用户名: 密码: 验证码:
x射线Thomson散射在温密等离子体物态参数测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能量密度物理研究是对能量密度超过1011J/m3,或等价于压力超过1百万大气压的极端条件下物质结构和演化规律的研究。激光等离子体物理研究的内容同样是处在高能量密度态下的物质行为。它所研究的对象覆盖的物态参数跨度很大,粒子数密度ne~[1019,1026]cnm-3,电子密度在Ee~[0.1eV,10key]都是激光等离子体物理研究的范围。对于高温低密度态的等离子体物态研究已经比较成熟,而对于密度达到液体、固体甚至超固体密度的等离子体的物态参数、状态演化等的诊断方法尚在探索阶段。对于稠密等离子体的基本参数和物理过程仍是现阶段我们实验发展的必经之路。通过获取稠密态等离子体的物态参数及其状态演化方面的信息,可以极大地帮助我们了解惯性约束聚变主燃料区物质状态演化和恒星外壳层物质演化、大行星内核演化。
     在对高密度的等离子体内部状态参数进行诊断时,需有足够强的穿透力以穿出高密度区的等离子体,才能被探测器所记录到。因此现阶段对高密度区域的等离子体参数的诊断依然是主要采用x射线作为主要的源。本论文为基于神光Ⅱ(SGII)激光装置,研究长脉冲、光子能量为keV的x射线与温稠密态C泡沫等离子体样品发生Thomson散射,通过测量散射光谱的结构分析高密度态等离子体样品的物态参数。实验中所使用探针光为激光驱动的中Z材料的K壳层特征谱线,其光谱结构简单、且准单能。通过分析实验数据确定x光Thomson散射实验方法可行性、所获得的实验结果可靠性。同时通过实验论证x光Thomson散射实验可以在kJ激光器上实施。
     为在神光Ⅱ(SGII)激光装置上研究长脉冲keV硬度下的x光Thomson散射测量温稠密态碳等离子体样品实验,开展了多方面的研究工作。主要的工作成果如下:
     1.基于不考虑电子间近程相互作用的随机相位近似(RPA)模型,发展的动力学形状因子计算程序。它可以准确地对实验中获得的非集体汤姆逊散射光进行光谱分析,从而获得等离子体内的电子温度、密度和平均离化度等基本物态参数;
     2.增加对电子离子间碰撞的考虑,基于Born-Mermin碰撞近似模型(BMA),发展出相应的动力学形状因子散射谱计算程序,可针对实验中测量电子等离子体波的共振信号光谱进行分析,从而获得等离子体内的电子密度、温度等信息。对集体散射信号拟合准确度高于RPA模型的拟合程序,对非集体散射信号的拟合结果与RPA模型一致;
     3.基于神光Ⅱ—kJ级激光器,使用Ta材料作为温稠密态物质的加热源,制备了尺度在直径为400um长度为600um的温稠密态碳等离子体样品,并使用Ti的He-a线测量到样品的清晰Thomson散射信号;通过拟合汤姆逊散射光谱获得电子温度在33eV;
     4.实验上测量和设计了不同的分辨能力的专用于x射线Thomson散射的探测器,最高的分辨率达到了E/△E=300和E/△E=500,使用4750eV的x射线光子时能量分辨在18eV和10.6eV。通常非集体散射峰与瑞利散射峰直接的距离都是在60eV以上;集体散射峰通常的峰移在15eV及以上。在分辨率达到18eV时的晶体谱仪可以用于测量温稠密态等离子体的非集体散射谱,而在分辨率达到10.6eV或者更好时的晶体谱仪可以用于测量温稠密态等离子体的集体散射谱。
High energy density physics is the research about the structure or the evolution of the matter under the situation of the energy density higher than1011J/m3, or equivalent to the pressure is1million atmospheres. The subject of laser-plasmas research is also about the substances'behavior in the high energy density. The parameters of the studying subjects covers the number density in range of ne~[1019,1026]cm-3and the temperature covers Te~[0.1eV,10keV], all materials in this regime are the objects to study. And the study about the hot and low-density plasma has been launched for many years and the experimental technic and theory are mature.but we still know little about the behaviors and the evolution of the dense plasmas, in which the electron density researches the liquid or solid even over-solid density. The samples in the warm dense state should be created firstly and the basic parameters of the samples needed to diagnosed. And it is the only way to understand the more dense materials and the stars in universe. And It is the basement to research and understand the evolutionary process of the main fuel layer in ICF and the outer of the stellar and the inner core of the giant planets.
     The powerful probe, no matter what is the particles or the photons, is needed to penestrate through the dense sample, and record on recording. The hard x-ray photon is feasible to be probe applied in the diagnose experiments about the dense plasma. In this dissertation, the progresses on the x-ray Thomson scattering experiment of warm dense carbon plasma are presented. The scattering happened between the isochoric heated carbon plasma and the x-ray photon. The x-ray probe is emitted from the Titanium foils in the intense laser field, and the structure of the probe is clear and quasi-monoenergetic. And the result shows that the x-ray Thomson scattering is reliable and precise, and the experiment of x-ray Thomson scattering can be launched on the kilo-Joules laser facility.
