vision to multimodal communication: Incremental route descriptions. Artificial Intelligence Review, 8(2-3): 159-174.
    [1 16]. MacMahon, M. 2004. A framework for understanding verbal route instructions. In Proceedings of the AAAI Fall Symposium on The Intersection of Cognitive Science and Robotics: From Interfaces to Intelligence. Washington, DC.
    [117]. MacMahon, M. T. 2007. Following natural language route instructions. PhD Thesis. The University of Texas at Austin.
    [118]. Marciniak, "P., Strube, M. 2004. Classification-based generation using TAG. In Proceedings of Third International Conference on Natural Language Generation, LNCS 3123. A. Belz, R. F.vans and P. Piwek. Berlin: Springer. 100-109.
    [119]. Marciniak, T., Strube, M. 2005. Modeling and annotating the semantics of route directions. In Proceedings of the Sixth International Workshop on Computational Semantics (IWCS-6). Tilburg, The Netherlands. 151-162.
    [120]. Mark, D. M., Freksa, C, et al.. 1999. Cognitive models of geographical space. International Journal of Geographical Information Science, 13(8): 747-774.
    [121]. Mark, D. M. 1986. Automated route selection for navigation. IEEE Aerospace and Electronic Systems Magazine, 1(9): 2-5.
    [122]. Mark, D. M., Comas, D., et al..1995. Evaluating and refining computational models of spatial relations through cross:Linguistic human-subjects testing. COSIT 1995, LNCS,988, Berlin:Springer. 553-568.
    [123]. Mark, D. M., Egenhofer, M. J.1994. Modeling spatial relations between lines and regions: Combining formal mathematical models and human subjects testing. Cartography and Geographic Information Systems,21(4):195-212.
    [124]. May, A. J., Ross, T., et al..2001. Using landmarks to enhance navigation systems:driver requirements and industrial constraints. In Proceedings of the 8th World Congress on Intelligent Transport Systems. Sydney, Australia.
    [125]. May, A. J., Ross, T., et al..2005. The design of next generation in-vehicle navigation systems for the older driver. Interacting with Computers,17(6):643-659.
    [126]. May, A. J., Ross, T.2006. Presence and quality of navigational landmarks:Effect on driver performance and implications for design. Human Factors,48(2):346-361.
    [127]. May, A. J., Ross, T., et al..2003a. Drivers'information requirements when navigating in an urban environment. Journal of Navigation,56(1):89-100.
    [128]. May, A. J., Ross, T., et al..2003b. Pedestrian navigation aids:Information requirements and design implications. Personal and Ubiquitous Computing,7(6):331-338
    [129]. May, A. J., Ross, T., et al..2004. Incorporating landmarks in driver navigation system design:An overview of results from the REGIONAL project. Journal of Navigation,58(1):47-65.
    [130]. Meilinger, T.2005. Wayfinding with maps and verbal directions. In Proceedings of Twenty-Seventh Annual Conference of the Cognitive Science Society.1473-1478
    [131]. Mennis, J. L., Peuquet, D. J., et al.2000. A conceptual framework for incorporating cognitive principles into geographical database representation. International Journal of Geographical Information Science,14(6):501-520.
    [132]. Michon, P. E., Denis, M.2001. When and why are visual landmarks used in giving directions? COSIT 2001, LNCS 2205. D. R. Montello. Berlin:Springer.292-305.
    [133]. Miller-Hooks, E. D., Mahmassani, H. S.2000. Least expected time paths in stochastic, time-varying transportation networks. Transportation Science,34(2):198-215.
    [134]. Montello, D. R.1998. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. Spatial and temporal reasoning in geographic information systems. M. J. Egenhofer and R. G. Golledge. New York:Oxford University Press.143-154.
    [135]. Montello, D. R.2005. Navigation. The Cambridge handbook of visuospatial thinking. P. Shah and A. Miyake. Cambridge:Cambridge University Press.257-294.
