用户名: 密码: 验证码:
单频干涉精密距离测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量程、高精度的单频激光干涉精密距离测量关键技术的研究课题具有重要的现实意义。该技术是非接触测量中的关键和前沿技术之一,在纳米测量、生物工程、材料科学、微电子以及超精加工等领域有广泛的应用前景,对我国国防工业和国民经济的发展具有重要意义。
     本文的主要工作和创新性包括以下几个方面:
     1,基于干涉仪理论,对干涉仪系统的误差源及其补偿方法进行分析和研究。利用单频干涉仪信号特点,提出了一种利用共轭抑制进行光路设计的方法,可对干扰噪声进行有效抑制,从而提高信号测量的精度。基于琼斯矩阵原理,建立单频干涉仪的光路数学模型,对光路进行分析计算,并分析了波片、偏振分光棱镜、激光源等多个参数对测量结果的影响,对干涉仪光学系统的优化设计具有指导意义。
     2,根据跟踪仪目标移动的速度要求,设计出一种低噪声响应带宽高的电路。实验表明,在目标以4m/s的较高速度移动时,系统对其检测精度可达微米量级,与低速运动时相同,达到跟踪仪系统的指标要求。
     3,根据跟踪仪的跟踪特性,提出了一种实时性较高的跟踪状态测量方法。对测量过程中存在的断光、偏光以及目标静止做出有效的区分和鉴别,并实时传递给上位机,从而保证上位机跟踪系统的实时处理和跟踪功能。
     4,提出了一种干涉信号的细分方法,可以实现对非正交信号的准确细分。通过跟踪两路干涉信号的交点,对信号周期进行浮动式分段,来准确跟踪两路信号间的相位差,实现精确细分。此法可使计数不受信号直流电平漂移和高频扰动的影响。分析了细分倍数和ADC位数与该方法可以处理的干涉信号相位差极限的关系。采用该技术细分法,可以使单频干涉精密距离测量系统具有更强的环境适应性和抗干扰能力,更适用于工程现场应用。
     5,提出并验证了一种能在线实时修正干涉信号“三差”的修正方法。传统的误差修正方法因计算量大,存在着只能对信号进行离线修正的问题。该方法能大幅度减小计算量,从而使得干涉信号的三差得到实时修正。经验证,采用该修正方法,可以使单频干涉精密距离测量在自然环境中得到纳米量级的测量精度。
The research topic of large range, high-precision distance measurement byhomodyne interferometry has important practical significance. The technology hasbroad application prospects in the field of superfinishing, microelectronics, MEMS,nano-measurement, etc. It has great significance for the development of our nationaleconomy and defense industry. The dissertation conducted thorough researchesmainly focus on the measuring theory, optical design, high-frequency signalprocessing and segmentation method of precision distance measurement of the laserinterferometer. The main research contents and concrete work of this dissertation areshown below:
     1. Based on the theory of the interferometry, the error sources of theinterferometry system and the compensation methods were analyzed. According to thecharacteristics of homodyne interference signal, the conjugate suppression methodswas proposed and used for design the optical path. The noise signal caused by outsideinterference could be suppressed effectively; thereby the measurement accuracy wasimproved greatly. The mathematical model of the homodyne interferometer’s opticalpath was established based on the Jones matrix theory. The analytical calculation ofthe light path was advanced. The variation that the interference signals along with thewaveplates, the polarizing beam splitters or the laser source is numerically analyzed.It has the guiding significance for the optical optimization design.
     2. According to the required speed of the tracker’s moving target, a low-noiseand wide bandwidth circuit was designed. The result of experiment show that thesystem can achieve the micrometer accuracy when the target moving at a speed of4m/s, which was the same as the measurement accuracy achieved when the targetmoving at a lower speed, that the design met the qualification of the tracker system.
     3. According to the tracking features of the tracker, a measuring method of thetracking state was proposed. It can distinguish the diffirent state between the light’sbeing interrupted and the light’s departure from the center of the target and the targetis stationary, and transmit the state to the upper computer in real time, thus ensuringthe upper computer’s real-time processing and tracking functions.
     4. A new method was brought out for subdividing the non-orthogonalinterference signals exactly. By tracking the intersections of the two-channel signals dynamically, the interference signal’s one period was subdivided floatingly, the phasedifference between two signals was tracked accurately, thus ensuring the accuracy ofthe non-orthogonal signals’ counting and subdividing. The influences of the DC levelshift and the high-frequency disturbances can be avoided. The relationgship betweenthe phase difference deviates from orthogonal state and the multiples of thesubdividing or the bit of the ADC was analysed. Using this subdividing technology,the homodyne interferometry distance measuring system could resist strongdisturbance and show sound reliability, and more suitable for using on outdoorengineering site.