     The main achievements presented in the dissertation are:
     (1) Based on Random Phase Approximation (RPA) model, in which the short-range interaction between the electrons is ignored, the dynamic structure factor (DSF) of the warm dense plasma is deduced and the calculation program for the DSF is developed. And we can accurately obtain the parameters by fitting non-collective Thomson scattering profiles, such as the electron temperature, density and average ionization degree in the plasma.
     (2) Added the collisions between electron and ion into the RPA model, this model is called as Born-Mermin approximation(BMA) in which collision is treated the interaction between the ion and electron as perturbation and keep the local electron number conversation. The BMA model can provide more precise than RPA model in calculation of the collective motion in the warm dense plasma. And in the non-collective scattering, the results of two model is coincident.
     (3) designed the crystal spectrometers with different resolution for the x-ray Thomson scattering experiment. The resolution is relatively E/△E=300E/△E=500. For the x-ray photon with4750eV, the resolving power is18eV and10.6eV. and the lower resolving spectrometer is for diagnosis of non-coherence scattering, and the higher one is for the coherence scattering. For the coherence scattering, the energy shift of resonance peak is always above15eV, so it is enough to resolve the scattering signal.
     (4) The x-ray Thomson scattering has been demonstrated on the SGII laser facility. And warm dense carbon plasma is produced. The size of sample cyclinder is400um diam,600um length, heated by the M-band of Tantalum. The probe light is the He-a lines of the Titanium, and the pulse width of probe is one nanosecond. Using the RPA model program, we get that the electron temperature is33eV and the electron density is1.6*1023cm-3.
引文
[1]George H. Miller, Edward I. Moses, Craig R. Wuest, "The National Ignition Facility" Optical Engineering 43 2841, (2004);
    [2]J.H. Kelly, L.J. Waxer, V. Bagnoud, et al., "OMEGA EP:High-energy petawatt capability for the OMEGA laser facility" J. Phys. IV France 133 75, (2006);
    [3]P. Ney, H. U. Rahman, F. J. Wessel, et al., "Staged Z pinch for controlled fusion" Physics of Plasmas 8 616, (2001);
    [4]J. Feldhaus, "FLASH—the first soft x-ray free electron laser (FEL) user facility" Journal of Physics B:Atomic, Molecular and Optical Physics 43 194002, (2010);
    [5]K. Tiedtke, A. Azima, N. Von Bargen, et al., "The soft x-ray free-electron laser FLASH at DESY:beamlines, diagnostics and end-stations" New Journal of Physics 11 023029, (2009);
    [6]Ron Davison, "Frontiers in High Energy Density Fpysics:The x-Games of Contemperary Science " The National Academies Press:Washington D. C. (2002);
    [7]Jiayong Zhong, Yutong Li, Xiaogang Wang, et al., "Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers" Nat Phys 6 984, (2010);
    [8]S. Schreiber, B. Faatz, K. Honkavaara. OPERATION OF FLASH AT 6.5nm WAVELENGTH.in Proceedings of EPAC08. Genoa Italy.2008.
    [9]Paul Emma. First Losing of the LCLS X-Ray FEL at 1.5 A. in Proceedings of the 23rd Particle Accelerator Conference. Vancouver, British Columbia, Canada.2009.
    [10]J. D. Bozek, "AMO instrumentation for the LCLS X-ray FEL" The European Physical Journal-Special Topics 169 129, (2009);
    [11]G. Gregori, A. Ravasio, C. D. Murphy, et al., "Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves" Nature 481480; (2012);
    [12]D. K. Bradley, J. H. Eggert, R. F. Smith, et al., "Diamond at 800 GPa" Physical Review Letters 102 075503, (2009);
    [13]王峰,彭晓世,刘慎业,et al.,“成像型速度干涉仪”强激光与粒子束 21 1696, (2009);
    [14]J.-P. Hansen, I. R. Mcdonald, eds. Theory of simple liquids.2000, Academic:London.
    [15]Setsuo Ichimaru, Statistical Plasma Physics. Vol.Ⅱ, (1994).
    [16]Setsuo Ichimaru, "Strongly coupled plasmas:high-density classical plasmas and degenerate electron liquids" Reviews of Modern Physics 54 1017, (1982);
    [17]J. Y. Zhang, J. M. Yang, Y. Xu, et al., Phys. Rev. E 79 016401, (2009);
    [18]Stefano Atzeni, J "Urgen Meyer-Ter-Vehn, eds. Inertial Fusion Beam plasma interaction, hydrodynamics, dense plasma physics.2003, Clarendon Press:Oxford.