    [136]. Montello, D. R, Frank, A. U.1996. Modeling directional knowledge and reasoning in environmental space:Testing qualitative metrics. The Construction of Cognitive Maps. J. Portugali, Dordrecht. The Netherlands:Kluwer Academic.321-344.
    [137]. Montello, D. R., Sas, C.2006. Human factors of wayfinding in navigation. International encyclopedia of ergonomics and human factors,2nd ed. London:CRC Press/Taylor & Francis, Ltd. 2003-2008
    [138]. Moradi, P., Shiri, M. E., et al..2010. Automatic skill acquisition in reinforcement learning agents using connection bridge centrality. Communication and Networking:Communications in Computer and Information Science.120:51-62
    [139]. Moulin, B., Gryl, A., et al..1997. Route descriptions based on the notions of spatial conceptual map and of object's influence areas. Proceedings of the AAAI Workshop on Temporal and Spatial Reasoning.Rhode Island.87-96.
    [140]. Moulin, B., Kettani, D.1999. Route generation and description using the notions of object's influence area and spatial conceptual map. Spatial Cognition and Computation,1(3):227-259.
    [141]. Nothegger, C., Winter, S., et al..2004. Selection of salient features for route directions. Spatial Cognition and Computation,4(2):113-136.
    [142]. O'Neill, M. J.1994. Evaluation of a conceptual model of architectural legibility. Environment and Behavior,23(3):259-284.
    [143]. Okabe, A., Boots, B., et al..2000. Spatial tessellations:Concepts and applications of Voronoi diagrams (second edition). John Wiley & Sons Ltd.
    [144]. Okabe, A., Satoh, T., et al..2008. Generalized network Voronoi diagrams:Concepts, computational methods, and applications. International Journal of Geographical Information Science,22(9): 965-994.
    [145]. Palmer, S.1978. Fundamental aspects of cognitive representation. Cognition and categorization. E. Rosch and B. B. Lloyd, Hillsdale. NJ:Lawrence Erlbaum Associates.259-303.
    [146]. Parr, R., Russell, S.1998. Reinforcement learning with hierarchies of machines. In Proceedings of the 1997 conference on Advances in neural information processing systems. Cambridge, MA:MIT Press. 1043-1049.
    [147]. Parr, R. E.1998. Hierarchical control and learning for Markov decision processes. PhD Thesis. Berkeley California, University of California.
    [148]. Patel, K., Chen, M. Y, et al..2006. Personalizing routes. In Proceedings of the 19th annual ACM symposium on user interface software and technology. New York, NY, USA:ACM Press.187-190.
    [149]. Pederson, E.2003. How many reference frames? Spatial Cognition III, LNAI 2685. Berlin: Springer.287-304
    [150]. Phillips, R. J.1981. Searching for a target in a random arrangements of names:An eye fixation analysis. Canadian Journal of Psychology,34(4):330-346.
    [151]. Porzel, R., Gurevych, I., et al..2006. In context:Integrating domain-and situation-specific knowledge. SmartKom-Foundations of Multimodal Dialogue Systems. W. Wahlster. Berlin: Springer.269-284.
    [152]. Precup, D.2000. Temporal Abstraction in Reinforcement Learning. PhD Thesis. University of Massachusetts Amherst.
    [153]. Presson, C. C., Montello, D. R.1988. Points of reference in spatial cognition:Stalking the elusive landmark. British Journal of Developmental Psychology,6(4):378-381.
    [154]. Przytula-Machrouh, E., Ligozat, G., et al..2004. Graphical vs. verbal route descriptions:Looking for supra-modal invariants. Poster presentation on Spatial Cognition Conference. Frauenchiemsee Island, Bavaria, Germany.
    [155]. Rad, A. A., Hasler, M., et al..2010. Automatic skill acquisition in reinforcement learning using connection graph stability centrality. In Proceedings of IEEE International Symposium on Circuits and Systems ((ISCAS 2010)).697-700.