     5. A new correction method, which could remove the cyclic error of thehomodyne interferometer in real-time was introduced. Traditional error correctionmethods require reliable abundant data and time for processing so they corrected thecyclic error off-line. The new method can significantly reduce the calculation amount,so the cyclic error of the interference signal could be removed real-time. Results showthat using the new correction method can make the homodyne interferometry distancemeasurement achieve nanometer accuracy in the natural environment.
引文
[1]殷纯永.现代干涉测量技术[M].天津大学出版社.1999.
    [2]刘小为.能量天平的高精度激光干涉位移测量系统研究[D].合肥:合肥工业大学,2010.
    [3]金国藩,李景镇.激光测量学[M].科学出版社.1998.
    [4]梁晶.用于绝对距离测量的He-Ne激光多波长干涉仪的研究[D].长沙:国防科学技术大学,2010.
    [5]高宏堂.2.5维大范围纳米激光干涉测长信号处理子系统的研究[D].北京:中国计量科学研究院,2005.
    [6]齐永岳,赵美蓉,林玉池.纳米测量系统的研究现状与展望[J].仪器仪表学报.2003,24(4):91~94
    [7]韦丰,陈本永,丁启全.大范围高精度的纳米测量现状与发展趋势[J].光学技术.2005,31(2):302~308
    [8]喻洪平,吴斌,莫莉.基于He-Ne双频激光干涉的大尺寸精密检测技术[J].工具技术.2009,43(6):119~121
    [9] Schwenke H, Hartig F, Wendt K, Waldele F. Future challenges in co-ordinatemetrology: Addressing metrological problems for very small and very largeparts[A]. Proc. of IDW Workshop2001[C]. Knoxville:2001.
    [10]张滋黎.基于视觉引导的大尺度空间坐标测量方法[D].天津:天津大学,2010.
    [11]黄桂平,钦桂勤.大尺寸三坐标测量方法与系统[J].宇航计测技术.2007.27(4):15~19
    [12]李广云.Leica公司工业三维坐标测量系统介绍[J].测绘科技通讯,1997.20(72):43-48
    [13] A. Reiterer, M. Lehmann, J. Fabiankowitsh, H. Kahmen. Quality control forbuilding industry by means of a new optical3D measurement and analysis system[C].International Association of Geodesy Symposia133,2009:771~779
    [14] Kahmen Heribert, Reiterer Alexander. High-precison object monitoring withimage assisted theodolites-state of the art[C]. Proceedings of8thinternationalworkshop on accelerator alignment(IWAA2004), Geneva, Switzerland,2004:052
    [15] Jeschke Wolfgang. Digital close-range photogrammetry for surface measurement[C]. Proceedings of SPIE-The International Society for Optical Engineering, Zurich,Switzerland: SPIE,1990:1058-1065
    [16] Fraser C.S. State of the art in industrial photogrammetry[J]. InternationalArchives of Photogrammetry and Remote Sensing,1988,27(B5):166-181
    [17]卢成静,黄桂平,李广云. V-STARS工业摄影三坐标测量系统精度测试及应用[J].红外与激光工程,2007,36增刊:245-249
    [18]张国雄,林永兵,李杏华等.四路激光跟踪干涉三维坐标测量系统[J].光学学报.2003.23(9):1030-1036
    [19] HOPE C,MARCELO C. Manual total station monitoring[J]. Geotechnical News,2008,26(3):28-30
    [20] Zobrits Tom L, Burge James H, Davison Warren B, Martin Huvert M.Measurements of large optical surfaces with a laser tracker[C]. Proceedings ofSPIE-The International Society for Optical Engineering, Marseille, France: SPIE,2008:70183U
    [21]魏振忠,孙文,张广军等.激光跟踪视觉导引测量系统的全局校准方法[J].仪器仪表学报.2009.30(11):2262-2267
    [22] Leica激光跟踪仪.http://www.leica-geosystems.com/en/Laser-Tracker-Systems_69045. htm
    [23] API官方网站. http://www.apisensor.com/
    [24] FARO激光跟踪仪.http://www.faro.com/content.aspx?ct=di&content=pro&item=3
    [25]激光跟踪测量系统项目实施方案.内部资料.
    [26] Charles R. Tilford. Analytical procedure for determining length from fractionalfringes[J], Applied Optics,1977,16(7):1857~186
    [27] Matsumoto H. Synthetic millimeter-wave signal generation for lengthmeasurement[J]. Appl Opt,1984,23(7):973~974.