    [19]F. Brunel, "Not-so-resonant, resonant absorption" Physical Review Letters 59 52, (1987);
    [20]J. D. Lawson, "Some Criteria for a Power Producing Thermonuclear Reactor" Proceedings of the Physical Society. Section B 70 6, (1957);
    [21]John D. Lindl, Peter Amendt, Richard L. Berger, et al., "The physics basis for ignition using indirect-drive targets on the National Ignition Facility" Physics of Plasmas 11339, (2004);
    [22]S. Nakai, K. Mima, Rep Prog Phys 67 321, (2004);
    [23]M. Tabak, D. S. Clark, S. P. Hatchett, et al., "Review of progress in Fast Ignition" Physics of Plasmas 12 057305, (2005);
    [24]Max Tabak, James Hammer, Michael E. Glinsky, et al., "Ignition and high gain with ultrapowerful lasers@f'Physics of Plasmas 11626, (1994);
    [25]L. J. Perkins, R. Betti, K. N. Lafortune, et al., "Shock Ignition:A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility" Physical Review Letters 103 045004, (2009);
    [26]R. Betti, C. D. Zhou, K. S. Anderson, et al., "Shock Ignition of Thermonuclear Fuel with High Areal Density" Physical Review Letters 98 155001, (2007);
    [27]Siegfried H. Glenzer, Ronald Redmer, "X-ray Thomson scattering in high energy density plasmas" Reviews of Modern Physics 81 1625, (2009);
    [28]Lin Zunqi, Deng Ximing, Fan Dianyuan, "SG-II laser elementary research and precision SG-Ⅱ program" Fusion Engineering and Design 44 61, (1999);
    [29]Hansheng Peng, Xiaomin Zhang, X. F. Wei, et al., Design of 60-kJ SG-III laser facility and related technology development in ECLIM 2000:26th European Conference on Laser Interaction with Matter (2001).
    [30]Hansheng Peng, Xiao Min Zhang, Xiaofeng Wei., et al.. Status of the SG-III solid state laser project, in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion (1999).
    [31]孙景文,高温等离子体和,射线谱学.北京:国防工业出版社,(2003).
    [32]I. H. Hutchinson, ed. Principles of plasma diagnostics.1987, Cambridge University press: New York.
    [33]J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target Physics basis for ignition and gain. Lawrence Livermore National laboratory, p. P5, (1995).
    [34]Lynn M. Barker, "The development of the VISAR, and its use in shock compression science" AIP Conference Proceedings 505 11, (2000);
    [35]Zhang Xiaoding, Zhang Jiyan, Zhao Yang, et al., "Diagnosing the plasma nonuniformity in an iron opacity experiment by spatially resolved Al 1s-2p absorption spectroscopy" Physics of Plasmas 19 123301, (2012);
    [36]白波,硕士学位论文,激光等离子体中相干Thomson散射的实验研究.中国科学技术大学,合肥,(2001)
    [37]王哲斌,博士学位论文,激光聚变等离子体Thomson散射诊断.中国科学技术大学,合肥,(2006)
    [38]胡广月,硕士学位论文,神光(?)激光装置上射线源及其应用研究.中国科学技术大学,合肥,(2006)
    [39]S. H. Glenzer, Et Al., "Compton scattering measurements from dense plasmas" Journal of Physics:Conference Series 112 032071, (2008);
    [40]S. H. Glenzer, O. L. Landen, P. Neumayer, et al., "Observations of Plasmons in Warm Dense Matter" Physical Review Letters 98 065002, (2007);
    [41]S. H. Glenzer, G. Gregori, R. W. Lee, et al., "Demonstration of Spectrally Resolved X-Ray Scattering in Dense Plasmas" Physical Review Letters 90 175002, (2003);
    [42]Otto L. Landen, S. H. Glenzer, Robert C. Cauble, et al. Warm dense plasma characterization by x-ray Thomson scattering, in ECLIM 2000:26th European Conference on Laser Interaction with Matter. Prague, Czech Republic:SPIE.2001 SPIE 4424112.
    [43]A. J. Visco, R. P. Drake, S. H. Glenzer, et al., "Measurement of Radiative Shock Properties by X-Ray Thomson Scattering" Physical Review Letters 108 145001, (2012);
    [44]C. Fortmann, H. J. Lee, T. Doppner, et al., "Measurement of the Adiabatic Index in Be Compressed by Counterpropagating Shocks" Physical Review Letters 108 175006, (2012);
    [45]A. L. Kritcher, T. Doppner, C. Fortmann, et al.," In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions" Physical Review Letters 107 015002, (2011);
    [1]王暂斌,博士学位论文,激光聚变等离子体Thomson散射诊断.中国科学技术大学,合肥,(2006)
    [2]白波,硕士学位论文,激光等离子体中相干Thomson散射的实验研究.中国科学技术大学,合肥,(2001)
    [3]Siegfried H. Glenzer, Ronald Redmer, "X-ray Thomson scattering in high energy density plasmas" Reviews of Modern Physics 81 1625, (2009);
    [4]David Pines, David Bohm, "A Collective Description of Electron Interactions:Ⅱ. Collective vs Individual Particle Aspects of the Interactions" Physical Review 85 338, (1952);
    [5]David. Pines, Philippe. Nozieres, The Theory of Quantum Fluids. Vol.Ⅱ. CA:Addison-Wesley, Redwood,, (1999).