    [156]. Randell, D. A., Cui, Z., et al..1992. A spatial logic based on regions and connection. In Proceedings of 3rd Int. Conf. on Knowledge Representation and Reasoning. Morgan Kaufmann, San Mateo.165-176.
    [157]. Raubal, M., Winter, S.2002. Enriching wayfinding instructions with local landmarks. Geographic Information Science. LNCS 2478. M. J. Egenhofer and D. M. Mark. Berlin:Springer.243-259.
    [158]. Rehrl, K., Leitinger, S., et al..2009. An analysis of direction and motion concepts in verbal descriptions of route choices. COSIT 2009, LNCS 5756. Berlin:Springer.471-488.
    [159]. Richardson, A. E., Montello, D. R., et al..1999. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition,27(4):741-750.
    [160]. Richter, K. F.2007a. Context-specific route directions-Generation of cognitively motivated wayfinding instructions. PhD Thesis. Universitat Bremen.
    [161]. Richter, K. F.2007b. From turn-by-turn directions to overview information on the way to take. Location Based Services and TeleCartography. G. Gartner, W. Cartwright and M. P. Peterson. Berlin: Springer.205-214.
    [162]. Richter, K. F.2007c. A uniform handling of different landmark types in route directions. COSIT 2007, LNCS 4736. S. Winter, M. Duckham, L. Kulik and B. Kuipers. Berlin:Springer.373-389.
    [163]. Richter, K. F.2009. Adaptable path planning in regionalized environments. COSIT 2009, LNCS 5756. K. S. Hornsby, C. Claramunt, M. Denis and G. Ligozat. Berlin:Springer.453-470.
    [164]. Richter, K. F., Duckham, M.2008. Simplest instructions:Finding easy-to-describe routes for navigation. GIScience 2008, LNCS 5266. T. J. Cova, H. J. Miller, K. Beard, A. U. Frank and M. F. Goodchild. Berlin:Springer.274-289.
    [165]. Richter, K. F., Klippel, A.,2002. You-Are-Here maps:Wayfinding support as location based system. GITechnologien fur Verkehr und Logistik Beitrage zu den Munsteraner GITagen. J. Moltgen and A. Wytzisk. IfGI Prints. Institut fur Geoinformatik, Munster.13:357-364.
    [166]. Richter, K. F., Klippel, A.2005. A model for context-specific route directions. Spatial Cognition IV, LNAI 3343. C. Freksa, M. Knauff and B. Krieg-Brueckner. Berlin:Springer.58-78.
    [167]. Richter, K. F., Klippel, A.2007. Before or after:Prepositions in spatially constrained systems. Spatial Cognition V, LNAI 4387. T. Barkowsky, M. Knauff, G. Ligozat and D. R. Montello. Berlin: Springer.453-469.
    [168]. Richter, K. F., Tomko, M., et al.2008. A dialog-driven process of generating route directions. Computers, Environment and Urban Systems,32(3):233-245.
    [169]. Rock, I.1992. Comment on Asch and Witkin's "Studies in space orientation II.". Journal of Experimental Psychology:General,121(4):404-406.
    [170]. Ross, T., May, A. J., et al..2004. Using traffic light information as navigational cues:Implications for navigation system design. Transportation Research Part F,7(2):119-134.
    [171]. Sadalla, E. K., Staplin, L. J.1980. An information storage model for distance cognition. Environment and Behavior,12(2):183-193.
    [172]. Shannon, C. E., Weave, W.1949. The mathematical theory of communication. Urbana, Illinois:The University of Illinois Press.
    [173]. Shariff, A. R. B. M., Egenhofer, M. J., et al..1998. Natural-language spatial relations between linear and areal objects:The topology and metric of English-language terms. International Journal of Geographical Information Science,12(3):215-246.
    [174]. Siegel, A. W., White, H. J.1975. The development of spatial representations of large scale environments. Advances in child development and behaviour. H. W. Reese, New York:Academic Press.10:9-55.
    [175]. Simsek, O.2008. Behavioral building blocks for autonomous agents:description, identification, and learning. PhD Thesis. University of Massachusetts Amherst.