    [28] Matsumoto H. Synthetic interferometric distance-measuring system using a CO2laser[J]. Appl Opt,1986,25(4):493~498
    [29]晁志霞,殷纯永等.可调合成波长链绝对距离干涉测量[J].计量学报,2002,23(3):161~163
    [30] Chunyong Yin, Zhixia Chao, et al. Absolute length measurement usingchangeable synthetic wavelength chain[J]. Opt Engng,2002,41(4):746~750
    [31]朱目成,周肇飞等.He-Ne拍波激光干涉仪的研究[J].激光技术,2004,28(5):531~533
    [32]朱目成,周肇飞等.大尺寸无导轨激光精密测量仪的研究[J].激光杂志,2004,25(3):80~81.
    [33] Hai-jun Yang, et al. High-precision absolute distance and vibration measurementwith frequency scanned interferometry[J], Appl Opt,2006(44),19:3937~3944.
    [34] B. L. Swinkels, N.Bhattacharya, A.A.Wielders, and J.J.M.Braat. Absolutedistance metrology for space interferometers, Optical Measurement Systems forIndustrial Inspection IV, W. Osten, C.Gorecki and E.L.Novak,eds. Proc.SPIE5856,312-317(2005).
    [35] B.Calvel, I.Cabeza, A.Cabral, E.Manske, J.Rebordao, R.Sesselmann, Z.Sodnik,A.Verlaan. High Precision Optical Metrology for Darwin: Design and Performance,6th International Conference on Space Optics,Toulouse,2004
    [36] Min-Seok kim, Seung-Woo Kim. Two-longitudinal-mode He-Ne laser forheterodyne interferometers to measure displacement[J]. Applied Optics,2002(41),28:5938~5942
    [37] John Lawall, Emest Kessler. Michelson interferometry with10pm accuracy[J],Rev of Scientific Instruments[J],2000(71),7:2669~2676
    [38] Hyug-Gyo Rhee, Seung-Woo Kim. Absolute distance measurement bytwo-point-diffraction interferometry[J]. Applied Optics,2002(41),28:5921~5928
    [39] Chien-ming Wu, John Lawall. Heterodyne interferometer with subatomicperiodic nonlinearity[J], Applied Optics,1999(38),19:4089~4094.
    [40] Jennifer E Decker, John R Miles, et al. Increasing the range of unambiguity instep-height measurement with multiple-wavelength interferometry-application toabsolute long gauge block measurement[J].2003(42),28:5670~5678.
    [41] G. Margheri, C. Giunti. Double-wavelength superheterodyne interferometer forabsolute ranging with submillimeter resolution: results obtained with a demonstrationmodel by use of rough and reflective targets[J]. Applied Optics,1997(36),25:6211
    [42]梁晶,龙兴武,张斌.一种新型多波长绝对距离干涉测量系统的研究[J].光学技术,2008(05):681~68
    [43] J. H. Bruning, D. R. Herriott, J. E. Gallagher, et al. Digital wavefront measuringinterferometer for testing optical surfaces and lens[J]. Appl Opt,1974,13(11):2693
    [44]薛江蓉.单频激光干涉测长系统抗干扰性及细分技术的研究[D].南京:南京理工大学,2004
    [45]孙长库,叶声华.激光测量技术.天津大学出版社[M].2001
    [46] B.C.一萨波列夫, IO.H.杜布尼晓夫.激光干涉量度学[M].科学出版社,1988
    [47]羡一民,王科峰.激光干涉仪技术及发展[J].工具技术,2003,37(11):68~74
    [48] R. Smythe, R. Moore. Instantaneous phase measuring interferometry[J]. OpticalEng,1984,23:361~364
    [49] Fitzroy Crosdale, Russell Palum. Wavelength control of a diode laser for distancemeasuring interferometry[J]. Proceedings of SPIE,1990,1219:490~503
    [50] Roweis S, Ghahramani. Z. A Unifying Review of Linear Gaussian Models[J].Neural Computation.1999,11(2):305~345
    [51] Shigeru Hosoe. Highly Precise and Stable Laser Displacement MeasurementInterferometer with Differential Optical Passes in Practical Use, Nanotechnology,1993,4,81-85
    [52] Shigeru Hosoe. Laser Interferometric System for Displacement Measurementwith High Precision, Nanotechnology,1991,2
    [53] USER'S GUIDE Model SP-2000Miniature Plane-Mirror Interferometers.