    [6]Setsuo Ichimaru, "Strongly coupled plasmas:high-density classical plasmas and degenerate electron liquids" Reviews of Modern Physics 54 1017, (1982);
    [7]Setsuo Ichimaru, Statistical Plasma Physics. Vol.Ⅱ, (1994).
    [8]C. N. Danson, L. J. Barzanti, Z. Chang, et al., "High contrast multi-terawatt pulse generation using chirped pulse amplification on the VULCAN laser facility" Optics Communications 103392,(1993);
    [9]I. N. Ross, P.Matousek, M. Towrie, et al., " The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers" Optics Communications 144 125, (1997);
    [10]T. R. Boehly, D. L. Brown, R. S. Craxton, et al., "Initial performance results of the OMEGA laser system" Optics Communications 133 495, (1997);
    [11]D. Riley, N. C. Woolsey, D. Mcsherry, et al., "X-Ray Diffraction from a Dense Plasma" Physical Review Letters 84 1704, (2000);
    [12]J. P.Christiansen, D. E. T. F. Ashby, K. V. Roberts, "MEDUSA a one-dimensional laser fusion code" Computer Physics Communications 7271, (1974);
    [13]D. Riley, J. J. Angulo Gareta, A. Benuzzi-Mounaix, et al., "X-ray scattering from dense plasmas" Plasma Physics and Controlled Fusion 47 B491, (2005);
    [14]Jon T. Larsen, Stephen M. Lane, "HYADES-Ap lasma hydrodynamics code for dense plasma studies" Journal of Quantitative Spectroscopy and Radiative Transfer 51 179, (1994);
    [15]E. Nardi, Y. Rosenfeld, D. Ofer, "X-RAY SCATTERING FROM DENSE PLASMAS" J. Phys. Colloques 49 C7, (1988);
    [16]E. Garcia Saiz, G. Gregori, F. Y. Khattak, et al., "Evidence of Short-Range Screening in Shock-Compressed Aluminum Plasma" Physical Review Letters 101 075003, (2008);
    [17]O. L. Landen, S. H. Glenzer, M. J. Edwards, et al., "Dense matter characterization by X-ray Thomson scattering" Journal of Quantitative Spectroscopy and Radiative Transfer 71465, (2001);
    [18]S. H. Glenzer, G. Gregori, R. W. Lee, et al., "Demonstration of Spectrally Resolved X-Ray Scattering in Dense Plasmas" Physical Review Letters 90 175002, (2003 PRL 90 175002);
    [19]S. H. Glenzer, G. Gregori, F. J. Rogers, et al., "X-ray scattering from solid density plasmas" Physics of Plasmas 10 2433, (2003);
    [20]G. Gregori, S. H. Glenzer, F. J. Rogers, et al., "Electronic structure measurements of dense plasmas" Physics of Plasmas 112754, (2004);
    [21]G. Gregori, S. H. Glenzer, K. B. Fournier, et al., "X-Ray Scattering Measurements of Radiative Heating and Cooling Dynamics" Physical Review Letters 101 045003, (2008 PRL 101 045003);
    [22]H. K. Chung, W. L. Morgan, R. W. Lee, "FLYCHK:an extension to the K-shell spectroscopy kinetics model FLY" Journal of Quantitative Spectroscopy and Radiative Transfer 81 107, (2003);
    [23]B. Wilson, V. Sonnad, P.Sterne, et al., "Purgatorio—a new implementation of the Inferno algorithm" Journal of Quantitative Spectroscopy and Radiative Transfer 99 658, (2006);
    [24]H. Sawada. in AIP conference.2005.