    [176]. Skiadopoulos, S., Koubarakis, M.2004. Composing cardinal direction relations. Artificial Intelligence,152(2):143-171.
    [177]. Skog, I., Handel, P.2009. In-car positioning and navigation technologies:a survey. IEEE Transactions on Intelligent Transportation Systems,10(1):4-21.
    [178]. Sorrows, M. E., Hirtle, S. C.1999. The nature of landmarks for real and electronic spaces. COSIT 1999, LNCS 1661. C. Freksa and D. M. Mark. Berlin:Springer.37-50.
    [179]. Sperber, D., Wilson, D.1986. Relevance. Oxford, UK:Basil Blackwell Ltd.
    [180]. Sperber, D., Wilson, D.2004. Relevance Theory. Handbook of Pragmatics. L. Horn and G. Ward. Oxford, UK:Basil Blackwell Ltd..607-632.
    [181]. Srinivas, S., Hirtle, S. C.2007. Knowledge based schematization of route directions. Spatial Cognition V, LNAI 4387. T. Barkowsky. Berlin:Springer.346-364.
    [182]. Streeter, L. A., Vitello, D.1986. A profile of driver's map-reading abilities. Human Factors,28(2): 223-239.
    [183]. Streeter, L. A., Vitello, D., et al..1985. How to tell people where to go:Comparing navigational aids. International Journal of Man Machine Interaction,22(5):549-562.
    [184]. Sung, K., Bell, M. G. H., et al..2000. Shortest paths in a network with time-dependent fow speeds. European Journal of Operational Research,121(1):32-39.
    [185]. Sutton, R. S.1988. Learning to predict by the methods of temporal diffrences. Machine Learning, 3(1):9-44.
    [186]. Sutton, R. S., Barto, A. G. 1998. Reinforcement Learning:An Introduction, Cambridge, MA:MIT Press.
    [187]. Sutton, R. S., Precup, D., et al..1999. Between MDPs and semi-MDPs:A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,112(1-2):181-211.
    [188]. Szeider, S.2003. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathematics,126(2-3):239-251.
    [189]. Tenbrink, T., Wiener, J. M.2007. Wayfinding strategies in behavior and language:A symmetric and interdisciplinary approach to cognitive processes. Spatial Cognition V, LNAI 4387. T. Barkowsky. Berlin:Springer.401-420.
    [190]. Tenbrink, T., Winter, S.2009. Variable granularity in route directions. Spatial Cognition and Computation,9(1):64-93.
    [191]. Tezuka, T., Tanaka, K.2005. Landmark extraction:A web mining approach. COSIT 2005, LNCS 3693. Berlin:Springer.379-396.
    [192]. Thorup, M.2004. Integer priority queues with decrease key in constant time and the single source shortest paths problem. Journal of Computer and System Sciences,69(3):330-353.
    [193]. Timpf, S.2002. Ontologies of wayfinding:A traveler's perspective. Networks and Spatial Economics,2(1):9-33.
    [194]. Timpf, S., Kuhn, W.2003. Granularity transformations in wayfinding. Spatial Cognition III, LNAI 2685. F. C, Brauer W, H. C and W. KF. Berlin:Springer.77-88.
    [195]. Timpf, S., Volta, G. S., et al.1992. A conceptual model of wayfinding using multiple levels of abstraction. In Proceedings of Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. A. U. Frank, I. Campari and U. Formentini. Berlin:Springer.348-367.
    [196]. Tomko, M.2004. Case study-Assessing spatial distribution web resources for navigation services. In Proceedings of 4th International Workshop on Web and Wireless Geographical Information Systems W2GIS04. Koyang, Korea.90-104.
    [197]. Tomko, M.2007. Destination Descriptions in Urban Environments. PhD Thesis. The University of Melbourne.
    [198]. Tomko, M., Winter, S.2009. Pragmatic construction of destination descriptions for urban environments. Spatial Cognition and Computation,9(1):1-29.