    [54] Frantisek Petr. Determination of scale nonlinearit y in a laser interferometer[J].Proceedings of SPIE,2001,4356:139~146
    [55] Frantisek Petr. The compensation method for the scale linearization of the highprecision laser interferometer[J]. Proceedings of SPIE,1999,3820:144~153
    [56] ZYGO公司主页. http://www.zygo.com.cn/
    [57]羡一民.双频激光干涉仪应用及国内外概况[J].四川标准化与计量,No.5,1994
    [58]陈晓梅,曹航,周自力.纳米级二维激光外差干涉仪的设计[J].光电工程,Vol.25, No.1,1998
    [59]郭广平,计欣华,秦玉文等.用于位移精密测量的光外差马赫-泽德干涉仪.光学技术[J].Vol.11,No.6,1997
    [60] M.J.Downs, W.R.C.Rowley. A Proposed Design for A Polarization InsensitiveOptical Interferometer System with Subnanometric Capability. Pre.Eng, Vol.15, No.4,1993
    [61]卢敬参.新一代接触式量块激光测长仪研制成功.Industrial Measurement.No.2,2002
    [62]王青,陈进榜,陈磊等.量块的电脑化测试装置[J].新技术新仪器.Vol.18,No.1,1997
    [63]朱煜,陈进榜,朱日宏等.压电陶瓷位移特性的电脑接触式干涉测量法[J].压电与声光. Vol.20,No.4,1998
    [64]齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报.2006,39(8):989~993.
    [65]高宏堂.2.5维大范围纳米激光干涉测长信号处理子系统的研究[D].北京:中国计量科学研究院.2005
    [66]楚兴春.纳米光栅干涉位移测量关键技术的研究[D].长沙:国防科学科技大学.2005
    [67]薛实福,李庆祥,王伯雄等.新型单频激光干涉技术[J].清华大学学报(自然科学版).1993,33(2):39~45
    [68]薛实福,李庆祥,王伯雄等.应用SSPDA单频激光干涉仪[J].光学精密工程.1994,2(1):39~44
    [69]徐毓娴,薛实福,李庆祥.新型自扫描激光干涉系统[J].光学技术.1998,4:75~77
    [70] http://www.ctri.cn/product_center/ly/mjs.php
    [1] http://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
    [2]关信安,袁树忠,刘玉照.双频激光干涉仪[M].中国计量出版社.1987
    [3]梁铨廷.物理光学[M].电子工业出版社.2011
    [4]孙长库,叶声华.激光测量技术[M].天津大学出版社.2001
    [5]金国藩,李景镇.激光测量学[M].科学出版社.1998
    [6]王世华,周肇飞,迟桂纯.激光稳频技术的新发展[J].成都科技大学学报.1995,4:69~74
    [7]李东光,张国雄,李贵涛.提高激光干涉测量精度的研究[J].北京理工大学学报.2000,20(5):621~625
    [8] Bobroff N. Recent advances in displacement measuring interferometry[J]. MeasSci Technol.1993(4):907~926
    [9]薛梅,羡一民,于东升.激光干涉仪波长的自动实时补偿[J].工具技术.2005,39(8):90~92
    [10] B Edlen. The refractive index of air[J]. Metrologn.2,1996(2)
    [11] J.M.Rueger. Refractive Indices of Light, Infrared and Radio Waves in theAtmosphere. Report of the Ad-Hoc Working Party of the IAG Special CommissionSC3on Fundamental Constants,1993-1999,22ndGeneral Assembly of IUGG, UK,18-30July1999,25pages
    [12] J.M.Rueger. Refractive Indices of Light, Infrared and Radio Waves in theAtmosphere. Report of the Ad-Hoc Working Party of the IAG Special CommissionSC3on Fundamental Parameters (SCFC),1999-2003,23ndGeneral Assembly ofIUGG, Sapporo, Japan,30June-11July2003,6pages
    [13] J.M.Rueger. Refractive Indices of Light, Infrared and Radio Waves in theAtmosphere. Unisurv Report S-68, School of Surveying and Spatial informationSystems, University of New South Wales, Sydney, Australia,2002, v+92pages
    [14]金群锋.大气折射率影响因素的研究[D].浙江:浙江大学.2006
    [15] M. Bienias,K. Hasche,R. Seemann,K. Thiele.计量型原子力显微镜[J].计量学报.1998, Vol.19(l):l~8
    [16] J.Ahn,J.A.Kim,C.S.Kang.etc. High resolution interferometer with multiple-passoptical configuration[J]. Optics Express.2009,17(23):21042~21049
    [17] M.Pisani. A homodyne Michelson interferometer with sub-picometerresolution[J]. Meas. Sci. Technol.2009,20:084008(1~6)
    [18] M.Pisani. Multiple reflection Michelson interferometer with picometerresolution[J]. Optics Express.2008,16(26):21558~21563
    [19]齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报.2006,39(8):989~993.