    [25]G. Gregori, S. H. Glenzer, H. K. Chung, et al., "Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering" Journal of Quantitative Spectroscopy and Radiative Transfer 99 225, (2006,JQSRT 99 225-237);
    [26]S. H. Glenzer, O. L. Landen, P. Neumayer, et al., "Observations ofPlasmons in Warm Dense Matter" Physical Review Letters 98 065002, (2007 PRL 98 065002);
    [27]S. H. Glenzer G. Gregori, W. Rozmus, R. W. Lee, and O. L. Landen,, "Theoretical model of x-ray scattering as a dense matter probe" PHYSICAL REVIEW E 67,026412 (2003 PRE 67 026412);
    [28]Andrea L. Kritcher, Paul Neumayer, John Castor, et al., "Ultrafast X-ray Thomson Scattering of Shock-Compressed Matter" Science 322 69, (2008 SCIENCE);
    [29]A. L. Kritcher, P. Neumayer, C. R. D. Brown, et al., "Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering" Physical Review Letters 103 245004, (2009);
    [30]H. J. Lee, P. Neumayer, J. Castor, et al., "X-Ray Thomson-Scattering Measurements of Density and Temperature in Shock-Compressed Beryllium " Physical Review Letters 102 115001, (2009 PRL 102 115001);
    [31]E. Garcia Saiz, G. Gregori, D. O. Gericke, et al., "Probing warm dense lithium by inelastic X-ray scattering" Nature Physics 4 940, (2008 Nature Physics);
    [32]J. J. Macfarlane, I. E. Golovkin, P. R. Woodruff, "HELIOS-CR-A1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling" Journal of Quantitative Spectroscopy and Radiative Transfer 99 381, (2006);
    [33]K. Wunsch, P. Hilse, M. Schlanges, et al., "Structure of strongly coupled multicomponent plasmas" Physical Review E77 056404, (2008);
    [34]Junzo Chihara, "Interaction of photons with plasmas and liquid metals-photoabsorption and scattering" Journal of Physics:Condensed Matter 12 231, (2000);
    [35]Sebastien Le Pape, Paul Neumayer, Carsten Fortmann, et al., "X-ray radiography and scattering diagnosis of dense shock-compressed matter" Physics of Plasmas 17 056309, (2010);
    [36]A. L. Kritcher, T. Doppner, C. Fortmann, et al., " In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions" Physical Review Letters 107 015002, (2011);
    [37]A. J. Visco, R. P. Drake, S. H. Glenzer, et al., "Measurement of Radiative Shock Properties by X-Ray Thomson Scattering" Physical Review Letters 108 145001, (2012);
    [38]C. Fortmann, H. J. Lee, T. Doppner, et al., "Measurement of the Adiabatic Index in Be Compressed by Counterpropagating Shocks" Physical Review Letters 108 175006, (2012);
    [39]Zunqi Lin, Ximing Deng, Dianyuan Fan, et al., "SG-Ⅱ laser elementary research and precision SG-Ⅱ program" Fusion Engineering and Design 44 61, (1999);
    [40]胡广月,硕士学位论文,神光(?)激光装置上x射线源及其应用研究.中国科学技术大学,合肥,(2006)
    [41]Guang-Yue Hu, Jian Zheng, Bai-Fei Shen, et al., "Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target:The influence of laser focus spot and target thickness" Physics of Plasmas 15 023103, (2008);
    [42]Hu Guang-Yue, Zhang Xiaoding, Zheng Jian, et al., "Demonstration of x-ray Thomson scattering on Shenguang-Ⅱ laser facility" Plasma Science and Technology 14 (2012);
    [43]G. Gregori M.K. Urry, O.L. Landen, A. Pak, S.H. Glenzer, "X-ray probe development for collective scattering measurements in dense plasmas" Journal of Quantitative Spectroscopy and Radiative Transfer 99 13, (2006);
    [44]E. Garcia Saiz, G. Gregori, D. O. Gericke, et al., "Probing warm dense lithium by inelastic X-ray scattering" Nat Phys 4 940, (2008);
    [45]O. L. Landen S. H. Glenzer, G. Grogeri, P. Neumayer, T. Doppner, R. W. Lee, A. Ng, D Price, F. J. Rogers, S. Weber, R. Wallace, X-ray Diagnostics. Lawrence Livermore National Laboratory:Berkeley, California, USA, (2008).
    [46]D. Babonneau, M. Primout, F. Girard, et al.," Efficient multi-keV X-ray sources from laser-exploded metallic thin foils" Physics of Plasmas 15 092702, (2008 POP 15 092702);
    [47]T. Doppner, O. L. Landen, H. J. Lee, et al., "Temperature measurement through detailed balance in x-ray Thomson scattering" High Energy Density Physics 5 182, (2009);
    [48]A. L. Kritcher, P. Neumayer, J. Castor, et al.," Ultrafast K alpha x-ray Thomson scattering from shock compressed lithium hydride" Physics of Plasmas 16 056308, (2009 POP 16 056308);
    [49]Yu V. Arkhipov, A. Askaruly, D. Ballester, et al.,"Dynamic properties of one-component strongly coupled plasmas:The sum-rule approach" Physical Review E 81026402, (2010);
    [50]R. Thiele, P. Sperling, M. Chen, et al., "Thomson scattering on inhomogeneous targets" Physical Review E 82 056404, (2010);
    [51]S. Schreiber, B. Faatz, K. Honkavaara. OPERATION OF FLASH AT 6.5nm WAVELENGTH, in Proceedings of EPAC08. Genoa Italy.2008.
    [52]Massimo Altarelli. The European X-ray Free-Electron Laser, in European XFEL GmbH. Hamburg Germany.2010.
    [53]S. Toleikis, R. R. Faustlin, L. Cao, et al., " Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures" High Energy Density Physics 6 15, (2010);
    [54]孙景文,高温等离子x射线谱学.北京:国防工业出版社,(2003).