    [199], Tomko, M., Winter, S., et al.2007. Experiential hierarchies of streets. Computers, Environment and Urban Systems,31(1):41-52.
    [200]. Tversky, B.1993. Cognitive maps, cognitive collages, and spatial mental models. COSIT 1993, LNCS 716. Berlin:Springer.14-24.
    [201]. Tversky, B.2003. Structures of mental spaces:How people think about space. Environment and Behavior,35(1):66-80.
    [202]. Tversky, B., Lee, P. U.1998. How space structures language. Spatial Cognition:An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Berlin:Springer. 157-176.
    [203]. Tversky, B., Lee, P. U.1999. Pictorial and verbal tools for conveying routes. COSIT 1999, LNCS 1661. C. Freksa and D. Mark. Berlin:Springer.51-64.
    [204]. Tversky, B., Lee, P. U., et al..1999. Why do speakers mix perspectives? Spatial Cognition and Computation,1(4):399-412.
    [205]. Werner, S., Krieg-Briickner, B., et al.2000. Modelling navigational knowledge by route graphs. Spatial Cognition II, LNAI 1849. C. Freksa. Berlin:Springer.295-316.
    [206]. Wiener, J. M.2004. Places and regions in perception, route planning, and spatial memory. PhD Thesis. University of Tubingen.
    [207]. Wiener, J. M., Buumlchner, S. J., et al..2009. Taxonomy of human wayfinding tasks:A knowledge-based approach. Spatial Cognition and Computation,9(2):152-165.
    [208]. Wiener, J. M., Mallot, H. A.2003.'Fine-to-coarse'route planning and navigation in regionalized environments. Spatial Cognition and Computation,3(4):331-358.
    [209]. Wiener, J. M., Tenbrink, T., et al.2008. Situated and prospective path planning:Route choice in an urban environment. CogSci 2008:30th Annual Conference of the Cognitive Science Society. Washington, D. C.
    [210]. Winter, S.2002. Modeling costs of turns in route planning. Geoinformatica,6(4):345-361.
    [211]. Winter, S.2002. Route specifications with a linear dual graph. Advances in Spatial Data Handling. D. Richardson and P. van Oosterom. Berlin:Springer.329-338.
    [212]. Winter, S.2004. Communication about Space. Transactions in GIS,8(3):291-296.
    [213]. Winter, S.2009. Spatial intelligence:Ready for a challenge? Spatial Cognition and Computation, 9(2):138-151.
    [214]. Winter, S., Tomko, M., et al..2008. Landmark hierarchies in context. Environment and Planning B:Planning and Design,35(3):381-398.
    [215]. Wu, Q., Huang, B., et al..2005. Adaptive path finding for moving objects. W2GIS 2005, LNCS 3833. Berlin:Springer.155-167.
    [216]. Wunderlich, D., Reinelt, R.1982. How to get there from here. Speech, place, and action:studies and related topics. J. RJ and K. W. Wiley. Chichester, UK.183-201.
    [217]. Zhan, F. B.1997. Three fastest shortest path algorithms on real road networks:Data structures and procedures. Journal of Geographic Information and Decision Analysis,1(1):69-82.
    [218]. Zhan, F. B., Noon, C. E.1998. Shortest path algorithms:An evaluation using real road networks. Transportation Science,32(2):65-73.
    [219]. Zhan, F. B., Noon, C. E.2000. A comparison between label-setting and label-correcting algorithms for computing one-to-one shortest paths. Journal of Geographic Information and Decision Analysis, 4(2):1-11.
    [220]. Zhao, Y.1997. Vehicle location and navigation systems. Boston:Artech House.
    [221]王景存,张晓彤,等.2007.一种基于Dijkstra算法的启发式最优路径搜索算法.北京科技大学学报,29(3):346-350.
    [222].付梦印,李杰,等.2004.限制搜索区域的距离最短路径规划算法.北京理工大学学报,24(10):881-884.