    [20]高宏堂.2.5维大范围纳米激光干涉测长信号处理子系统的研究[D].北京:中国计量科学研究院.2005
    [21]韩旭东,艾华.共光路移相单频激光干涉测长系统[J].光学技术.2004,30(2):195~198
    [22]孙拉拉.能量天平位移测量系统研制[D].合肥:合肥工业大学.2009
    [23] http://opt.zju.edu.cn/gcgx/5_6.htm#forth
    [24] S.Olyaee, T.H.Yoon, S. Hamedi. Jones matrix analysis of frequency mixing errorin three-longitudunal-mode laser heterodyne interferometer[J]. IET Optoelectron.2009,3(5):215~224
    [25]马晶,张光宇,戎亦文等.基于半波片的偏振跟踪理论分析[J].物理学报.2006,55(1):24~28
    [26]刘彬彬,李立艳,杨军等.用于纳米测量的单频偏振激光干涉仪的光路集成方法[J].中国激光.2010,37(10):2582~2587
    [27] Jeongho Ahh, Jong Ahn, Chu Shik Kang. A passive method to compensatenonlinearity in a homodyne interferometer[J]. Opt. Express,2009,17(25):23299~23308
    [28]姚启钧.光学教程[M].北京:高等教育出版社,1996
    [1]强锡富.传感器[M].第三版.北京:机械工业出版社.2004
    [2]龚涵,陈浩宇.微弱光信号检测电路的设计与实现[J].机械与电子.2007,27:85-87
    [3]浦昭邦,王宝光.测控仪器设计[M].第一版.北京:机械工业出版社.2004
    [4]姜先申,韩焱.光电探测器噪声分析及降低噪声的方法[J].现代电子技术.2005,4:3-4
    [5]李国扬.光电探测器前置放大电路设计概要.上海光学精密机械研究所.
    [6]高宏堂.2.5维大范围纳米激光干涉测长信号处理子系统的研究[D].北京:中国计量科学研究院.2005
    [7]孙拉拉.能量天平位移测量系统研制[D].合肥:合肥工业大学.2009
    [8] ADA4817数据手册. www.analog.com
    [9] Walt Jung,张乐峰等.运算放大器应用技术手册[M].人民邮电出版社.2009
    [10]马场清太郎,何希才.运算放大器应用电路设计[M].科学出版社.2009
    [11]冈村廸夫,王玲等. OP放大电路设计[M].科学出版社.2004
    [12]曲军,张国雄.激光干涉位移测量系统的环境误差补偿[J].航空发动机.2001,3:43~44
    [13]李东光,张国雄,曲军.高精度激光干涉测量中环境误差因素的综合补偿[J].光电工程.1999,26(4):28~33
    [1]张敏,曹剑中,刘波等. PC间实时全双工同步通信的实现[J].计算机应用.2003,23:218~221
    [2]侯伯亨,顾新. VHDL硬件描述语言与数字逻辑电路设计[M].西安电子科技大学出版社.2004
    [1]黎永前.纳米精度测量与校准系统关键技术研究[D].西安:西北工业大学.2003
    [2]余文新,胡小唐,邹自强.一种高分辨率和高频响的光栅纳米测量细分方法[J].天津大学学报.2002,35(1):1~4
    [3]楚兴春.纳米光栅干涉位移测量关键技术的研究[D].长沙:国防科学科技大学.2005
    [4] Heydeman Peter L M. Determination and correction of quadrature fringemeasurement errors in interferometers [J]. Applied Optics,1981,20(19):3382~3384
    [5] Ondrej Cip and Frantisek Petru. A scale-linearization method for precise laserinterferometry. Meas. Sci. Technol.2000,Vol.11:133~141
    [6] Brich K.P. Optical fringe subdivision with nanometric accuracy. PrecisionEngineering,1990, Vol.12:195~198
    [7] Downs M J, Rowley R C. A proposed design for a polarization-insensitive opticalinterferometer system with subnanometric capability[J]. Meas. Sci. Technol.1993,15:281~286
    [8]齐永岳,赵美容,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报.2006,39(8):989~993
    [9] TaeBong Eom, Jong Yun Kim, Kyuwon Jeong. The dynamic compensation ofnonlinearity in a homodyne laser interferometer[J]. Measurement Science andTechnology,2001,12:1734~1738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700