    [55]A. J. Burek, C. J. Armentrout, C. R. Bird, et al., "Hard x-ray continuum crystal spectrograph for inertial confinement fusion (ICF) diagnostics" Review of Scientific Instruments 62 2709,(1991);
    [56]D. Sokaras, D. Nordlund, T. C. Weng, et al., "A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource" Review of Scientific Instruments 83 043112, (2012);
    [57]N. L. Kugland, Et Al., "Characterization of a spherically bent quartz crystal for Ka x-ray imaging of laser plasmas using a focusing monochromator geometry" Journal of Instrumentation 6 T03002, (2011 JoI 6 T03002);
    [58]Jian-Jun He, Boris Lamontagne, Andre Ge, et al., "Monolithic Integrated Wavelength Demultiplexer Based on a Waveguide Rowland Circle Grating in InGaAsP/InP" J. Lightwave Technol. 16631,(1998);
    [59]G. E. Ice, E. D. Specht, S. Laggis, "Mosaic LiH monochromators for low-energy X-rays" Journal of Applied Crystallography 25488, (1992);
    [60]Robert Grange, "Aberration-reduced holographic spherical gratings for Rowland circle spectrographs" Appl, Opt.313744, (1992);
    [61]Takeshi Namioka," Theory of the Ellipsoidal Concave Grating. I" J. Opt. Soc. Am.514, (1961);
    [62]H. G. Beutler, "The Theory of the Concave Grating"J. Opt. Soc. Am.35 311, (1945);
    [63]J. E. Mack, J. R. Stehn, Bengt Edlen, "ON THE CONCAVE GRATING SPECTROGRAPH, ESPECIALLY AT LARGE ANGLES OF INCIDENCE" J. Opt. Soc. Am.22 245, (1932);
    [64]Manuel Sanchez Del Rio, Mauro Gambaccini, Giovanni Pareschi, et al., "Focusing properties of mosaic crystals" PROC. SPIE, Crystal and Multilayer Optics.3448 246,(1998);
    [65]A. Pak, G. Gregori, J. Knight, et al., "X-ray line measurements with high efficiency Bragg crystals" Review of Scientific Instruments 75 3747, (2004);
    [66]谢忠信.赵宗铃.张玉斌.陈远盘.酆梁垣.,x射线光谱分析.北京:科学出版社,(1982).
    [67]B. R. Maddox, H. S. Park, B. A. Remington, et al.,"High-energy x-ray backlighter spectrum measurements using calibrated image plates" Review of Scientific Instruments 82 023111, (2011);
    [68]A. L. Meadowcroft, C. D. Bentley, E. N. Stott, "Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics" Review of Scientific Instruments 79 113102,(2008);
    [1]E.M. Lifschitz LD. Landau, Physical Kinetics. Vol.10:Elsevier (Singapore) Pte Ltd.130, (2008).
    [2]David. Pines, Philippe. Nozieres, The Theory of Quantum Fluids. Vol. Ⅱ. CA:Ad di son-Wesley, Redwood,, (1999).
    [3]Setsuo Ichimaru, Statistical Plasma Physics. Vol. Ⅱ,(1994).
    [4]S. H. Glenzer G.Gregori, O. L. Landen, "Strong coupling corrections in the analysis of x-ray Thomson scattering measurements" J. Phys. A:Math. Gen.36 10, (2003);
    [5]K. Wunsch, P. Hilse, M. Schlanges, et al., "Structure of strongly coupled multicomponent plasmas" Physical Review E 77 056404, (2008);
    [6]Junzo Chihara, "Interaction of photons with plasmas and liquid metals-photoabsorption and scattering" Journal of Physics:Condensed Matter 12 231, (2000);
    [7]G. Gregori, S. H. Glenzer, W. Rozmus, et al., "Theoretical model of x-ray scattering as a dense matter probe" Physical Review E 67 026412, (2003);
    [8]O. L. Landen, S. H. Glenzer, M. J. Edwards, et al., "Dense matter characterization by X-ray Thomson scattering" Journal of Quantitative Spectroscopy and Radiative Transfer 71465, (2001);
    [9]O. L. Landen S. H. Glenzer, G. Grogeri, P. Neumayer, T. Doppner, R. W. Lee, A. Ng, D Price, F. J. Rogers, S. Weber, R. Wallace, X-ray Diagnostics. Lawrence Livermore National Laboratory:Berkeley, California, USA, (2008).
    [10]D. Riley, N. C. Woolsey, D. Mcsherry, et al., "X-Ray Diffraction from a Dense Plasma" Physical Review Letters 84 1704, (2000);
    [11]D. E. Evans, J. Katzenstein, "Laser light scattering in laboratory plasmas" Reports on Progress in Physics 32 207, (1969);
    [12]J.-P. Hansen, I. R. Mcdonald, eds. Theory of simple liquids.2000, Academic:London.