    [223].任刚,王炜.2008.转向约束网络中的对偶最短路径树原理及其原型算法.交通运输工程学报,8(4):84-89.
    [224].李引珍,郭耀煌.2004.网络最短路径定界搜索算法.西南交通大学学报,39(5):561-564.
    [225].李清泉,曾喆,等.2010.城市道路网络的中介中心性分析.武汉大学学报(信息科学版),35(1):37-41.
    [226].李清泉,郑年波,等.2007.一种基于道路网络层次拓扑结构的分层路径规划算法.中国图象图形学报,12(7):1280-1285.
    [227].段莉琼,雷大伟.2003.车辆自导航系统中加入道路转向限制的最短路径算法.海洋测绘,23(5):12-15.
    [228]].柴登峰,张登荣.2002.前N条最短路径问题的算法及应用.浙江大学学报(工学版),36(5):531-534.
    [229].翁敏,毋河海,等.2006.层次空间推理的机制及其在路径寻找方面的应用.测绘科学,31(5):119-121.
    [230].高松,陆锋.2008.基于弧段标记的交通网络时间最短路径算法.地球信息科学,10(5):604-610.
    [231].高俊,龚建华,等.2008.地理信息科学的空间认知研究(专栏引言).遥感学报,12(2).
    [232].彭飞,柳重堪,等.2002.车辆定位与导航系统中的快速路径规划算法.北京航空航天大学学报,28(1):70-73.
    [233]景东升.2005.基于本体的地理空间信息语义表达和服务研究,博士论文,中科院遥感所.
    [234].乐阳,龚健雅.1999Dijkstra最短路径算法的一种高效率实现.武汉测绘科技大学学报,24(3):209-212.
    [235]].吴京,景宁,等.2000.最佳路径的层次编码及查询算法.计算机学报,23(2):184-189.
    [236]张其善,吴今培,等.2002.智能车辆定位导航系统及应用.北京:科技出版社.
    [237].罗跃军,李霖,等.2004.乍辆导航系统中最短路径计算的数据模型.昆明理工大学学报(理工版),29(3):106-109.
    [238].谢智颖.2003.LBS系统中动态路径选择的理论和方法研究.博士论文.武汉大学.
    [239]. 邹亮,徐建闽,等.2007.A*算法改进及其在动态最短路径问题中的应用.深圳大学学报理工版,24(1):32-36.
    [240].郑年波.2007.面向动态导航的交通网络数据模型与应用算法研究.博士论文.武汉大学.
    [241].郑年波,李清泉,等.2006.基于专项限制和延误的双向启发式最短路径算法.武汉大学学报(信息科学版),31(3):256-259.
    [242]. 郑年波,陆锋,等.2010a.顾及转向延误的实践依赖A*最短路径算法.测绘学报,39(5):534-539.
    [243].郑年波,陆锋,等.2010b.道路转向延迟动态对偶图模型.中国图象图形学报,15(6):915-920.
    [244].陆锋.2001.址短路径算法:分类体系与研究进展.测绘学报,30(3):269-275.
    [245]].陆锋,周成虎,等.2000.基于层次空间推理的交通网络行车最优路径算法.武汉测绘科技大学学报,25(3):226-232.
    [246].陆锋,卢冬梅,等.1999a.基于四四叉堆优先级队列及逆邻接表的改进型Dijkstra算法.中国图 缘图形学报,4(12):1044-1050.
    [247].陆锋。卢冬梅,等.1999b.交通网络限制搜索区域时间最短路径算法.中国图象图形学报,4(10):849-853.
    [248].陈玉敏,龚健雅,等.2006.多级道路网的最优路径算法研究.武汉大学学报(信息科学版),31(1):70-73.
    [249].陈洁,陆锋.2005.交通网络最短路径标号算法的实现与效率分析.中国图象图形学报,10(9):1134-1138.
    [250].韩刚,蒋捷,等.2002.车载导航系统中顾及道路转向限制的弧段Dijkstra算法.测绘学报,31(4):366-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700