    [13]G. Gregori, S. H. Glenzer, O. L. Landen," Generalized x-ray scattering cross section from nonequilibrium plasmas" Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74 026402, (2006 PRE 74026402);
    [14]Yu V. Arkhipov, A. Askaruly, D. Ballester, et al., " Dynamic properties of one-component strongly coupled plasmas:The sum-rule approach" Physical Review E 81 026402, (2010);
    [15]Yu V. Arkhipov, A. E. Davletov, "Screened pseudopotential and static structure factors of semiclassical two-component plasmas" Physics Letters A 247 339, (1998 PLA247 339);
    [16]Francois Perrot, M. W. C. Dharma-Wardana, "Spin-polarized electron liquid at arbitrary temperatures:Exchange-correlation energies, electron-distribution functions, and the static response functions" Physical Review B 62 16536, (2000);
    [17]L. Pauling, J. Sherman, Z. Kristallogr 181, (1932);
    [18]Yukio Mizuno, Yoshihiro Ohmura, "Theory of X-Ray Raman Scattering" Journal of the Physical Society of Japan 22 445, (1967);
    [19]Tadasu Suzuki, "X-Ray Raman Scattering Experiment. I" Journal of the Physical Society ofJapan 22 1139,(1967);
    [20]P. Eisenberger, P. M. Platzman, "Compton Scattering of X Rays from Bound Electrons" Physical Review A 2 415, (1970);
    [21]Jesse W. M. Dumond, Harry A. Kirkpatrick, "Experimental Evidence for Electron Velocities as the Cause of Compton Line Breadth with the Multicrystal Spectrograph" Physical Review 37 136, (1931);
    [22]J. W. M. Dumond, "Breadth of Compton Modified Line" Physical Review 36 146, (1930);
    [23]Benjamin J. Bloch, Lawrence B. Mendelsohn, "Comparison of methods for calculating atomic shielding factors" Physical Review A 12 1197, (1975);
    [24]Peter Holm, Roland Ribberfors, "First correction to the nonrelativistic Compton cross section in the impulse approximation" Physical Review A 40 6251, (1989 PRA 40 6251);
    [25]G. Gregori, S. H. Glenzer, J. Knight, et al., "Effect of Nonlocal Transport on Heat-Wave Propagation" Physical Review Letters 92 205006, (2004 PRL 92.205006);
    [26]R. W. James, ed. The Optical Principles of the Diffraction of X-Rays.1962, Ox Bow, Woodbridge, CT.
    [27]J. C. Stewart, Pyatt, K. D., Astrophys. J 144 1203, (1966);
    [28]Ryogo Kubo, "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems" Journal of the Physical Society of Japan 12 570, (1957);
    [29]E. E. Salpeter, "Electron Density Fluctuations in a Plasma" Physical Review 120 1528, (I960);
    [30]V. N. Tsytovich, R. Bingham, U. De Angelis, et al., "Plasma effects in the solar core and the solar neutrino problem"Astroparticle Physics 5 197, (1996);
    [31]Nestor R. Arista, Werner Brandt, "Dielectric response of quantum plasmas in thermal equilibrium" Physical Review A 29 1471, (1984);
    [32]Setsuo Ichimaru, "Strongly coupled plasmas:high-density classical plasmas and degenerate electron liquids" Reviews of Modern Physics 54 1017, (1982);
    [33]G. Gregori, S. H. Glenzer, O. L. Landen, "Strong coupling corrections in the analysis of x-ray Thomson scattering measurements" Journal of Physics A:Mathematical and General 36 5971, (2003);
    [34]E.M. Lifschitz L.D. Landau, ed. Quantum Mechanics (Non-relatlvistic Theory).3rd ed. Vol. 3.2008, Elsevier Pte. Ltd.
    [35]N. D. Mermin, "Lindhard Dielectric Function in the Relaxation-Time Approximation" Physical Review B 1 2362, (1970 1 2362);
    [36]S. H. Glenzer, O. L. Landen, P. Neumayer, et al., "Observations of Plasmons in Warm Dense Matter" Physical Review Letters 98 065002, (2007 PRL 98 065002);
    [37]D. Bohm, E. P. Gross, "Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior" Physical Review 75 1851, (1949);
    [38]A. Selchow, G. Ropke, A. Wierling, "Extended Mermin-like Dielectric Function for a Two-Component Plasma" Contributions to Plasma Physics 42 43, (2002);
    [39]G. Ropke, R. Redmer, A. Wierling, et al., "Strong collisions and response function for two-component plasmas" Physics of Plasmas 7 39, (2000 POP 7 39);
    [40]G. Ropke, "Quantum-statistical approach to the electrical conductivity of dense, high-temperature plasmas" Physical Review A 38 3001, (1988);
    [41]G.Bekefi, ed. Radiation Processses in Plasmas.1966, Wiley:New York.
    [42]R. Balescu, "Irreversible Processes in Ionized Gases" Physics of Fluids 3 52, (1960);
    [43]R. A. Redmer, G. Ropke, F. Morales, et al., "Effects of dynamic screening on the electrical conductivity of fully ionized, nondegenerate hydrogen plasma" Physics of Fluids B:Plasma Physics 2 390, (1990);
    [44]John Dawson, Carl Oberman, "High-Frequency Conductivity and the Emission and Absorption Coefficients of a Fully Ionized Plasma" Physics of Fluids 5 517, (1962);
    [45]H. Reinholz, R. Redmer, G. Ropke, et al., "Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma" Physical Review E 62 5648,(2000);
    [46]Ronald Redmer, "Physical properties of dense, low-temperature plasmas" Physics Reports 28235, (1997);
    [47]Siegfried H. Glenzer, Ronald Redmer, "X-ray Thomson scattering in high energy density plasmas" Reviews of Modern Physics 81 1625, (2009);
    [48]B. Barbrel, M. Koenig, A. Benuzzi-Mounaix, et al., "Measurement of Short-Range Correlations in Shock-Compressed Plastic by Short-Pulse X-Ray Scattering" Physical Review Letters 102 165004,(2009);
    [49]K. Wunsch, J. Vorberger, D. O. Gericke, "Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations" Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 79 010201, (2009);
    [1]Guang-Yue Hu, Jian Zheng, Bai-Fei Shen, et al., "Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target:The influence of laser focus spot and target thickness" Physics of Plasmas 15 023103, (2008);
    [2]O. L. Landen, S. H. Glenzer, M. J. Edwards, et al., "Dense matter characterization by X-ray Thomson scattering" Journal of Quantitative Spectroscopy and Radiative Transfer 71465, (2001);
    [3]Zhang Xiaoding, Zhang Jiyan, Yang Guohong, et al., "A high-efficiency x-ray crystal spectrometer for x-ray Thomson scattering" Plasma Science and Technology To be published (2013);
    [4]杨振华,在神光三原型上激光打靶过程中电场分布研究,私入通信,Editor.激光聚变研究中心:绵阳,(2011).
    [5]G. E. Ice, C. J. Sparks Jr, "Focusing optics for a synchrotron x-radiation microprobe" Nuclear Instruments and Methods in Physics Research 222 121, (1984);
    [6]G. E. Ice, C. J. Sparks Jr, "Mosaic crystal X-ray spectrometer to resolve inelastic background from anomalous scattering experiments" Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 291 110, (1990);
    [1]Guang-Yue Hu, Jian Zheng, Bai-Fei Shen, et al., "Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target:The influence of laser focus spot and target thickness" Physics of Plasmas 15 023103, (2008);
    [2]Manuel Sanchez Del Rio, Roger J. Dejus, "XOP 2.1---A New Version of the X-ray Optics Software Toolkit" AIP Conference Proceedings 705 784, (2004);
    [3]Lin Zunqi, Deng Ximing, Fan Dianyuan, "SG-Ⅱ laser elementary research and precision SG-Ⅱ program" Fusion Engineering and Design 44 61, (1999);
    [1]Nestor R. Arista, Werner Brandt, "Dielectric response of quantum plasmas in thermal equilibrium" Physical Review A 29 1471, (1984);
    [2]Setsuo Ichimaru, Statistical Plasma Physics. Vol.Ⅱ, (1994).
    [3]David. Pines, Philippe. Nozieres, The Theory of Quantum Fluids. Vol. Ⅱ CA:Addison-Wesley, Redwood,, (1999).
    [4]Junzo Chihara, "Interaction of photons with plasmas and liquid metals-photoabsorption and scattering" Journal of Physics:Condensed Matter 12 231, (2000);
    [5]N. D. Mermin, "Lindhard Dielectric Function in the Relaxation-Time Approximation" Physical Review B 12362, (1970 1 2362);
    [6]Setsuo Ichimaru, "Strongly coupled plasmas:high-density classical plasmas and degenerate electron liquids" Reviews of Modern Physics 54 1017, (1982);
    [7]Ronald Redmer, "Physical properties of dense, low-temperature plasmas" Physics Reports 28235,(1997);
    [8]Siegfried H. Glenzer, Ronald Redmer, "X-ray Thomson scattering in high energy density plasmas" Reviews of Modern Physics 81 1625, (2009);
    [9]John D. Lindl, Peter Amendt, Richard L. Berger, et al., "The physics basis for ignition using indirect-drive targets on the National Ignition Facility" Physics of Plasmas 11339, (2004);
    [10]G. Gregori, S. H. Glenzer, K. B. Fournier, et al., "X-Ray Scattering Measurements of Radiative Heating and Cooling Dynamics" Physical Review Letters 101 045003, (2008 PRL 101 045003);
    [11]S. H. Glenzer, O. L. Landen, P. Neumayer, et al., "Observations of Plasmons in Warm Dense Matter" Physical Review Letters 98 065002, (2007 PRL 98 065002);
    [12]S. H. Glenzer, G. Gregori, R. W. Lee, et al., "Demonstration of Spectrally Resolved X-Ray Scattering in Dense Plasmas" Physical Review Letters 90 175002, (2003 PRL 90 175002);
    [13]R. Ramis, R. Schmalz, J. Meyer-Ter-Vehn, "MULTI-A computer code for one-dimensional multigroup radiation hydrodynamics" Computer Physics Communications 49 475, (1988);
    [14]维基百科.硼.Available from:http://zh.wikipedia.org/wiki/%E7%A1%BC.
    [15]百度百科.硼.Available from:http://baike.baidu.com/view/20686.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700